David Holmes
Hoogleraar Zuivere Wiskunde
- Naam
- Prof.dr. D.S.T. Holmes
- Telefoon
- +31 71 527 7133
- holmesdst@math.leidenuniv.nl
- ORCID iD
- 0000-0002-6081-2516
David Holmes studeerde Wiskunde aan de Universiteit van Warwick en Christ’s College, onderdeel van de Universiteit van Cambridge. Vervolgens promoveerde hij aan de Universiteit van Warwick. In 2012 begon hij als postdoc bij het Mathematisch Instituut van Universiteit Leiden en nu wordt zijn onderzoek gefinancierd door een Vidi-beurs. David is sinds oktober 2023 hoogleraar Zuivere Wiskunde bij het Mathematisch Instituut. Hij is lid van de Instituutsraad en de commissie Diversiteit en Inclusie van het MI.
Nieuws
Promovendi
Persoonlijke webpagina
Oud-promovendi
Hoogleraar Zuivere Wiskunde
- Wiskunde en Natuurwetenschappen
- Mathematisch Instituut
- Mathematisch Instituut
- Biesel O. & Holmes D. (2023), Fine Compactified Moduli of Enriched Structures on Stable Curves. Memoirs of the American Mathematical Society nr. 285. U.S.A.: American Mathematical Society (AMS).
- Holmes D. & Orecchia G. (2023), Logarithmic moduli of roots of line bundles on curves, Expositiones Mathematicae 41(3): 577-602.
- Holmes D.S.T., Molcho S., Orecchia G. & Poiret T. (2023), Models of Jacobians of curves, Journal für die Reine und Angewandte Mathematik 801: 115-159.
- Bae Y., Holmes D.S.T., Pandharipande R., Schmitt J. & Schwarz R.M. (2023), Pixton’s formula and Abel–Jacobi theory on the Picard stack, Acta Mathematica 230(2): 205-319.
- Botero A., Burgos Gil J.I., Holmes D.S.T. & Jong R.S. de (2022), Chern-Weil and Hilbert-Samuel formulae for singular Hermitian line bundles, Documenta Mathematica 27: 2563-2623.
- Holmes D. & Schwarz R. (2022), Logarithmic intersections of double ramification cycles, Algebraic Geometry 9(5): 574-605.
- Dellar M.E., Boerlijst S.P. & Holmes D.S.T. (2022), Improving estimations of life history parameters of small animals in mesocosm experiments: a case study on mosquitoes, Methods in Ecology and Evolution 13(5): 1148-1160.
- Holmes D. (2021), A Néron model of the universal jacobian, Annales Henri Lebesgue 4: 1727-1766.
- Holmes D.S.T. & Schmitt J. (2021), Infinitesimal structure of the pluricanonical double ramification locus, Compositio Mathematica 157(10): 2280-2337.
- Holmes D.S.T. (2020), The norm of the saturation of a binomial ideal, with applications to Markov bases, Algebraic Statistics 11(2): 169-187.
- Holmes D.S.T. & Rome N. (2020), Fields of definition of rational curves of a given degree, Journal de Théorie des Nombres de Bordeaux 32(1): 291-310.
- Holmes D. (2019), Torsion points and height jumping in higher-dimensional families of abelian varieties, International Journal of Number Theory 15(09): 1801-1826.
- Holmes D.S.T. (2019), Néron models of jacobians over base schemes of dimension greater than 1, Journal für die Reine und Angewandte Mathematik 2019(747): 109-145.
- Jong R.S. de, Holmes D.S.T. & Burgos Gil J.I. (2019), Positivity of the height jump divisor , International Mathematics Research Notices 2019(7): 2044–2068.
- Dellar M., Topp C., Pardo G., Prado A. del, Fitton N., Holmes D.S.T., Banos G. & Wall E. (2019), Empirical and dynamic approaches for modelling the yield and N content of European grasslands, Environmental Modelling and Software 122: 104562.
- Bommel R. van, Holmes D.S.T. & Müller J.S. (2019), Explicit arithmetic intersection theory and computation of Néron-Tate heights, Mathematics of Computation 89(321): 395-410.
- Holmes D.S.T. (2019), Extending the double ramification cycle by resolving the Abel-Jacobi map, Journal of the Institute of Mathematics of Jussieu 20(1): 331-359.
- Holmes D.S.T., Pixton A. & Schmitt J. (2019), Multiplicativity of the double ramification cycle, Documenta Mathematica 24: 545-562.
- Holmes D., Kass J.L. & Pagani N. (2018), Extending the double ramification cycle using Jacobians, European Journal of Mathematics 4(3): 1087-1099.
- Burgos Gil J.I., Holmes D. & Jong R.S. de (2018), Singularities of the biextension metric for families of abelian varieties, Forum of Mathematics, Sigma 6: e12.
- Holmes D.S.T. (2017), Quasi-compactness of Néron models, and an application to torsion points, Manuscripta Mathematica 153(3-4): 323–330.
- Holmes D.S.T. (2017), Quasi-compactness of Néron models, and an application to torsion points, Manuscripta Mathematica 153: 323-320.
- Biesel O.D., Holmes D.S.T. & Jong R.S. de (2017), Néron models and the height jump divisor, Transactions of the American Mathematical Society 369(12): 8685-8723.
- Holmes D.S.T. & Jong R.S. de (2015), Asymptotics of the Néron height pairing, Mathematical Research Letters 22(5): 1337-1371.
- Holmes D.S.T. & Pannekoek R. (2015), The Brauer-Manin obstruction on Kummer varieties and ranks of twists of abelian varieties, Bulletin of the London Mathematical Society 47(4): 565-574.
- Holmes D.S.T. (2014), An Arakelov-theoretic approach to naïve heights on hyperelliptic Jacobians, New York Jounal of Mathematics 20: 927-957.
- Holmes D. (2012), Computing Néron-Tate heights of points on hyperelliptic Jacobians, Journal of Number Theory 132(6): 1295-1305.
- Managing editorship academic journal