Proefschrift
High-contrast spectroscopy of exoplanet atmospheres
More than 5,000 exoplanets have been found over the past couple of decades. These exoplanets show a tremendous diversity, ranging from scorching hot Jupiters, common super-Earths, to widely separated super-Jupiters on the planet/brown dwarf boundary.
- Auteur
- R. Landman
- Datum
- 11 juni 2024
- Links
- Thesis in Leiden Repository
We have now moved into the era of exoplanet atmospheric characterisation. Two crucial techniques for characterizing these exoplanets from the ground are high-contrast imaging and high-resolution spectroscopy. In the first part of the thesis, existing facilities are used to characterize the atmospheres of two of the most accessible types of planets: An ultra-hot Jupiter (WASP-76b) and a young supter-Jupiter (beta Pictoris b). The second part of the thesis develops instrumental concepts that are required to push exoplanet characterization towards smaller and closer-in planets. It shows how we can choose between spectral resolution, bandwidth, and field-of-view in developing an instrument for exoplanet detection, and how one can design an nearly optimal wavefront sensor for adaptive optics. Finally, it is demonstrated how machine learning techniques can help us improve the performance of these adaptive optics systems such that we can reach deeper contrasts for exoplanet imaging and characterization.