Ariane Briegel
Professor of Ultrastructural biology / Co-director NeCEN
- Name
- Prof.dr. A. Briegel
- Telephone
- +31 71 527 8850
- a.briegel@biology.leidenuniv.nl
- ORCID iD
- 0000-0003-3733-3725
I am professor in electron cryotomography and bacterial chemotaxis. I am interested in understanding how microbes sense and respond to their environment. In order to gain insight into the structure and function of the molecular complexes involved in these behaviors, my lab uses electron cryotomography (ECT). This technique allows us to directly study microbes in their native state at resolutions capable of visualizing individual proteins. I am also a co-director at NeCEN, the Netherlands Centre for Electron Nanoscopy. Lastly, I am a member of the interdisciplinary research programme Society, Artificial Intelligence and Life Sciences (SAILS).
More information about Ariane Briegel
PhD Candidates
News
Former PhD Candidates
Electron Tomography
Cellular electron cryotomography allows the study of individual microbial cells in their native state and in three dimensions at macromolecular resolutions.
Our experiments rely on highly sophisticated and specialized equipment. We have access to the electron microscopes at the NeCEN, the dutch cryo-electron microscopy center located in the Biology Institute of the Leiden University. The available instruments include 2 TITAN Krios microscopes with state-of-the-art equipment for highest quality data collection, as well as a fully equipped sample preparation laboratory.
Bacterial interactions with their environment
The Briegel lab is interested in understanding how microbes interact with their environment on a structural level. We address research questions such as: how are bacterial cells able to actively seek out their preferred environmental niches, how can they evade toxins and predators, how do they interact with phages, each other and with host tissue, and how can they adapt to thrive in changing environments? In order to gain insight into the structure and function of the molecular complexes involved in these behaviors, we use cryo-electron tomography (cryo-ET) as our key research tool. This technique allows us to directly study microbes in their native state at resolutions capable of visualizing individual proteins.
More specifically, we are currently pursuing three major research lines in the laboratory:
- Chemotaxis in pathogenic bacteria (Vibrio cholerae and Treponema denticola)
- Bacterial hitchhiking
- Bacterial interactions in changing environments
1. Chemosensing in pathogenic bacteria
Bacteria are nearly ubiquitous, play vital roles in industry and the environment, and are crucial factors for health and disease of all organisms. They are also small, tractable cells that are ideal to study biological processes. As such, the bacterial chemotaxis system serves as a paradigm for signal transduction pathways. Chemotaxis allows motile bacteria, including some pathogens, to monitor their environment and swim toward nutrients and away from toxins. Chemical signals bind to chemoreceptors, which are typically found at the cell poles and organize into highly cooperative, ordered arrays. Chemoreceptor arrays ultimately control whether the cell moves forward or changes direction. The chemotaxis system in the model species E. coli is now structurally well understood. This detailed knowledge can be used for practical applications: this signalling system provides an ideal platform to design biosensors: For example, we are currently developing Neuroblastoma cancer screen based on the ability of the E. coli chemoreceptor Tsr to quickly detect a marker molecule for the disease (funded by KWF).
Besides, it is becoming increasingly clear that there is an underappreciated variability of chemotaxis systems among the motile bacteria. We are especially interested in the chemotaxis systems of two pathogenic bacteria: Vibrio cholerae and Treponema denticola, human pathogen that use their chemotaxis sensing system for infectivity. We discovered recently that the organization of both of these pathogens is structurally distinct from E.coli (Muok et al., 2020b; Yang et al., 2018; Yang and Briegel, 2019). We are investing these alternate architectures and their implications in the pathogenicity of these organisms.
2. Bacterial hitchhiking
Nearly all motile bacteria are able direct their motility to actively seek out favorable conditions (Hazelbauer et al., 2008). Most commonly, these bacterial cells use so-called flagella to swim through liquid environments or swarm on surfaces. These whip-like appendages that are anchored to a rotary motor in the cell envelope. For many pathogens, this type of motility is the first step in host invasion and is essential for survival within host tissues (Matilla and Krell, 2018; Shi et al., 1998). However, many bacteria are non-motile, such as bacteria lacking a motility apparatus. How do they reach their preferred environments without the means to move by themselves? There is now growing evidence that non-motile species can attach to motile species to benefit from motility without investing energy themselves (Muok and Briegel, 2020). For example, my lab recently discovered that non-motile bacterial spores are transported to beneficial environments by chemotactic soil bacteria via ‘hitchhiking’ (Muok et al., 2020a).
In this research line, my lab is determining the structural interactions that enable hitchhiking behavior between motile bacteria and non-motile species and the implications for microbial distributions and pathogenicity.
3. Bacterial interactions in changing environments
Bacteria are able to sense environmental changes in their surroundings and adapt themselves, both structurally and metabolically, in order to survive. These cells are able to switch between free-living states, sessile states in biofilms and active infection of a host organism. Cells selectively express and employ distinct macromolecular machines according to specific growth conditions to interact with and manipulate their environment. Consequently, cells of the same species may have vastly different morphological and behavioral characteristics depending on the environment they are in, and the susceptibility to stressors such as antibiotics and phage infection also may vary dramatically depending on cell morphology. For example we recently investigated the dramatic changes Vibrio cholerae undergoes when the cells encounter long periods of low temperature and nutrient limitation and enter a persister-like state (Brenzinger et al., 2019). Due to this innate adaptability, it is necessary to form a detailed understanding of how the cells first sense diverse environments and subsequently how they structurally remodel to counter and thrive despite often dramatically changing conditions. This structural insight is a crucial prerequisite for designing novel drugs aiming to target the specific molecular machines during infection. More specifically, we study the remodeling of V. cholerae during infection of V. cholerae in Zebrafish, a natural host for this pathogen (NWO BBOL grant). In order to investigate this interaction at the nanoscale level and near-native sample preservation, we are developing novel workflows that will allow us extract tissue samples and process them for subsequent cryo-ET investigations. This workflow will be generally applicable to investigate microbial interactions in complex environments, such as microbes inside a host organism. For example, we are also investigating a key microbe-host symbiosis system (luminescent bacteria inside the light organ of the Hawaiian bobtail squid (funded by the Moore foundation), as well as bacteria living inside plants (funded by NWO).
References
Brenzinger, S., van der Aart, L.T., van Wezel, G.P., Lacroix, J.M., Glatter, T., and Briegel, A. (2019). Structural and Proteomic Changes in Viable but Non-culturable Vibrio cholerae. Frontiers in microbiology 10, 793.
Hazelbauer, G.L., Falke, J.J., and Parkinson, J.S. (2008). Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33, 9-19.
Matilla, M.A., and Krell, T. (2018). The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev 42.
Muok, A., Claessen, D., and Briegel, A. (2020a). Microbial piggy-back: how Streptomyces spores are transported by motile soil bacteria. biorxiv.
Muok, A.R., and Briegel, A. (2020). Intermicrobial Hitchhiking: How Nonmotile Microbes Leverage Communal Motility. Trends Microbiol.
Muok, A.R., Ortega, D.R., Kurniyati, K., Yang, W., Maschmann, Z.A., Sidi Mabrouk, A., Li, C., Crane, B.R., and Briegel, A. (2020b). Atypical chemoreceptor arrays accommodate high membrane curvature. Nature communications 11, 5763.
Shi, W., Yang, Z., Geng, Y., Wolinsky, L.E., and Lovett, M.A. (1998). Chemotaxis in Borellia burgdorferi. Journal of Bacteriology 180, 231-235.
Yang, W., Alvarado, A., Glatter, T., Ringgaard, S., and Briegel, A. (2018). Baseplate variability of Vibrio cholerae chemoreceptor arrays. Proceedings of the National Academy of Sciences of the United States of America 115, 13365-13370.
Yang, W., and Briegel, A. (2019). Diversity of Bacterial Chemosensory Arrays. Trends Microbiol.
Professor of Ultrastructural biology / Co-director NeCEN
- Science
- Instituut Biologie Leiden
- IBL Microbial Sciences
Senior researcher/guest
- Science
- Instituut Biologie Leiden
- IBL Animal Sciences
- Ouyang R., Ongenae V.M.A., Muok A.R., Claessen D. & Briegel A. (2024), Phage fibers and spikes: a nanoscale Swiss army knife for host infection, Current Opinion in Microbiology 77: 102429.
- Munar-Palmer M., Santamaría-Hernando S., Liedtke J., Ortega D.R., López-Torrejón G., Rodríguez-Herva J.J., Briegel A. & López-Solanilla E. (2024), Chemosensory systems interact to shape relevant traits for bacterial plant pathogenesis, mBio 15(7): e00871.
- Zhong X., Nicolardi S., Ouyang R., Wuhrer M., Du C., Wezel G. van, Vijgenboom E., Briegel A. & Claessen D. (2024), CslA and GlxA from Streptomyces lividans form a functional cellulose synthase complex, Applied and Environmental Microbiology 90(4): e02087.
- Wuo M.G., Dulberger C.L., Warner T.C., Brown R.A., Sturm A., Ultee E., Bloom-Ackermann Z., Choi C., Zhu J., Garner E.C., Briegel A., Hung D.T., Rubin E.J. & Kiessling L.L. (2024), Fluorogenic probes of the mycobacterial membrane as reporters of antibiotic action, Journal of the American Chemical Society 146(26): 17669-17678.
- Britton A.P., Visser K.A., Ongenae V.M.A., Zhang P., Wassink H., Doerksen T.A., Welke C.A., Lynch K.H., Belkum M.J. van, Dennis J.J., Yang X., Claessen D., Briegel A. & Martin-Visscher L.A. (2023), Characterization of bacteriophage cd2, a siphophage infecting Carnobacterium divergens and a representative species of a new genus of phage, Microbiology Spectrum 11(4): e00973-23.
- Ongenae V.M.A., Kempff A., Neer V. van, Shomar H., Tesson F., Rozen D.E., Briegel A. & Claessen D. (2023), Genome sequence and characterization of Streptomyces phages Vanseggelen and Verabelle, representing two new species within the genus Camvirus, Scientific Reports 13: 20153.
- Muok A. R. Kurniyati K. Cassidy C. K. Olsthoorn F. A. Ortega Ribeiro D. & A. Sidi Mabrouk Li C. Briegel A. (2023), A new class of protein sensor links spirochete pleomorphism, persistence, and chemotaxis, mBio 14(5): e01598.
- Palmer M., Covington J.K., Zhou E.M., Thomas S.C., Habib N., Seymour C.O., Lai D., Johnson J., Hashimi A., Jiao J.Y., Muok A.R., Liu L., Xian W.D., Zhi X.Y., Li M.M., Silva L.P., Bowen B.P., Louie K., Briegel A., Pett-Ridge J., Weber P.K., Tocheva E.I., Woyke T., Northen T.R., Mayali X., Li W.J. & Heldund B.P. (2023), Thermophilic Dehalococcoidia with unusual traits shed light on an unexpected past, The ISME Journal 17(7): 952-966.
- Sidi Mabrouk A., Ongenae V.M.A., Claessen D., Brenzinger S. & Briegel A. (2023), A flexible and efficient microfluidics platform for the characterization and isolation of novel bacteriophages, Applied and Environmental Microbiology 89(1): e01596.
- Depelteau J.S., Renault L.L.R., Althof N., Cassidy C.K., Mendonca L.M., Jensen G.J., Resch G.P. & Briegel A. (2022), UVC inactivation of pathogenic samples suitable for cryo-EM analysis, Communications Biology 5: 29.
- Liedtke J., Depelteau J.S. & Briegel A. (2022), How advances in cryo-electron tomography have contributed to our current view of bacterial cell biology, Journal of Structural Biology: X 6: 100065.
- Ongenae V.M.A., Sidi Mabrouk A., Crooijmans M.E., Rozen D.E., Briegel A. & Claessen D. (2022), Reversible bacteriophage resistance by shedding the bacterial cell wall, Open Biology 12(6): 210379.
- Lemos Rocha L.F., Peters K., Biboy J., Depelteau J.S., Briegel A., Vollmer W. & Blokesch M. (2022), The VarA-CsrA regulatory pathway influences cell shape in Vibrio cholerae, PLoS Genetics 18(3): e1010143.
- Gundlach K.A. & Briegel A. (2022), Zooming in on host-symbiont interactions: advances in cryo-EM sample processing methods and future application to symbiotic tissues, Symbiosis 87: 67-75.
- Kaplan M., Oikonomou C.M., Wood C.R., Chreifi G., Ghosal D., Dobro M.J., Yao Q., Pal R.R., Baidya A.K., Liu Y., Maggi S., McDowall A.W., Ben-Yehuda S., Rosenshine I., Briegel A., Beeby M., Chang Y.W., Shaffer C.L. & Jensen G.J. (2022), Discovery of a novel inner membrane-associated bacterial structure related to the flagellar type III secretion system, Journal of Bacteriology 204(8): e00144.
- Anonymous (2022), Genome sequence and characterization of Streptomyces phage Pablito, representing a new species within the genus Janusvirus [Genoom sequentie en karakterisatie van streptomyces faag pablito, een nieuwe soort in de genus Janusvirus] (translation: Ongenae V.M.A., Azeredo J., Kropinski A.M., Rozen D.E., Briegel A. & Claessen D. ), Scientific Reports 12: 17785.
- Ouyang R., Costa A.R., Cassidy C.K., Otwinowska A., Williams V.C.J., Latka A., Stansfeld P.J., Drulis-Kawa Z., Briers Y., Pelt D.M., Brouns S.J.J. & Briegel A. (2022), High-resolution reconstruction of a Jumbo-bacteriophage infecting capsulated bacteria using hyperbranched tail fibers, Nature Communications 13: 7241.
- Ultee E., Zhong X.B., Shitut S., Briegel A. & Claessen D. (2021), Formation of wall‐less cells in Kitasatospora viridifaciens requires cytoskeletal protein FilP in oxygen‐limiting conditions, Molecular Microbiology 115(6): 1181-1190.
- Muok A.R. & Briegel A. (2021), Intermicrobial hitchhiking: how nonmotile microbes leverage communal motility, Trends in Microbiology 29(6): 542-550.
- Ongenae V., Briegel A & Claessen D (2021), Cell wall deficiency as an escape mechanism from phage infection, Open Biology 11(9): 210199.
- Muok A.R., Claessen D. & Briegel A. (2021), Microbial hitchhiking: how Streptomyces spores are transported by motile soil bacteria, The ISME Journal 15(9): 2591-2600.
- Kaplan M., Chreifi G., Metskas L.A., Liedtke J., Wood C.R., Oikonomou C.M., Nicolas W.J., Subramanian P., Zacharoff L.A., Wang Y., Chang Y.W., Beeby M., Dobro M., Zhu Y., McBride M., Briegel A., Shaffer C. & Jensen G.J. (2021), In situ imaging of bacterial outer membrane projections and associated protein complexes using electron cryo-tomography, eLife 10: e73099.
- Kaplan M., Tocheva E.I., Briegel A., Dobro M.J., Chang Y.W., Subramanian P., McDowall A.W., Beeby M. & Jensen G.J. (2021), Loss of the bacterial flagellar motor switch complex upon cell lysis, mBio 12(3): e00298-21.
- Depelteau J.S. Koning G. Yang W. Briegel A. (2020), An economical, portable manual cryogenic plunge freezer for the preparation of vitrified biological samples for cryogenic electron microscopy, Microscopy and Microanalysis 26(3): 413-418.
- Willemse J.J., Vaart M. van der, Yang W. & Briegel A. (2020), Mathematical mirroring for identification of local symmetry centers in microscopic images local symmetry detection in FIJI, Microscopy and Microanalysis 26(5): 978-988.
- Ultee E., Aart L.T. van der, Zhang L., Dissel M.D. van, Diebolder C.A., Wezel G.P. van, Claessen D. & Briegel A. (2020), Teichoic acids anchor distinct cell wall lamellae in an apically growing bacterium, Communications Biology 3: 314.
- Ortega D.R., Kjaer A. & Briegel A. (2020), The chemosensory systems of Vibrio cholerae, Molecular Microbiology 114(3): 367-376.
- Muok A.R., Ortega D.R, Kurniyati K., Yang W., Maschmann Z.A., Sidi Mabrouk A., Li C., Crane B.R. & Briegel A. (2020), Atypical chemoreceptor arrays accommodate high membrane curvature, Nature Communications 11: 5763.
- Muok A.R., Chua T.K., Srivastava M., Yang W., Maschmann Z., Borbat P.P., Chong J., Zhang S., Freed J.H., Briegel A. & Crane B.R. (2020), Engineered chemotaxis core signaling units indicate a constrained kinase-off state, Science Signaling 13(657): eabc1328.
- Justen A.M., Hodges H.L., Kim L.M., Sadecki P.W., Porfirio S., Ultee E., Black I., Chung G.S., Briegel A., Azadi P. & Kiessling L.L. (2020), Polysaccharide length affects mycobacterial cell shape and antibiotic susceptibility, Science Advances 6(38): eaba4015.
- Thormann K.M., Kreienbaum M., Dörrich A.K., Brandt D., Leonhard T., Hager F., Brenzinger S., Hahn J., Glatter T., Ruwe M., Briegel A. & Kalinowski J. (2020), Isolation and characterization of shewanella phage thanatos infecting and lysing shewanella oneidensis and promoting nascent biofilm formation, Frontiers in Microbiology 11: 573260.
- Ortega D.R., Yang W., Subramanian P., Mann P., Kjær A., Chen S., Watts K.J., Pirbadian S., Collins D.A., Kooger R., Kalyuzhnaya M.G., Ringgaard S., Briegel A. & Jensen G.J. (2020), Repurposing a chemosensory macromolecular machine, Nature Communications 11: 2041.
- Ultee E., Zhong X., Shitut S.S., Briegel A. & Claessen D. (2020), Formation of wall‐less cells in Kitasatospora viridifaciens requires cytoskeletal protein FilP in oxygen‐limiting conditions, Molecular Microbiology 115(6): 1181-1190.
- Ultee E., Ramijan K., Dame R.T., Briegel A. & Claessen D. (2019), Stress-induced adaptive morphogenesis in bacteria. In: Poole R.K (Ed.), Advances in Microbial Physiology no. 74: Academic Press. 97-141.
- O’Neal L., Gullett J.M., Aksenova A., Hubler A., Briegel A., Ortega D., Kjær A., Jensen G. & Alexandre G. (2019), Distinct chemotaxis protein paralogs assemble into chemoreceptor signaling arrays to coordinate signaling output, mBio 10: e01757.
- Yang W. & Briegel A. (2019), Diversity of bacterial chemosensory arrays, Trends in Microbiology 28(1): 68-80.
- Muok A.R., Briegel A. & Crane B.R. (2019), Regulation of the chemotaxis histidine kinase CheA: a structural perspective, Biochimica et Biophysica Acta 1862(1): 183030.
- Yang W., Cassidy C.K., Ames P., Diebolder C.A., Schulten K., Luthey-Schulten Z., Parkinson J.S. & Briegel A. (2019), In situ conformational changes of the escherichia coli serine chemoreceptor in different signaling states, mBio 10(4): e00973.
- Herrou J., Willett J.W., Fiebig A., Czyż D.M., Cheng J.X., Ultee E., Briegel A., Bigelow L., Babnigg G., Kim Y. & Crosson S. (2019), Brucella periplasmic protein EipB is a molecular determinant of cell envelope integrity and virulence, Journal of Bacteriology 201: e00134.
- Ferreira J.L., Gao F.Z., Rossmann F.M., Nans A., Brenzinger S., Hosseini R., Wilson A., Briegel A., Thormann K.M., Rosenthal P.B. & Beeby M. (2019), γ-proteobacteria eject their polar flagella under nutrient depletion, retaining flagellar motor relic structures, PLoS Biology 17(3): e3000165.
- Kaplan M., Ghosal D., Subramanian P., Oikonomou C.M., Kjaer A., Pirbadian S., Ortega D.R., Briegel A., El-Naggar M.Y. & Jensen G.J. (2019), The presence and absence of periplasmic rings in bacterial flagellar motors correlates with stator type, eLife 8: e43487.
- Depelteau J.S., Brenzinger S. & Briegel A. (2019), Bacterial and Archaeal Cell Structure. In: Schmidt T.M. (Ed.), Encyclopedia of Microbiology: ScienceDirect. 348-360.
- Herrou J., Willett J.W., Fiebig A., Varesio L.M., Czyż D.M., Cheng J.X., Ultee E., Briegel A., Bigelow L., Babnigg G., Kim Y. & Crosson S. (2019), Periplasmic protein EipA determines envelope stress resistance and virulence in Brucella abortus, Molecular Microbiology 111(3): 637-661.
- Ultee E., Schenkel F., Yang W., Brenzinger S., Depelteau J.S. & Briegel A. (2018), An Open-Source Storage Solution for Cryo-Electron Microscopy Samples, Microscopy and Microanalysis 24(1): 60-63.
- Ramijan Carmiol A.K., Ultee E., Willemse J.J., Zhang Z., Wondergem A.J., Meij A. van der, Heinrich D.M., Briegel A., Wezel G.P. van & Claessen D. (2018), Stress-induced formation of cell wall-deficient cells in filamentous actinomysetes, Nature Communications 9: 5164.
- Yang W., Alvarado A., Glatter T., Ringgaard S. & Briegel A. (2018), Baseplate variability of Vibrio cholerae chemoreceptor arrays, Proceedings of the National Academy of Sciences 115(52): 13365–13370.
- Briegel A. & Uphoff S. (2018), Editorial overview: The new microscopy, Current Opinion in Microbiology 43: 208–211.
- Ringgaard S., Yang W., Alvarado A., Schirner K. & Briegel A. (2018), Chemotaxis arrays in Vibrio species and their intracellular positioning by the ParC/ParP system, Journal of Bacteriology 200(15): e00793-17.
- Yang W. & Briegel A. (2018), Use of Cryo-EM to study the structure of chemoreceptor arrays in vivo. In: Manson M. (Ed.), Bacterial Chemosensing. Methods in Molecular Biology no. MMB 1729. New York, NY, U.S.A.: Humana Press. 173-185.
- Haglin E.R., Yang W., Briegel A. & Thompson L.K. (2017), His-tag-mediated dimerization of chemoreceptors leads to assembly of functional nanoarrays, Biochemistry 56(44): 5874-5885.
- Haglin E.R., Briegel A. & Thompson L.K. (2017), Hijacking His-Tags to Make Functional Multi-Protein Complexes, Biophysical Journal 112(3): 360A-360A.
- Briegel A., Oikonomou C.M., Chang Y.-W., Kjær A., Huang A.N., Kim K.W., Ghosal D., Nguyen H.H., Kenny D., Ogorzalek l.R., Loo R.R., Gunsalus R.P. & Jensen G.J. (2017), Morphology of the archaellar motor and associated cytoplasmic cone in Thermococcus kodakaraensis, EMBO Reports 18(9): 1660-1670.
- Briegel A. & Jensen G. (2017), Progress and Potential of Electron Cryotomography as Illustrated by Its Application to Bacterial Chemoreceptor Arrays, Annual Review of Biophysics 46: 1-21.
- Bardy S.L., Briegel A., Rainville S. & Krell T. (2017), Recent Advances and Future Prospects in Bacterial and Archaeal Locomotion and Signal Transduction, Journal of Bacteriology 199(18): e00203.
- Yao Q., Jewett A.I., Chang Y.-W., Oikonomou C.M., Beeby M., Iancu C.V., Briegel A., Ghosal D. & Jensen G.J. (2017), Short FtsZ filaments can drive asymmetric cell envelope constriction at the onset of bacterial cytokinesis, The EMBO Journal 36(11): 1577-1589.
- Dobro M.J., Oikonomou C.M., Piper A., Cohen J., Guo k., Jensen T., Donermeyer J., Park Y., Solis B.A., Kjaer A., Jewett A.I., McDowall A.W., Chen S., Chang Y.-W., Shi J., Subramanian P., Iancu C.V., Li Z., Briegel A., Tocheva E.I., Pilhofer M. & Jensen G.J. (2017), Uncharacterized Bacterial Structures Revealed by Electron Cryotomography, Journal of Bacteriology 199(17): e00100-17.
- Alvarado A., Kjaer A., Yang W., Mann P., Briegel A., Waldor M.K. & Ringgaard S. (2017), Coupling chemosensory array formation and localization, eLife 6: e31058.
- Haglin E.R., Briegel A. & Thompson L.K. (2017), Hijacking His-Tags to Make Functional Multi-Protein Complexes, Biophysical Journal 112(3): 360A-360A.
- Zielinska A., Billini M., Moll A., Kremer K., Briegel A., Martinez A.I., Jensen G.J. & Thanbichler M. (2017), LytM factors affect the recruitment of autolysins to the cell division site in Caulobacter crescentus, Molecular Microbiology 106(3): 419-438.
- Skennerton C., Haroon M., Briegel A., Shi J., Jensen G.J., Tyson G. & Orphan V. (2016), Phylogenomic Analysis of Candidatus 'Izimaplasma' species: Free-living representatives from a Tenericutes Clade found in Methane Seeps, The ISME Journal 10: 2679-2692.
- Briegel A., Ortega D.R., Mann P., Kjaer A., Ringgaard S. & Jensen G.J. (2016), Chemotaxis cluster 1 proteins form cytoplasmatic arrays in Vibrio cholera and are stabilized by a double signaling domain receptor DosM, Proceedings of the National Academy of Sciences 113(37): 10412-10417.
- Oikonomou C.M., Swulius M.T., Briegel A., Beeby M., Yao Q., Chang Y.-W. & Jensen G.J. (2016), Electron cryotomography, Methods in Microbiology 43: 115-139.
- Briegel A., Ortega D.R., Mann P., Kjaer A., Ringgaard S. & Jensen G.J. (2016), Chemotaxis cluster 1 proteins form cytoplasmic arrays in Vibrio cholerae and are stabilized by a double signaling domain receptor DosM, Proceedings of the National Academy of Sciences 113(37): 10412-10417.
- Willett J.W., Herrou J., Briegel A., Rotskoff G. & Crosson S. (2015), Structural asymmetry in a conserved signaling system that regulates division, replication, and virulence of an intracellular pathogen, Proceedings of the National Academy of Sciences 112(28): E3709-E3718.
- Briegel A., Ortega D.R., Huang A.N., Oikonomou C.M., Gunsalus R.P. & Jensen G.J. (2015), Structural conservation of chemotaxis machinery across Archaea and Bacteria, Environmental Microbiology Reports 7(3): 414-419.
- Briegel A., Ladinsky M.S., Oikonomou C., Jones C.W., Harris M.J., Fowler D.J., Chang Y.-W., Thompson L.K., Armitage J.P. & Jensen G.J. (2014), Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling, eLife 3: e02151.
- Briegel A., Wong M.L., Hodges H.L., Oikonomou C.M., Piasta K.N., Harris M.J., Fowler D.J., Thompson L.K., Falke J.J., Kiessling L.L. & Jensen G.J. (2014), Correction to New insights into bacterial chemoreceptor array structure and assembly from electron cryotomography (vol 53, pg 1575, 2014), Biochemistry 53(41): 6624-6624.
- Briegel A., Wong M.L., Hodges H.L., Oikonomou C.M., Piasta K.N., Harris M.J., Fowler D.J., Thompson L.K., Falke J.J., Kiessling L.L. & Jensen G.J. (2014), New insights into bacterial chemoreceptor array structure and assembly from electron cryotomography, Biochemistry 53(10): 1575-1585.
- Briegel A., Ames P., Gumbart J.C., Oikonomou C.M., Parkinson J.S. & Jensen G.J. (2013), The mobility of two kinase domains in the Escherichia coli chemoreceptor array varies with signalling state, Molecular Microbiology 89(5): 831-841.
- Briegel A., Pilhofer M., Mastronarde D.N. & Jensen G.J. (2013), The challenge of determining handedness in electron tomography and the use of DNA origami gold nanoparticle helices as molecular standards, Journal of Structural Biology 183(1): 95-98.
- Schlimpert S., Klein E.A., Briegel A., Hughes V., Kahnt J., Bolte K., Maier U.G., Brun Y.V., Jensen G.J., Gitai Z. & Thanbichler M. (2012), General protein diffusion barriers create compartments within bacterial cells, Cell 151(6): 1270-1282.
- Yamaichi Y., Bruckner R., Ringgaard S., Moll A., Cameron D.E., Briegel A., Jensen G.J., Davis B.M. & Waldor M.K. (2012), A multidomain hub anchors the chromosome segregation and chemotactic machinery to the bacterial pole, Genes & Development 26(20): 2348-2360.
- Briegel A., Li X.X., Bilwes A.M., Huges K.T., Jensen G.J. & Crane B.R. (2012), Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins, Proceedings of the National Academy of Sciences 109(10): 3766-3771.
- Swulius M.T., Chen S., Ding H.J., Li Z., Briegel A., Pilhofer M., Tocheva E.I., Lybarger S.R., Johnson T.L., Sandkvist M. & Jensen G.J. (2011), Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria, Biochemical and Biophysical Research Communications 407(4): 650-655.
- Chen S., Beeby M., Murphy G.E., Leadbetter J.R., Hendrixson D.R., Briegel A., Li Z., Shi J., Tocheva E.I., Muller A., Dobro M.J. & Jensen G.J. (2011), Structural diversity of bacterial flagellar motors, The EMBO Journal 30: 2972-2981.
- Briegel A., Beeby M., Thanbichler M. & Jensen G.J. (2011), Activated chemoreceptor arrays remain intact and hexagonally packed, Molecular Microbiology 82(3): 748-757.
- Moll A., Schlimpert S., Briegel A., Jensen G.J. & Thanbichler M. (2010), DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus, Molecular Microbiology 77(1): 90-107.
- Chen S., McDowall A., Dobro M.J., Briegel A., Ladinsky M., Shi J., Tocheva E.I., Beeby M., Pilhofer M., Ding H.J., Li Z., Morris D.M. & Jensen G.J. (2010), Electron cryotomography of bacterial cells. [other].
- Ingerson-Mahar M., Briegel A., Werner J.N., Jensen G.J. & Gitai Z. (2010), The metabolic enzyme CTP synthase forms cytoskeletal filaments, Nature Cell Biology 12: 739-746.
- Cabeen M.T., Murolo M.A., Briegel A., Khai Bui N., Vollmer W., Ausmees N., Jensen G.J. & Jacobs-Wagner C. (2010), Mutations in the Lipopolysaccharide biosynthesis pathway interfere with crescentin-mediated cell curvature in Caulobacter crescentus, Journal of Bacteriology 192(13): 3368-3378.
- Moll A., Schlimpert S., Briegel A., Jensen G.J. & Thanbichler M. (2010), DipM, a new factor required for peptidoglycan remodeling during cell division in Caulobacter crescentus, Molecular Microbiology 77(1): 90-107.
- Kuhn J., Briegel A., Morschel E., Kahnt J., Leser K., Wick S., Jensen G.J. & Thanbichler M. (2010), Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus, The EMBO Journal 29: 327-339.
- Briegel A., Chen S., Koster A.J., Plitzko J.M., Schwartz C.L. & Jensen G.J. (2010), Correlated light and electron cryo-microscopy, Methods in Enzymology 481: 317-341.
- Briegel A., Ortega D.R., Tocheva E.I., Wuichet K., Li Z., Chen S., Müller A., Iancu C.V., Murphy G.E., Dobro M.J., Zhulin I.B. & Jensen G.J. (2009), Universal architecture of bacterial chemoreceptor arrays, Proceedings of the National Academy of Sciences 106(40): 17181-17186.
- Tivol W.F., Briegel A. & Jensen G.J. (2008), An improved cryogen for plunge freezing, Microscopy and Microanalysis 14(5): 375-379.
- Junglas B., Briegel A., Burghardt T., Walther P., Wirth R., Huber H. & Rachel R. (2008), Ignicoccus hospitalis and Nanoarchaeum equitans: ultrastructure, cell-cell interaction, and 3D reconstruction from serial sections of freeze-substituted cells and by electron cryotomography, Archives of Microbiology 190: 395-408.
- Vestergaard G., Shah S.A., Bize A., Reitberger W., Reuter M., Phan H., Briegel A., Rachel R., Garrett R.A. & Prangishvili D. (2008), Stygiolobus rod-shaped virus and the interplay of crenarchaeal rudiviruses with the CRISPR antiviral system, Journal of Bacteriology 190(20): 6837-6845.
- Ebersbach G., Briegel A., Jensen G.J. & Jacobs-Wagner C. (2008), A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter, Cell 134(6): 956-968.
- Briegel A., Ding H.J., Li Z., Werner J., Gitai Z., Prabha Dias D., Jensen R.B. & Jensen G.J. (2008), Location and architecture of the Caulobacter crescentus chemoreceptor array, Molecular Microbiology 69(1): 30-41.
- Osman S., Moissl C., Hosoya N., Briegel A., Mayilraj S., Satomi M. & Venkateswaran K. (2007), Tetrasphaera remsis sp nov., isolated from the Regenerative Enclosed Life Support Module Simulator (REMS) air system, International Journal of Systematic and Evolutionary Microbiology 57: 2749-2753.
- Jensen G.J. & Briegel A. (2007), How electron cryotomography is opening a new window onto prokaryotic ultrastructure, Current Opinion in Structural Biology 17(2): 260-267.
- Iancu C.V., Tivol W.F., Schooler J.B., Prabha Dias D., Henderson G.P., Murphy G.E., Wright E.R., Li Z., Yu Z., Briegel A., Gan L., He Y. & Jensen G.J. (2007), Electron cryotomography sample preparation using the Vitrobot, Nature Physics 1: 2813-2819.
- Briegel A., Dias D.P., Li Z., Jensen R.B., Frangakis A.S. & Jensen G.J. (2006), Multiple large filament bundles observed in Caulobacter crescentus by electron cryotomography, Molecular Microbiology 62(1): 5-14.
- Moissl C., Rachel R., Briegel A., Engelhardt H. & Huber R. (2005), The unique structure of archaeal 'hami', highly complex cell appendages with nano-grappling hooks, Molecular Microbiology 56(2): 361-370.