Sander Hille
Universitair docent
- Naam
- Dr. S.C. Hille
- Telefoon
- +31 71 527 7109
- shille@math.leidenuniv.nl
- ORCID iD
- 0000-0003-0437-6745
Persoonlijke webpagina
Universitair docent
- Wiskunde en Natuurwetenschappen
- Mathematisch Instituut
- Mathematisch Instituut
- Hille S.C. & Theewis E.S. (2023), Explicit expressions and computational methods for the Fortet–Mourier distance of positive measures to finite weighted sums of Dirac measures, Journal of Approximation Theory 294: 105947.
- Peng Q. & Hille S.C. (2023), Quality of approximating a mass-emitting object by a point source in a diffusion model, Computers and Mathematics with Applications 151: 491-507.
- Burger G.A., Nesenberend D.N., Lems C.M., Hille S.C. & Beltman J.B. (2022), Bidirectional crosstalk between epithelial-mesenchymal plasticity and IFN gamma-induced PD-L1 expression promotes tumour progression, Royal Society Open Science 9(11): 220186.
- Boot C.J.M., Hille S.C., Korthout H.A.A.J., Libbenga K.R. & Duijn A. van (2021), Extracting relevant physiological information from polar auxin transport data in Panax ginseng, Journal of Plant Physiology 262: 153436.
- Hille S.C., Szarek T., Worm D.T.H. & Ziemlańska M.A. (2021), Equivalence of equicontinuity concepts for Markov operators derived from a Schur-like property for spaces of measures, Statistics & Probability Letters 169: 108964.
- Czapla D., Hille S.C., Horbacz K. & Wojewodka-Sciazko H. (2021), The law of the iterated logarithm for a piecewise deterministic Markov process assured by the properties of the Markov chain given by its post-jump locations, Stochastic Analysis and Applications 39(2): 357-379.
- Czapla D., Hille S.C., Horbacz K. & Wojewodka-Sciazko H. (2020), Continuous dependence of an invariant measure on the jump rate of a piecewise-deterministic Markov process, Mathematical Biosciences and Engineering 17(2): 1059-1073.
- Gulgowksi J., Hille S.C., Szarek T. & Ziemlanska M.A. (2019), Central limit theorem for some non-stationary Markov chains, Studia Mathematica 246(2): 109-131.
- Gwiazda R., Hille S.C., Lyczek K. & Swierczewka-Gwiazda A. (2019), Differentiability in perturbation parameter of measure solutions to perturbed transport equation, Kinetic and Related Models 12(5): 1093-1108.
- Otten H.J. & Hille S.C. (2019), A novel expected hypervolume improvement algorithm for Lipschitz multi-objective optimisation: Almost Shubert's Algorithm in a special case. Emmerich M.T.M., Deutz A., Hille S.C., Sergeyev Y. & Yevseyeva I. (red.), AIP Conference Proceedings. LeGO - 14th International Global Optimization Workshop 18 september 2018 - 21 september 2018 nr. 2070: AIP Publishing. 020031.
- Ackleh A.S., Colombo R.M., Goatin P., Hille S.C. & Muntean A. (2019), Mathematical modeling with measures, Nieuw Archief voor Wiskunde 20(3) 5e serie: 218 - 220.
- Hille S.C., Akhmanova M., Glanc M., Johnson A. & Friml J. (2018), Relative contribution of PIN-containing secretory vesicles and plasma membrane PINs to directed auxin transport: theoretical estimation, International Journal of Molecular Sciences 19(11): 3566-3586.
- Budko N., Duijn A. van, Hille S.C. & Vermolen F. (2018), Modeling oxygen consumption in germinating seeds. Quintela P. (red.), Progress in Industrial Mathematics at ECMI 2016. 19th European Conference on Mathematics for Industry 13 juni 2016 - 16 juni 2016 nr. 26. Chem: Springer. 193-200.
- Hille S.C., Szarek T. & Ziemlanska M.A. (2017), Equicontinuous families of Markov operators in view of asymptotic stability, Comptes Rendus. Mathematique 355(12): 1247-1251.
- Bertens L.M.F., Kleijn J., Hille S., Heiner M., Koutny M. & Verbeek F.J. (2016), Modeling Biological Gradient Formation: Combining Partial Differential Equations and Petri Nets, Natural computing 154(4): 665-675.
- Hille S.C., Horbacz K., Szarek T. & Wodjewodka H. (2016), Limit theorems for some Markov operators, Journal of Mathematical Analysis and Applications 443: 385-408.
- Boot K.J.M., Hille S.C., Libbenga K.R., Pelletier L.A., Spronsen P.C. van, Duijn A. van & Offringa R. (2016), Modelling the dynamics of polar auxin transport in inflorescence stems of Arabidopsis thaliana, Journal of Experimental Botany 67(3): 649-666.
- Hille S.C., Horbacz K., Szarek T. & Wodjewodka H. (2016), Law of the iterated logarithm for some Markov operators, Asymptotic Analysis 97(1-2): 91-112.
- Evers J., Hille S.C. & Muntean A. (2016), Measure-valued mass evolution problems with flux boundary conditions and solution-dependent velocities, SIAM Journal on Mathematical Analysis 48(3): 1929-1953.
- Hille S.C., Horbacz K. & Szarek T. (2016), Existence of a unique invariant measure for a class of equicontinuous Markov operators with application to a stochastic model for an autoregulated gene, Annales Mathématiques Blaise Pascal 23(2): 171-217.
- Evers J., Hille S.C. & Muntean A. (2015), Mild solutions to a measure-valued mass evolution problem with flux boundary conditions, Journal of Differential Equations 259: 1068-1097.
- Alkurdi T., Hille S.C. & Gaans O. van (2015), Persistence of stability for equilibria of map iterations in Banach spaces under small random perturbations, Potential Analysis 42(1): 175-201.
- Evers J.H.M., Hille S.C. & Muntean A. (2015), Modelling with measures: Approximation of a mass-emitting object by a point source, Mathematical Biosciences and Engineering 12(2): 357-373.
- Evers J., Hille S.C. & Muntean A. (2014), Well-posedness and approximation of a measure-valued mass evolution problem with flux boundary conditions, Comptes Rendus. Mathematique 352(1): 51-54.
- Alkurdi T.S.O., Hille S.C. & Gaans O.W. van (2013), Ergodicity and stability of a dynamical system perturbed by impulsive random interventions, Journal of Mathematical Analysis and Applications 407(2): 480-494.
- Bertens L.M.F., Kleijn J., Hille S.C., Koutny M., Heiner M. & Verbeek F.J. (2013), Modeling biological gradient formation: combining partial differential equations and Petri nets. Newcastle: University of Newcastle-upon-Tyne, UK.
- Boot C.J.M., Libbenga K.R., Hille S.C., Offringa R. & Duijn B. van (2012), Polar auxin transport: an early invention, Journal of Experimental Botany 63(11): 4213-4218.
- Alkurdi T.S.O., Hille S.C. & Gaans O.W. van (2012), On metrization of unions of function spaces on different intervals, Journal of the Australian Mathematical Society 92: 281-297.
- Sella L., Emmerich Michael T.M. & Hille S.C. (2011), Simulations of Signaling Networks in B. Subtilis, Proceedings 8th European Conference on Mathematical and Theoretical Biology and Annual Meeting of the Society for Mathematical Biology. .
- Worm D.T.H. & Hille S.C. (2011), An ergodic decomposition defined by regular jointly measurable Markov semigroups on Polish spaces, Acta Applicandae Mathematicae 116: 27-53.
- Worm D.T.H. & Hille S.C. (2011), Ergodic decompositions associated to regular Markov operators on Polish spaces, Ergodic Theory and Dynamical Systems 31(2): 27-53.
- Hille S.C. & Worm D.T.H. (2009), Embedding of semigroups of Lipschitz maps into positive linear semigroups on ordered Banach spaces generated by measures, Integral Equations and Operator Theory 63: 351-371.
- Hille S.C. & Worm D.T.H. (2009), Continuity properties of Markov semigroups and their restrictions to invariant L1-spaces, Semigroup Forum 79: 575-600.
- Hille S.C. (2008), Local well-posedness of kinetic chemotaxis models, Journal of Evolution Equations 8: 423-448.
- Hille S.C. (2005), Review of Mathematical Modelling in the study of collective movement of Dictyostelium discoideum, Equadiff 03, International Conference on Differential Equations. : World Scientific. 1083-1085.
- Hille S.C. (2005), Continuity of the restriction of C_0-semigroups to invariant Banach subspaces, Integral Equations and Operator Theory 53: 597-601.
- Hille S.C. (1998), Decomposition of tensor products of scalar holomorphic and anti-holomorphic representations of the universal covering group of SU(p,q). onbekend: Mathematisch Instituut.