Vivi Rottschäfer
Universitair hoofddocent
- Naam
- Prof.dr. V. Rottschäfer
- Telefoon
- +31 71 527 7113
- vivi@math.leidenuniv.nl
- ORCID iD
- 0000-0002-4150-3486
Nieuws
Persoonlijke webpagina
Universitair hoofddocent
- Wiskunde en Natuurwetenschappen
- Mathematisch Instituut
- Mathematisch Instituut
- White C., Rottschäfer V. & Bridge L. (2024), Correction to: Classical structural identifiability methodology applied to low-dimensional dynamic systems in receptor theory (Jun, 10.1007/s10928-023-09870-y, 2023), Journal of Pharmacokinetics and Pharmacodynamics 51: 91.
- Zhang M., Rottschäfer V. & Lange E.C.M. de (2024), The potential impact of CYP and UGT drug-metabolizing enzymes on brain target site drug exposure, Drug Metabolism Reviews 56(1): 1-30.
- Chen G., Rottschäfer V., Vijver M.G. & Peijnenburg W.J.G.M. (2024), Modeling the toxicokinetics of suspensions of soluble metallic nanomaterials, Chemical Research in Toxicology 37(10): 1651-1659.
- Song Y., Rottschäfer V., Vijver M.G. & Peijnenburg W.J.G.M. (2023), Developing and verifying a quantitative dissolution model for metal-bearing nanoparticles in aqueous media, Environmental Science: Nano 10(7): 1790-1799.
- Siteur K., Liu Q.-X.L., Rottschäfer V., Heide T. van der, Rietkerk M., Doelman A., Boström C. & Koppel J. van de (2023), Phase-separation physics underlies new theory for the resilience of patchy ecosystems, Proceedings of the National Academy of Sciences 120(2): e2202683120.
- White C., Rottschäfer V. & Bridge L.J. (2022), Insights into the dynamics of ligand-induced dimerisation via mathematical modelling and analysis, Journal of Theoretical Biology 538: 110996.
- Bastiaansen R., Doelman A., Langevelde F. van & Rottschäfer V. (2020), Modeling honey bee colonies in winter using a Keller-Segel model with a sign-changing chemotactic coefficient, SIAM Journal on Applied Mathematics 80(2): 839-863.
- Amodio P., Budd C.J., Koch O., Rottschäfer V., Settanni G. & Weinmueller E. (2020), Near critical, self-similar, blow-up solutions of the generalised Korteweg-de Vries equation: asymptotics and computations, Physica D: Nonlinear Phenomena 401: 132179.
- Vendel E., Rottschäfer V. & Lange E.C.M. de (2020), A 3D brain unit model to further improve prediction of local drug distribution within the brain, PLoS ONE 15(9): e0238397.
- Vendel E., Rottschäfer V. & Lange E.C.M. de (2020), The 3D brain unit network model to study spatial brain drug exposure under healthy and pathological conditions, Pharmaceutical Research 37(7): 137.
- Vendel E., Rottschäfer V. & Lange E.C.M. de (2019), The need for mathematical modelling of spatial drug distribution within the brain, Fluids and Barriers of the CNS 16: 12.
- Schulthess P., Rottschäfer V., Yates J.W.T. & Graaf P.H. van der (2019), Optimization of cancer treatment in the frequency domain, AAPS Journal 21(6): 106.
- Vendel E., Rottschäfer V. & Lange E.C.M. de (2019), Improving the Prediction of Local Drug Distribution Profiles in the Brain with a New 2D Mathematical Model, Bulletin of Mathematical Biology 81(9): 3477-3507.
- Meerman C.J., Rottschäfer V. & Schuttelaars H. (2018), Influence of geometrical variations on morphodynamic equilibria in short tidal basins, Ocean Dynamics 69(2): 221-238.
- Kuske R., Lee C.Y. & Rottschäfer V. (2018), Patterns and coherence resonance in the stochastic Swift-Hohenberg equation with Pyragas control: the Turing bifurcation case, Physica D: Nonlinear Phenomena 365: 57-71.
- Witte W.E.A. de, Rottschäfer V., Danhof M., Graaf P.H. van der, Peletier L.A. & Lange E.C.M. de (2018), Modelling the delay between pharmacokinetics and EEG effects of morphine in rats: binding kinetic versus effect compartment models, Journal of Pharmacokinetics and Pharmacodynamics 45(4): 621-635.
- Witte W.E.A. de, Rottschäfer V., Danhof M., Graaf P.H. van der, Peletier L.A. & Lange E.C.M. de (2018), Correction to: Modelling the delay between pharmacokinetics and EEG effects of morphine in rats: binding kinetic versus effect compartment models, Journal of Pharmacokinetics and Pharmacodynamics 45(5): 763.
- Rottschäfer V., Tzou J.C. & Ward M.J. (2017), Transition to blow-up in a reaction-diffusion model with localized spike solutions, European Journal of Applied Mathematics 28(6): 1015-1055.
- Sewalt L., Doelman A., Meijer H.G.E., Rottschäfer V. & Zagaris A. (2015), Tracking pattern evolution through center manifold reduction and singular perturbations, Physica D 298: 48-67.
- Heemink A., Meerman C.J., Ramawadh S., Rottschäfer V. & Zuijlen W.B.van (2014), Monitoring the Sewer System. In: , Proceedings of the ninety-eighth European Study Group with Industry 55- 61.
- Budko N., Corbetta A., Duijn B. van, Hille S., Krehel O., Rottschäfer V., Wiegman L. & Zhelyazov D. (2014), A Simple model for O2 transport and consumption in germinating seeds.
- Heydenreich M., Hille S., Rottschäfer V., Spieksma F. & Verbitskiy E. (red.) (2014), Proceedings of the ninetieth European Study Group with Industry.
- Rottschäfer V. (2013), Asymptotic analysis of a new type of multi-bump, self-similar, blowup solutions of the Ginzburg-Landau equation, European Journal of Applied Mathematics 24(1): 103-129.
- Liu Q., Doelman A., Rottschäfer V., Jager M. de, Herman P.M.J., Rietkerk M. & Koppel J. van de (2013), Phase separation explains a new class of self-organized spatial patterns in ecological systems, Proceedings of the National Academy of Sciences 110(29): 11905-11910.
- Rottschäfer V. (2012), Asymptotic analysis of a new type of multi-bump, self-similar, blowup solutions of the Ginzburg Landau equation, European Journal of Applied Mathematics 24(1): 103-129.
- Rottschäfer V. (2008), Multi-bump, self-similar, blow-up solutions of the Ginzburg-Landau equation, Physica D: Nonlinear Phenomena 237(4): 510-539.
- Hek G. & Rottschäfer V. (2007), Semiconductor laser with filtered optical feedback: from optical injection to conventional feedback, IMA Journal of Applied Mathematics 72(4): 420-450.
- Budd C.J., Rottschäfer V. & Williams J.F. (2005), Multibump, blow-up, self-similar solutions of the complex Ginzburg-Landau equation, SIAM Journal on Applied Dynamical Systems 4(3): 649-678.
- Rottschäfer V. & Kaper T.J. (2003), Geometric theory for multi-bump, self-similar, blowup solutions of the cubic nonlinear Schrödinger equation, Nonlinearity 16(3): 929-961.
- Rottschäfer. V. & Kaper T.J. (2002), Blowup in the nonlinear Schrödinger equation near critical dimension, Journal of Mathematical Analysis and Applications 268(2): 517-549.
- Hasty J., Dolnik M., Rottschäfer V. & Collins J.J. (2002), Synthetic gene network for entraining and amplifying cellular oscillations, Physical Review Letters 88(14): 148101.
- Rottschäfer V. & Wayne C.E. (2001), Existence and stability of traveling fronts in the extended Fisher-Kolmogorov equation, Journal of Differential Equations 176(2): 532-560.
- Rottschäfer V. & Doelman A. (1998), On the transition from the Ginzburg-Landau equation to the extended Fisher-Kolmogorov equation, Physica D: Nonlinear Phenomena 118(3-4): 261-292.
- Doelman A. & Rottschäfer V. (1997), Singularly perturbed and nonlocal modulation equations for systems with interacting instability mechanisms, Journal of Nonlinear Science 7: 371-409.
- Bijzonder hoogleraar Industriele Wiskunde
- Chair of the board
- Member of the Committee Innovation
- Advisery board
- Chair