When does resistance to toxins evolve in animals? Students publish major review
Does a snake die when it bites its lip? Why will a mongoose survive a scorpion’s sting, but we humans perish? These questions occupied the minds of toxin-enthusiasts and Master’s students Biology Jory van Thiel and Roel Wouters. They collected information from many sources and published their findings in a prominent scientific journal.
‘Some animals have genetic adaptations, which enable them to handle super dangerous toxins. They can eat poisonous animals, or survive after being bitten or stung,’ Van Thiel says. ‘But it was striking how often those genetic adaptations were exactly the same in unrelated animal groups. This is called convergent evolution, and we investigated this for all kinds of toxins and animal species.’
All types of toxin resistance in one model
The publication is a review: A large summary of research and theories, and consists of over 18.000 words. The students published their article in Biological Reviews, the most cited scientific journal for biologists. ‘The exceptional part of our work is that there has never been an overview for all toxic animals,’ Wouters states. To achieve this feat, they asked for the aid and opinions of renowned scientists in the toxins field, such as their supervisor Michael Richardson, Nick Casewell, and the Netherlands’ best-known biologist, Freek Vonk.
Balance of resistance and a working body
Van Thiel and Wouters propose several hypotheses on how convergent evolution came about. The concept of functional constraints proved to be essential. This means that resistance to the toxins must not come at the expense of processes in your body, such as the blood circulatory system or controlling the nervous system.
Van Thiel explains: ‘Receptors bind signal transmitters, and in that way direct biological processes. It makes it possible to contract our muscles, for example. Toxins are like these transmitters and also bind to these receptors, but block the biological process. Thus, it paralyses the muscles. Resistance occurs when the receptor-DNA changes, which alters the shape of the receptor and makes it impossible for toxins to bind. However, the principle of functional constraints then becomes important, as their ability to transport signal transmitters should continue to function.’
‘You can't make changes endlessly.’
Wouters adds: ‘You can’t change the receptor endlessly. Only small adjustments work without the receptor losing its proper function, and so you see this changes happen in the same way all kinds of animal groups, from mammals to reptiles and insects. Especially if they are co-existing with toxic animals for millions of years, and if there is a chance that they get caught. That answers the question of why a mongoose can survive a scorpion’s sting, but humans can’t.’
Immune to your own toxins
Additionally, the students reviewed many other theories related to convergent evolution. They also discuss auto-resistance – being resistant to your own venom. They hypothesize that auto-resistance made it possible for animals to become increasingly venomous or poisonous. ‘The origin of their venom often lies in another source. An example of that is the Pitohui bird of Papua New Guinea,’ Wouters says. ‘The bird is poisonous because it eats toxic beetles, but is resistant. Therefore, it can accumulate higher levels of toxins in their body and eventually becomes venomous itself. Examples like this you see all over the animal kingdom.’
The next project
Will the gentlemen relax after their second successful publication? ‘Not really,’ Van Thiel shrugs. ‘I am now doing an internship in Liverpool with one of the largest snake venom groups, and look at toxin variation. Roel is investigating the personality of snakes at the IBL, in collaboration with Serpo Zoo. And we are looking at the indirect effects of snake venom with an ophthalmologist. So if a snake bites your foot, what happens in your eye? More information on that will follow soon!’
Read the complete article in Biological Reviews
Spitting cobras in Science
This is the second considerable publication of the biology students. Last year, they wrote an article in Science on spitting cobras and how their extra painful venom is the result of co-evolution with humans.
Photo banner by Matej and Zuzana Dolinay, Living Zoology