Jan-Hendrik Evertse
Universitair hoofddocent
- Naam
- Dr. J.H. Evertse
- Telefoon
- +31 71 527 7148
- evertse@math.leidenuniv.nl
- ORCID iD
- 0000-0002-0617-3960
De publicatielijst van Jan-Hendrik Evertse onder de link "publicaties" is onvolledig. Jan-Hendrik Evertse's complete en bijgewerkte publicatielijst kan worden gevonden op zijn persoonlijke webpagina.
Persoonlijke webpagina
Universitair hoofddocent
- Wiskunde en Natuurwetenschappen
- Mathematisch Instituut
- Mathematisch Instituut
- Bhargava M., Evertse J.H., Györy K., Remete L. & Swaminathan A. (2023), Hermite equivalence of polynomials, Acta Arithmetica 209: 17-58.
- Evertse J.H. (2023), Orders with few rational monogenizations, Acta Arithmetica 210: 307-335.
- Evertse J.H. & Györy K. (2022), Effective results and methods for diophantine equations over finitely generated domains. London Mathematical Society Lecture Note Series nr. 475. Cambridge, UK: Cambridge University Press.
- Evertse J.H., Györy K., Pethö A. & Thuswaldner J.M. (2019), Number systems over general orders, Acta Mathematica Hungarica 159(1): 187-205.
- Evertse J.H. (2019), Mahler's work on the geometry of numbers. In: Baake M., Borwein J.M., Bugeaud Y. & Coons M. (red.), Mahler Selecta: extra volume of Documenta Mathematica: Deutsche Mathematiker Vereinigung. 29-43.
- Evertse J.H., Györy K. & Stewart C.L. (2019), Mahler's work on Diophantine equations and subsequent developments . In: Baake M., Borwein J.M., Bugeaud Y. & Coons M. (red.), Mahler selecta: extra volume of Documenta Mathematica: Deutsche Mathematiker Vereinigung. 149–171.
- Akiyama S., Evertse J.-H. & Pethö A. (2017), On nearly linear recurrence sequences. In: Elsholtz C. & Grabner P. (red.), Number Theory - Diophantine Problems, Uniform Distribution and Applications. Festschrift in Honour of Robert F. Tichy's 60th Birthday. Cham: Springer. 1-24.
- Evertse J.-H. & Győry K. (2017), Effective results for discriminant equations over finitely generated integral domains. In: Elsholtz C. & Grabner P. (red.), Number Theory - Diophantine Problems, Uniform Distribution and Applications. Cham: Springer. 237-256.
- Bugeaud Y. & Evertse J.-H. (2017), S-parts of terms of integer linear recurrence sequences, Mathematika 63(3): 840-851.
- Gyõry K. & Evertse J.H. (2016), Discriminant Equations in Diophantine Number Theory. New Mathematical Monographs nr. 32. Cambridge, UK: Cambridge University Press.
- Evertse J.-H. & Győry K. (2015), Unit Equations in Diophantine Number Theory. Cambridge Studies in Advanced Mathematics nr. 146. Cambridge, UK: Cambridge University Press.
- Bérczes A., Evertse J.-H. & Györy K. (2013), Multiply monogenic orders, Annali Della Scuola Normale Superiore di Pisa 12(2): 467-497.
- Evertse J.-H. & Győry K. (2013), Effective results for unit equations over finitely generated domains, Mathematical Proceedings of the Cambridge Philosophical Society 154: 351-380.
- Evertse J.-H. & Ferretti R.G. (2013), A further improvement of the Quantitative Subspace Theorem, Annals of Mathematics 177(2): 513-590.
- Evertse J.-H. (2011), A survey on monogenic orders, Publicationes Mathematicae Debrecen 79: 411-422.
- Evertse J.-H. (2010), On the quantitive subspace theorem, Onbekend 377: 217-240.
- Bérczes A., Evertse J.H. & Györy K. (2009), Effective results for linear equations in two unknowns from a multiplicative division group, Acta Arithmetica 136: 331-349.
- Bérczes A., Evertse J.H. & Györy K. (2009), Effective results for points on certain subvarieties of tori, Math. Proc. Cambridge Philos. Soc.. 69-94.
- Bugeaud Y. & Evertse J.H. (2009), Approximation of complex algebraic numbers by algebraic numbers of bounded degree, Ann. Scuola Norm. Sup. Pisa, cl Scienze 5(8): 1-36.
- Evertse J.H. & Zannier U. (2008), Linear equations with unknowns from a multiplicative group in a function fields, Acta Arithmetica 133: 157-170.
- Evertse J.H. & Ferretti F. (2008), A generalization of the Subspace Theorem with polynomials of higher degree. Schlickewei H.P., Schmidt K.G. & Tichy R.F. (red.), Proc. Conf. in honour of W. Schmidt's 70th birthday. : Diophantine Approximation, Festschrift for Wolfgang Schmidt: Springer Verlag. 175-198.
- Evertse J.H. & Bugeaud Y. (2008), On two notions of complexity of algebraic numbers, Acta Arithmetica 133: 221-250.
- Bérczes A., Györy K. & Evertse J.H. (2007), On the number of pairs of binary forms with given degree and given resultant, Acta Arithmetica 128: 19-54.
- Bérczes A., Györy K. & Evertse J.H. (2007), Diophantine problems related to discriminants and resultants of binary forms. Zannier U. (red.), Proceedings of a trimester held from April-July 2005 at the Scuola Normale Superiore Pisa. . Pisa: Scuola Normale Superiore. 45-63.
- Evertse J.H. (2004), Linear equations with unknowns from a multiplicative group whose solutions lie in a small number of subspaces, Indagationes Mathematicae 15: 347-355.
- Bérczes A., Evertse J.H. & Györy K. (2004), On the number of equivalence classes of binary forms of given degree and given discriminant, Acta Arithmetica 113: 363-399.
- Evertse J.H. (2004), Distances between the conjugates of an algebraic number, Publicationes Mathematicae Debrecen 65: 323-340.
- Evertse J.H. & Tijdeman R. (2003), Multivariate equations with many solutions, Acta Arithmetica 107: 103-125.
- Evertse J.H. (1998), On the norm inequality | F (x) | less than or equal to h. onbekend: MI Getaltheorie.
- Evertse J.H. (1998), Lower bounds for resultants II, Proceedings in the Conference of Number Theory : 181-198.