Nils Thonemann
Assistant professor
- Name
- Dr.ing. N. Thonemann
- Telephone
- +31 71 527 2727
- n.thonemann@cml.leidenuniv.nl
- ORCID iD
- 0000-0001-5966-2656
Distinguished environmental scientist and engineer specializing in quantitative sustainability assessment, focusing on prospective assessments of emerging technologies while considering planetary boundaries.
More information about Nils Thonemann
Phd candidates
Professional experience
Nils holds a PhD in Engineering from Ruhr University Bochum, Germany, focusing on the prospective environmental assessment of emerging carbon capture and use technologies. Before his PhD studies, he worked as a Postdoctoral fellow at the Technical University of Denmark and Fraunhofer UMSICHT in Germany, conducting studies on the aviation industry, developing characterization factors for plastic pollution, and advancing the LCA framework (e.g., data collection and interpretation). He obtained an MA in Sustainable Economics and Management from Kassel University, Germany, and a BSc in Business Chemistry from the University of Düsseldorf, Germany.
Research topic
Nils Thonemann aims to continue pushing the boundaries of prospective LCA methodology. Nils is particularly interested in coupling prospective life cycle assessment (LCA) with dynamic material flow analysis (MFA) and considering planetary boundaries. This forward-looking approach reflects his commitment to advancing sustainability assessment methodologies and addressing pressing environmental challenges.
Assistant professor
- Science
- Centrum voor Milieuwetenschappen Leiden
- CML/Industriele Ecologie
- Arvidsson R., Svanström M., Sandén B.A., Thonemann N., Steubing B.R.P. & Cucurachi S. (2024), Terminology for future-oriented life cycle assessment: review and recommendations, International Journal of Life Cycle Assessment 29: 607-613.
- Thonemann N., Saavedra-Rubio K., Pierrat E., Dudka K., Bangoura M., Baumann N., Bentheimer C., Caliandro P., de Breuker R., de Ruiter C., di Stasio M., Elleby J., Guiguemde A., Lemoine B., Maerz M., Marciello V., Meindl M., Nicolosi F., Ruocco M., Sala B., Scharling Tromer Dragsdahl A.L., Vezzini A., Wang Z., Wannemacher T., Zettelmeier J. & Laurent A. (2024), Prospective life cycle inventory datasets for conventional and hybrid-electric aircraft technologies, Journal of Cleaner Production 434: 140314.
- Thonemann N., Pierrat E., Dudka K.M., Saavedra-Rubio K., Tromer Dragsdahl A.L.S. & Laurent A. (2024), Towards sustainable regional aviation: environmental potential of hybrid-electric aircraft and alternative fuels, Sustainable Production and Consumption 45: 371-385.
- Thonemann N., Zacharopoulos L. & Nühlen J. (2024), Life cycle assessment of carbon dioxide sequestration. In: Pacheco-Torgal F., Shi C. & Palomo A. (Eds.), Carbon dioxide sequestration in cementitious construction materials: Woodhead Publishing. 235-269.
- Oever A.E.M. van den, Puricelli S., Costa D., Thonemann N., Philippot M.L. & Messagie M. (2024), Revisiting the challenges of ozone depletion in life cycle Assessment, Cleaner Environmental Systems 13: 100196.
- Marciello M., Cusati V., Nicolosi F., Saavedra-Rubio K., Pierrat E., Thonemann N. & Laurent A. (2024), Evaluating the economic landscape of hybrid-electric regional aircraft: a cost analysis across three time horizons, Energy Conversion and Management 312: 118517.
- Oever A.E.M. van den, Puricelli S., Costa D., Thonemann N. & Philippot M.L. Messagie M. (2024), Dataset with updated ozone depletion characterization factors for life cycle impact assessment, Data in Brief 57: 111103.
- Emborg M., Tan G.L.X., Zhao Y., Thonemann N., Ho E.H.Z., Tan D.Z.L., Khoo H.H. & Eftekhari A.A. Olsen S.I. (2024), Environmental impacts and scale-up efficiency of four carbon capture and storage scenarios, Journal of Cleaner Production 472: 143506.
- Rupcic L. Pierrat E. Saavedra-Rubio K. Thonemann N. Ogugua C. Laurent A. (2023), Environmental impacts in the civil aviation sector: current state and guidance, Transportation Research Part D: Transport and Environment 119: 103717.
- Zacharopoulos L., Thonemann N., Dumeier M. & Geldermann J. (2023), Environmental optimization of the charge of battery electric vehicles, Applied Energy 329: 120259.
- Meindl M., Ruiter C. de, Marciello V., Stasio M. Di, Hilpert F., Ruocco M., Nicolosi F., Thonemann N., Saavedra-Rubio K., Locqueville L., Laurent A. & Maerz M. (2023), Decarbonised future regional airport infrastructure, Aerospace 10(3): 283.
- Galafton C., Maga D., Sonnemann G. & Thonemann N. (2023), Life cycle assessment of different strawberry production methods in Germany with a particular focus on plastic emissions, The International Journal of Life Cycle Assessment 28: 611-625.
- Thonemann N., Zacharopoulos L., Fromme F. & Nühlen J. (2022), Environmental impacts of carbon capture and utilization by mineral carbonation: a systematic literature review and meta life cycle assessment, Journal of Cleaner Production 332: 130067.
- Maga D., Galafton C., Blömer J., Thonemann N., Özdamar A. & Bertling J. (2022), Methodology to address potential impacts of plastic emissions in life cycle assessment, The International Journal of Life Cycle Assessment 27: 469-491.
- Saavedra-Rubio K., Thonemann N., Crenna E., Lemoine B., Caliandro P. & Laurent A. (2022), Stepwise guidance for data collection in the life cycle inventory (LCI) phase: building technology-related LCI blocks, Journal of Cleaner Production 366: 132903.
- Thonemann N., Garcia-Garcia G., Armstrong K. & Styring P. (2022), Life cycle analysis of CO2 valorisation [This chapter provides a short introduction to the mainly applied environmental assessment methodology, life cycle assessment. Based on life cycle assessment, CO2-based production of methane, methanol, carbon monoxide, dimethyl ether, dimethyl carbonate, and polyols regarding global warming, acidification, ecotoxicity, freshwater eutrophication, and abiotic resource use is evaluated. It is shown that the CO2-based production of DME, polyols, and CO is interesting from an environmental point of view as some environmental impacts are reduced when compared with the conventional alternative production.]. In: Stefanidis G. & Stankiewicz A. (Eds.), Chemical valorisation of carbon dioxide: The Royal Society of Chemistry. 544-555.
- Schulte A., Maga D. & Thonemann N. (2021), Combining life cycle assessment and circularity assessment to analyze environmental impacts of the medical remanufacturing of electrophysiology catheters, Sustainability 13(2): 898.
- Thonemann N., Schulte A. & Maga D. (2020), How to conduct prospective life cycle assessment for emerging technologies?: A systematic review and methodological guidance, Sustainability 12(3): 1192.
- Thonemann N., Stiessel S., Maga D., Dresen B., Hiebel M., Hunstock B., Deerberg G. & Weidner E. (2020), Location planning for the production of CO2-based chemicals using the example of olefin production, Chemical Engineering & Technology 43(3): 502-513.
- Thonemann N. (2020), Environmental impacts of CO2-based chemical production: a systematic literature review and meta-analysis, Applied Energy 263: 114599.
- Bargiacchi E., Thonemann N., Geldermann J., Antonelli M. & Desideri U. (2020), Life cycle assessment of synthetic natural gas production from different CO2 sources: a cradle-to-gate study, Energies 13(17): 4579.
- Laurent A., Weidema B.P., Bare J., Liao X., Maia de Souza D., Pizzol M., Sala S., Schreiber H., Thonemann N. & Verones F. (2020), Methodological review and detailed guidance for the life cycle interpretation phase, Journal of Industrial Ecology 24(5): 986-1003.
- Thonemann N. & Maga D. (2020), Life cycle assessment of steel mill gas‐based methanol production within the Carbon2Chem® project, Chemie Ingenieur Technik 92(10): 1425-1430.
- Thonemann N. & Pizzol M. (2019), Consequential life cycle assessment of carbon capture and utilization technologies within the chemical industry, Energy & Environmental Science 12(7): 2253-2263.
- Thonemann N., Stießel S., Maga D., Hiebel M., DresenB., Hunstock B., Deerberg G. & Weidner E. (2019), Standortplanung für die Herstellung CO2‐basierter Chemikalien am Beispiel der Olefinproduktion, Chemie Ingenieur Technik 91(9): 1238-1250.
- Maga D., Hiebel M. & Thonemann N. (2019), Life cycle assessment of recycling options for polylactic acid, Resources, Conservation and Recycling 149: 86-96.
- Thonemann N. & Schulte A. (2019), From laboratory to industrial scale: a prospective LCA for electrochemical reduction of CO2 to formic acid, Environmental Science and Technology 53(21): 12320-12329.
- Thonemann N. & Schumann M. (2018), Environmental impacts of wood-based products under consideration of cascade utilization: a systematic literature review, Journal of Cleaner Production 172: 4181-4188.
- Thonemann N., Maga D. & Petermann C. (2018), Integration of results from the energy system development plan into life cycle assessment, Chemie Ingenieur Technik 90(10): 1587-1593.
- Thonemann N., Maga D. & Petermann C. (2018), Handling of multi‐functionality in life cycle assessments for steel mill gas based chemical production, Chemie Ingenieur Technik 90(10): 1576-1586.
- Maga D., Thonemann N., Hiebel M., Sebastião D., Lopes T.F., César F. & Gírio F. (2018), Comparative life cycle assessment of first- and second-generation ethanol from sugarcane in Brazil, International Journal of Life Cycle Assessment 24: 266-280.
- Thonemann N. & Maga D. (2018), Life cycle assessment of German energy scenarios. In: Schebek L., Herrmann C. & Cerdas F. (Eds.), Progress in life cycle assessment. Cham: Springer . 165-175.
- Hoppe W., Thonemann N. & Bringezu S. (2017), Life cycle assessment of carbon dioxide–based production of methane and methanol and derived polymers, Journal of Industrial Ecology 22(2): 327-340.
- Hoppe W., Bringezu S. & Thonemann N. (2016), Comparison of global warming potential between conventionally produced and CO2-based natural gas used in transport versus chemical production, Journal of Cleaner Production 121: 231-237.
- Thonemann N. & Schumann M. (2016), Ressourceneffizienz in der Ökobilanz: eine systematische Literaturanalyse, uwf UmweltWirtschaftsForum 24: 69-74.