Joost Batenburg
Hoogleraar Informatica
- Naam
- Prof.dr. K.J. Batenburg
- Telefoon
- +31 71 527 6985
- k.j.batenburg@liacs.leidenuniv.nl
Joost Batenburg is hoogleraar aan het LIACS en heeft als leerstoel Imaging and Visualization. Hij is ook verbonden aan het CWI en is programmadirecteur van het interdisciplinaire onderzoeksprogramma Society, Artificial Intelligence and Life Sciences (SAILS). Hij publiceerde meer dan 80 tijdschriftartikelen en meer dan 60 conference papers op het gebied van tomografische beeldverwerking en -reconstructie.
Meer informatie over Joost Batenburg
Promovendi
Nieuws
Joost Batenburg is hoogleraar aan het LIACS en heeft als leerstoel Imaging and Visualization. Hij is ook verbonden aan het CWI en is programmadirecteur van het interdisciplinaire onderzoeksprogramma Society, Artificial Intelligence and Life Sciences (SAILS). Hij publiceerde meer dan 80 tijdschriftartikelen en meer dan 60 conference papers op het gebied van tomografische beeldverwerking en -reconstructie.
Van 2013 tot 2017 was hij voorzitter van de EU COST Action EXTREMA op het gebied van geavanceerde röntgentomografie. Hij was een pionier op het gebied van discrete tomografie en ontwikkelde de eerste grootschalige reconstructiemethoden.
Zijn huidige onderzoek richt zich op het creëren van een real-time tomografie pipeline, gefinancierd door een NWO Vici-subsidie. Hij is verantwoordelijk voor het FleX-Ray lab, waar een op maat ontworpen CT-systeem is gekoppeld aan geavanceerde dataverwerking en reconstructie-algoritmen.
Hoogleraar Informatica
- Wiskunde en Natuurwetenschappen
- Leiden Inst of Advanced Computer Science
- Kiss Maximilian B. Coban Sophia B. Batenburg K. Joost van Leeuwen Tristan Lucka Felix (2023), 2DeteCT-A large 2D expandable, trainable, experimental Computed Tomography dataset for machine learning, Scientific Data 10(1): 576.
- Skorikov A., Batenburg K.J. & Bals S. (2023), Analysis of 3D elemental distribution in nanomaterials: towards higher throughput and dose efficiency, Journal of Microscopy 289(3): 157-163.
- Sero D., Garachon I., Hermens E. & Batenburg K.J. (2023), Artist profiling using micro-CT scanning of a Rijksmuseum terracotta sculpture, Science Advances 9(38): eadg6073.
- Kiss M.B., Bossema F.G., Laar P.J.C. van, Meijer S., Lucka F., Leeuwen T. van & Batenburg K.J. (2023), Beam filtration for object-tailored X-ray CT of multi-material cultural heritage objects, Heritage Science 11(1): 130.
- Schoonhoven R.A., Werkhoven B.J.C. van & Batenburg K.J. (2023), Benchmarking optimization algorithms for auto-tuning GPU kernels, IEEE Transactions on Evolutionary Computation 27(3): 550-564.
- Andriiashen V., Liere R. van, Leeuwen T. van & Batenburg K.J. (2023), CT-based data generation for foreign object detection on a single X-ray projection, Scientific Reports 13(1): 1881.
- Kavak S., Kadu A.A., Claes N., Sánchez-Iglesia A., Liz-Marzán L.M., Batenburg K.J. & Bals S. (2023), Quantitative 3D investigation of nanoparticle assemblies by volumetric segmentation of electron tomography data sets, The Journal of Physical Chemistry Part C 127(20): 9725-9734.
- Pelt D.M., Hendriksen A.A. & Batenburg K.J. (2022), Foam-like phantoms for comparing tomography algorithms, Journal of Synchrotron Radiation 29: 254-265.
- Zeegers M.T., Kadu A., Leeuwen T. van & Batenburg K.J. (2022), ADJUST: a dictionary-based joint reconstruction and unmixing method for spectral tomography, Inverse Problems 38(12): 125002.
- Minnema J., Ernst A., Eijnatten M. van, Pauwels R., Forouzanfar T., Batenburg K.J. & Wolff J. (2022), A review on the application of deep learning for CT reconstruction, bone segmentation and surgical planning in oral and maxillofacial surgery, Dentomaxillofacial Radiology 51(7): 20210437.
- Zeegers M.T., Leeuwen T. van, Pelt D.M., Coban S.B., Liere R. van & Batenburg K.J. (2022), A tomographic workflow to enable deep learning for X-ray based foreign object detection, Expert Systems with Applications 206: 117768.
- Dorscheid J., Bossema F.G., Duin P. van, Coban S.B., Liere R. van, Batenburg K.J. & Stefano G.P. di (2022), Looking under the skin: multi-scale CT scanning of a peculiarly constructed cornett in the Rijksmuseum, Heritage Science 10(1): 161.
- Ganguly P.S., Lucka F., Kohr H., Franken E., Hupkes H.J. & Batenburg K.J. (2022), SparseAlign: a grid-free algorithm for automatic marker localization and deformation estimation in cryo-electron tomography, IEEE Transactions on Computational Imaging 8: 651-665.
- Kim J., Pelt D.M., Kagias M., Stampanoni M., Batenburg K.J. & Marone F. (2022), Tomographic reconstruction of the small-angle x-ray scattering tensor with filtered back projection, Physical Review Applied 18(1): 014043.
- Hendriksen A.A., Bührer M., Leone L., Marlini M., Vigano N., Pelt D.M., Marone F., Michiel M. di & Batenburg K.J. (2021), Deep denoising for multi-dimensional synchrotron X-ray tomography without high-quality reference data, Scientific Reports 11(1): 11895.
- Ganguly P.S., Pelt D.M., Gürsoy D., Carlo F. de & Batenburg K.J. (2021), Improving reproducibility in synchrotron tomography using implementation-adapted filters, Journal of Synchrotron Radiation 28(5): 1583-1597.
- Hendriksen A.A., Schut D., Palenstijn W.J., Viganó N., Kim J., Pelt D.M., Leeuwen T. van & Batenburg K.J. (2021), Tomosipo: Fast, flexible, and convenient 3D tomography for complex scanning geometries in Python, Optics Express 29(24): 40494-40513.
- Ganguly P.S., Lucka F., Hupkes H.J. & Batenburg K.J. (2020), Atomic super-resolution tomography. Lukic T., Barneva R.P., Brimkov V.E., Comic L. & Sladoje N. (red.), Combinatorial Image Analysis. 20th International Workshop, IWCIA 2020 16 juli 2020 - 18 juli 2020. Lecture Notes in Computer Science nr. 12148. Cham: Springer. 45-61.
- Lagerwerf M.J., Pelt D.M., Palenstijn W.J. & Batenburg K.J. (2020), A computationally efficient reconstruction algorithm for circular cone-beam computed tomography using shallow neural networks, Journal of Imaging 6(12): 135.
- Hendriksen A.A., Pelt D.M. & Batenburg K.J. (2020), Noise2Inverse: self-supervised deep convolutional denoising for tomography, IEEE Transactions on Computational Imaging 6: 1320-1335.
- Vanrompay H., Buurlage J.W., Pelt D.M., Kumar Vi., Zhuo X., Liz-Marzán L.M., Bals S. & Batenburg K.J. (2020), Real‐time reconstruction of arbitrary slices for quantitative and in situ 3D characterization of nanoparticles, Particle & Particle Systems Characterization 37(7): 2000073.
- Zeegers M.T., Pelt D.M., Leeuwen T. van, Liere R. van & Batenburg K.J. (2020), Task-driven learned hyperspectral data reduction using end-to-end supervised deep learning, Journal of Imaging 6(12): 132.
- Batenburg K.J., Helwerda L.S., Kosters W.A. & Meij T. van der (2017), Mobile Radio Tomography: Agent-Based Imaging. Bosse T. & Bredeweg B. (red.), BNAIC 2016: Artificial Intelligence. 28th Benelux Conference on Artificial Intelligence (BNAIC 2016) 10 november 2016 - 11 november 2016. Communications in Computer and Information Science nr. 765. Cham: Springer. 63-77.
- Batenburg K.J., Helwerda L.S., Kosters W.A. & Meij T. van der (2016), Agents for mobile radio tomography, Proceedings BNAIC 2016. 28th Benelux Conference on Artificial Intelligence (BNAIC 2016) 10 november 2016 - 11 november 2016 17-24.
- Bleichrodt F., Leeuwen T. van, Palenstijn W.J., Aarle W. van, Sijbers J. & Batenburg K.J. (2016), Easy implementation of advanced tomography algorithms using the ASTRA toolbox with Spot operators, Numerical Algorithms 71(3): 673-697.
- Palenstijn W.J., Bédorf J., Sijbers J. & Batenburg K.J. (2016), A distributed ASTRA toolbox, Advanced Structural and Chemical Imaging 2(1): 19.
- Bladt E., Pelt D.M., Bals S. & Batenburg K.J. (2015), Electron tomography based on highly limited data using a neural network reconstruction technique, Ultramicroscopy 158: 81-88.
- Plantagie L. & Batenburg K.J. (2015), Algebraic filter approach for fast approximation of nonlinear tomographic reconstruction methods, Journal of Electronic Imaging 24: 013026.
- Zhuge X., Palenstijn W.J. & Batenburg K.J. (2015), TVR-DART: a more robust algorithm for discrete tomography from limited projection data with automated gray value estimation, IEEE Transactions on Image Processing 25(1): 455-468.
- Fortes W. & Tijdeman R. (2013), Approximate Discrete Reconstruction Algorithm, Fundamenta Informaticae 125(3-4): 239-259.
- Palenstijn W.J., Balazs P. & Sijbers J. (2013), Dynamic angle selection in binary tomography, Computer vision and image understanding : CVIU 117(4): 306-318.
- Pelt D.M. (2013), Fast Tomographic Reconstruction From Limited Data Using Artificial Neural Networks, IEEE Transactions on Image Processing 22(12): 5238-5251.
- Fortes W., Hajdu L. & Tijdeman R. (2013), Bounds on the quality of reconstructed images in binary tomography, Discrete Applied Mathematics 161(15): 2236-2251.
- Member Scientific Advisory Council
- deelname Wetenschappelijke Adviesraad (SAB)
- Onderzoeker Computational Imaging (0.2fte)
- Deelname Wetenschappelijke Adviesraad