Dissertation
Chemical functionalization of the graphene surface for electrical and electrochemical sensing application
Advanced sensing techniques require graphene with high quality and well-controlled surface chemistry.
- Author
- Jiang, L.
- Date
- 27 February 2020
- Links
- Thesis in Leiden Repository
Advanced sensing techniques require graphene with high quality and well-controlled surface chemistry. The intrinsic high mobility, low electrical noises and uniform graphitic crystallinity are the prerequisites for high-performance graphene electronics. More importantly, chemical functionalization contributes to unlock the sensing potential of the graphene basal plane. This thesis focuses on manipulating the surface chemistry of a graphene monolayer and explores the impacts on the electrical and electrochemical properties for sensing applications. Heteroatoms like hydrogen, nitrogen and oxygen were systematically introduced into the graphene lattice as defect sites to modify the surface chemistry, and consequently the electronic properties and sensing performance. In summary, a correlation between the in-plane electron transport and the electrochemical activity of hydrogenated graphene was studied by modulating the density of H-sp3 defects. Moreover, cleaning effect on the graphene surface caused by hydrogenation process and the corresponding mechanism were discussed. The electrocatalysis of oxygen reduction reaction on nitrogen doped monolayer graphene was conducted to pinpoint the catalytic active sites. The mechanics of a centimeter-scale graphene floating on water was characterized by biaxial compression. Finally, the chemically modified graphene was tested for field-effect sensing of gas molecules.