Zach Armstrong
Assistant Professor
- Name
- Dr. Z.W.B. Armstrong
- Telephone
- +31 71 527 4342
- z.w.b.armstrong@lic.leidenuniv.nl
- ORCID iD
- 0000-0002-4086-2946
The research interests of Zach Armstrong center on the biocatalysts that promote the synthesis and degradation of carbohydrates.
More information about Zach Armstrong
PhD candidates
News
Biography
Zachary Armstrong is an Assistant Professor at the University of Leiden in the Leiden Institute of Chemistry, and he is a member of the Bio-Organic Synthesis division.
Zachary Armstrong was born in Iqaluit, Nunavut, Canada, in 1988. He completed his undergraduate degree in Chemistry and Biochemistry at the University of British Columbia in 2009. This was followed by an Alexander Graham Bell Canada Graduate Scholarship supported PhD, co-supervised by Professor Stephen Withers and Professor Steven Hallam at the University of British Columbia. His PhD work focused on the identification of new glycoside hydrolases from metagenomes and the design of new biocatalysts for glycan synthesis. After receiving his PhD in 2018 he crossed the Atlantic to pursue a post-doctoral position at the University of York (York, UK) under the guidance of Professor Gideon Davies. While in York he focused on the structural and mechanistic investigation of biotechnology and disease relevant glycosidases with covalent probes and inhibitors. In 2021, Zachary joined the Bio-Organic Synthesis division of the Leiden Institute of Chemistry, University of Leiden. In 2022 he was awarded a Veni Fellowship by the Dutch Research Council for research towards a new class of anti-viral therapeutics. Dr. Armstrong’s research spans the disciplines of Chemistry and Biology with particular focus on carbohydrate modifications and how they relate to both disease states and host-pathogen interactions. His research group focuses on the structural biology of modifying enzymes, developing new tools for profiling carbohydrate modifying enzymes and exploiting these tools to develop new therapeutics.
Curriculum Vitae
Personal information
Nationality: Canadian
Date of birth: 7 February 1988
Education
2018 PhD, The University of British Columbia, Canada, 2018. Thesis title: “Harnessing natural diversity for the discovery of glycoside hydrolases and design of new glycosynthases”
Advisors: Prof. Steven G. Withers and Prof. Stephen. J. Hallam
Current and previous research positions
2021 – now Assistant Professor, Leiden Institute of Chemistry, Leiden University, The Netherlands
2018 – 2021 Postdoctoral Research Associate, York Structural Biology Laboratory, University of York, York, England
Grants, awards, recognitions since 2016
2018 NWO Veni Fellowship (k€ 250)
Contribution to teaching and supervision
- Courses for MSc Chemistry and at Leiden University: Biosynthetic and Pharmaceutical Chemistry, Academic Writing
- Courses for BSc Life Science and Technology and at Leiden University: Bioinformatics, Sustainable Chemical Industry
Co-supervision of 3 PhD students and 1 postdoctoral fellows since 2010.
Other current responsibilities since 2016
- Peer-Review of Articles for: ACS Catalysis, RSC Chemical Science, mSphere, mSystems, Animal Microbiome, PLOS Biology and Scientific Reports
- Grant Review for: Luxembourg National Research Fund (FNR) , Natural Sciences and Engineering Research Council of Canada (NSERC)
Publication record including five recent representative publications
29 papers with >600 citations, H-index 15
Full publication record: Google Scholar
- Armstrong Z., Meek R. W.†, Wu L., Blaza J. N., Davies G. J. (2022) Cryo-EM structures of human fucosidase FucA1 reveal insight into substrate recognition and catalysis. Cell Structure, Structure 30 (10), 1443-1451. e5. DOI: 10.1016/j.str.2022.07.001
- de Boer C., Armstrong Z., Lit V.A.J, Barash U., Ruijgrok G., Boyango I., Weitzenberg M. M. , Schröder S. P., Sarris A.J.C., Meeuwenoord N.J., Bule P., Kayal Y., Ilan N., Codée J.D.C., Vlodavsky I., Overkleeft H.S., Davies G.J., Wu L. (2022) Mechanism-based heparanase inhibitors reduce cancer metastasis in vivo. Proceedings of the National Academy of Sciences, 119, 31, e2203167119. DOI: 10.1073/pnas.2203167119
- Armstrong Z. , Kuo C-L., Lahav D., Liu B., Johnson R., Beenakker T. J. M., de Boer C., Wong C-S., van Rijssel E. R., Debets M. F., Florea B., Boot R. G., Ovaa H., van der Stelt M., Codée J., Aerts J. M. F. G., Wu L., Overkleeft H., Davies G. (2020) Manno-epi-cyclophellitols Enable Activity-Based Protein Profiling of Human α-Mannosidases and Discovery of New Golgi Mannosidase II Inhibitors. Journal of the American Chemical Society, 142(30) 13021–13029. DOI: 10.1021/jacs.0c03880
- Armstrong Z., Davies G. (2020) Structure and function of Bs164 β-mannosidase from Bacteroides salyersiae the founding member of glycoside hydrolase family GH164. Journal of Biological Chemistry, 295(13) 4316–4326. DOI: 10.1074/jbc.RA119.011591
- Armstrong Z., Mewis K., Liu F., Scofield M., Durno E., Chen H.M., Mehr K., Withers S.G., Hallam S.J., (2018) Metagenomics Reveals Functional Specialization and Novel Polysaccharide Utilization Loci in the Castor canadensis Fecal Microbiome. The ISME Journal, 12 (11), 2757. DOI: 10.1038/s41396-018-0215-9
Presentations including five presentations at international conferences since 2016
- Armstrong Z. (2023) The Cryo-EM structure of human fucosidase FucA1. European Carbohydrate Symposium XXI. Paris, France
- Armstrong Z. (2023) Structure-Based Analysis of Inhibitors for Human Heparanase. 7th Gratama Conference. Nagasaki, Japan
- Armstrong Z. (2023) Arming Carbohydrates to Treat Disease. Royal Society of Chemistry Carbohydrate Interest Group Spring Symposium. London, UK * Session Keynote
- Armstrong Z. (2019) Manno-Configured epi-Cyclophellitol Aziridine Based Fluorescence Polarization Activity-Based Protein Profiling Identifies New Golgi A-Mannosidase Inhibitors. Eurocarb XX. Leiden, Netherlands.
- Armstrong Z. (2017) Harnessing Natural Diversity for New Glycosynthases. 2017 Volcano Conference in Chemical Biology. Pack Forest, Washington, USA. American Chemical Society Meeting (April 2017)
Assistant Professor
- Science
- Leiden Institute of Chemistry
- LIC/Chemical Biology
- LIC/CB/Bio-organic Synthesis
- Ofman T.P., Heming J.J.A., Nin-Hill A., Küllmer F., Moran E., Bennett M., Steneker R., Klein A.M., Ruijgrok G., Kok K., Armstrong Z.W.B., Aerts J.M.F.G., Marel G.A. van der, Rovira C., Davies G.J., Artola M.E., Codée J.D.C. & Overkleeft H.S. Rovira Carme Davies Gideon J. Artola Marta Codée Jeroen D. C. Overkleeft Herman S. (2024), Conformational and electronic variations in 1,2‐ and 1,5a‐Cyclophellitols and their impact on retaining α‐glucosidase inhibition, Chemistry: a European Journal 30(31): e202400723.
- Koemans T.S., Bennett M., Guimaraes Da Lomba Ferraz M.J., Armstrong Z.W.B., Artola Perez de Azanza M.E., Aerts J.M.F.G., Codee J.D.C., Overkleeft H.S. & Davies G.J. (2024), Structure-guided design of C3-branched swainsonine as potent and selective human Golgi α-mannosidase (GMII) inhibitor, Chemical Communications : .
- Thaler M., Ofman T.P., Kok K., Heming J.J.A., Moran E., Pickles I., Leijs A.A., Nieuwendijk A.M.C.H. van den, Berg R.J.B.H.N. van den, Ruijgrok G., Armstrong Z.W.B., Salgado-Benvindo C., Ninaber D.K., Snijder E.J., Boeckel C.A.A. van, Artola Perez de Azanza M.E., Davies G.J., Overkleeft H.S. & Hemert M.J. van (2024), Epi-Cyclophellitol cyclosulfate, a mechanism-based endoplasmic reticulum α-Glucosidase II inhibitor, blocks replication of SARS-CoV-2 and other coronaviruses, ACS Central Science 10(8): 1594-1608.
- Pickles I.B., Chen Y., Moroz O., Brown H.A., Boer C. de, Armstrong Z., Mcgregor N.G.S., Artola M., Codee J.D.C., Koropatkin N.M., Overkleeft H.S. & Davies G.J. (2024), Precision Activity-Based α-Amylase Probes for Dissection and Annotation of Linear and Branched-Chain Starch-Degrading Enzymes, Angewandte Chemie (International Edition) : e202415219.
- Doherty G.G., Ler G.J.M., Wimmer N., Bernhardt P.V., Ashmus R.A., Vocadlo D.J., Armstrong Z.W.B., Davies G.J., Maccarana M., Li J.P., Kayal Y. & Ferro V. (2023), Synthesis of uronic acid 1-azasugars as putative inhibitors of alpha-iduronidase, beta-glucuronidase, and heparanase, ChemBioChem 24(4): e202200619.
- Li J., Sharma M., Meek R., Alhifthi A.,Armstrong Z., Soler N.D., Lee M., Goddard-Borger E.D., Blaza J.N., Davies G.J. & Williams S.J. (2023), Molecular basis of sulfolactate synthesis by sulfolactaldehyde dehydrogenase from Rhizobium leguminosarum, Chemical Science 14(41): 11429-11440.
- Chen Y., Nieuwendijk A.M.C.H. van den, Wu L., Moran E., Skoulikopoulou F., Riet V. van, Overkleeft H.S., Davies G.J. & Armstrong Z.W.B. (2023), Molecular basis for inhibition of heparanases and β-glucuronidases by siastatin B, Journal of the American Chemical Society 146(1): 125-133.
- Borlandelli V., Armstrong Z., Nin-Hill A., Codée J., Raich L., Artola M., Rovira C., Davies G. & Overkleeft H.S. (2023), 4-O-substituted glucuronic cyclophellitols are selective mechanism-based heparanase inhibitors, ChemMedChem 18(4): e202200580.
- McGregor N.G.S., Kuo C.L., Beenakker T.J.M., Wong C.S., Offen W.A., Armstrong Z.W.B., Florea B.I., Codee J.D.C., Overkleeft H.S., Aerts J.M.F.G. & Davies G.J. (2022), Synthesis of broad-specificity activity-based probes for exo-beta-mannosidases, Organic and Biomolecular Chemistry 20(4): 877-886.
- Boer C. de, Armstrong Z.W.B, Lit V.A.J., Barash U., Ruijgrok G., Boyango I., Weitzenberg M.M., Schröder S.P., Sarris A.J.C., Meeuwenoord N.J., Bule P., Kayal Y., Ilan N., Codee J.D.C., Vlodavsky I., Overkleeft H.S., Davies G.J. & Wu L. (2022), Mechanism-based heparanase inhibitors reduce cancer metastasis in vivo, Proceedings of the National Academy of Sciences 119(31): e2203167119.
- Armstrong Z.W.B., Meek R.W., Wu L., Blaza J.N. & Davies G.J. (2022), Cryo-EM structures of human fucosidase FucA1 reveal insight into substrate recognition and catalysis, Structure 30(10): 1443-1451.e5.
- Scott H., Davies G.J. & Armstrong Z.W.B. (2022), The structure of Phocaeicola vulgatus sialic acid acetylesterase, Acta Crystallographica Section D Structural Biology 78: 647-657.
- Liu F., Chen H.M., Armstrong Z. & Withers S.G. (2022), Azido Groups Hamper Glycan Acceptance by Carbohydrate Processing Enzymes, ACS Central Science 8(5): 656-662.
- Chen Y., Armstrong Z., Artola M., Florea B.I., Kuo C.L., Boer C. de, Rasmussen M.S., Abou Hachem M., Marel G.A. van der, Codee J.D.C., Aerts J.M.F.G., Davies G.J. & Overkleeft H.S. (2021), Activity-based protein profiling of retaining alpha-amylases in complex biological samples, Journal of the American Chemical Society 143(5): 2423-2432.
- Armstrong Z., Kuo C.L., Lahav D., Liu B., Johnson R., Beenakker T.J.M., Boer C. de, Wong C.S., Rijssel E.R. van, Debets M.F., Florea B.I., Hissink C., Boot R.G., Geurink P.P., Ovaa H., Stelt M. van der, Marel G.A. van der, Codée J.D.C., Aerts J.M.F.G., Wu L., Overkleeft H.S. & Davies G.J. (2020), Manno-epi-cyclophellitols enable activity-based protein profiling of human α-mannosidases and discovery of new golgi mannosidase II inhibitors, Journal of the American Chemical Society 142(30): 13021-13029.
- Armstrong Z. & Davies G.J. (2020), Structure and function of Bs164?-mannosidase from Bacteroides salyersiae the founding member of glycoside hydrolase family GH164, Journal of Biological Chemistry 295: 4316-4326.
- Fonseca M.J.M. da, Armstrong Z.W.B., Withers S.G. & Briers Y. (2020), High-throughput generation of product profiles for arabinoxylan-active enzymes from metagenomes, Applied and Environmental Microbiology 86(23): e01505-20.
- Nieto-Domínguez M., Fernández de Toro B., Eugenio L.I. de, Santana A.G., Bejarano-Muñoz L., Armstrong Z.W.B., Méndez-Líter J.A., Asensio J.L., Prieto A., Withers S.G., Cañada F.J. & Martínez M.J. (2020), Thioglycoligase derived from fungal GH3 β-xylosidase is a multi-glycoligase with broad acceptor tolerance, Nature Communications 11: 4864.
- Morgan-Lang C., McLaughlin R., Armstrong Z.W.B., Zhang G., Chan K. & Hallam S.J. (2020), TreeSAPP: the tree-based sensitive and accurate phylogenetic profiler, Bioinformatics 36(18): 4706-4713.
- Wu L., Armstrong Z., Schröder S.P., Boer C. de, Artola M., Aerts J.M.F.G., Overkleeft H.S. & Davies G.J. (2019), An overview of activity-based probes for glycosidases, Current Opinion in Chemical Biology 53: 25-36.
- Macdonald S.S., Armstrong Z.W.B., Morgan-Lang C., Osowiecka M., Robinson K., Hallam S.J. & Withers S.G. (2019), Development and application of a high-throughput functional metagenomic dcreen for glycoside phosphorylases, Cell chemical biology 26(7): 1001-1012.
- Armstrong Z.W.B, Liu F., Kheirandish S., Chen H.M., Mewis K., Duo T., Morgan-Lang C., Hallam S.J. & Withers S.G. (2019), High-throughput recovery and characterization of metagenome-derived glycoside hydrolase-containing clones as a resource for biocatalyst development, mSystems 4(4): e00082-19.
- Armstrong Z.W.B., Mewis K., Liu F., Morgan-Lang C., Scofield M., Durno E., Chen H.M., Mehr K. & Withers S.G. Hallam S.J. (2018), Metagenomics reveals functional synergy and novel polysaccharide utilization loci in the Castor canadensis fecal microbiome, The ISME Journal 12: 2757-2769.
- Armstrong Z., Rahfeld P. & Withers S.G. (2017), Discovery of new glycosidases from metagenomic libraries. In: Imperiali B. (Ed.), Methods in enzymology no. 597. Amsterdam: Elsevier. 3-23.
- Nieto-Dominguez M., Prieto A., Toro B.F. de, Canada F.J., Barriuso J., Armstrong Z.W.B., Withers S.G., Eugenio L.I. de & Martinez M.J. (2016), Enzymatic fine-tuning for 2-(6-hydroxynaphthyl) beta-D-xylopyranoside synthesis catalyzed by the recombinant beta-xylosidase BxTW1 from Talaromyces amestolkiae, Microbial Cell Factories 15: 171.
- Chen H.M., Armstrong Z.W.B., Hallam S.J. & Withers S.G. (2016), Synthesis and evaluation of a series of 6-chloro-4-methylumbelliferyl glycosides as fluorogenic reagents for screening metagenomic libraries for glycosidase activity, Carbohydrate Research 421: 33-39.
- Armstrong Z.W.B., Mewis K., Strachan C. & Hallam S.J. (2015), Biocatalysts for biomass deconstruction from environmental genomics, Current Opinion in Chemical Biology 29: 18-25.
- Mewis K., Armstrong Z.W.B., Song Y.C., Baldwin S.A., Withers S.G. & Hallam S.J. (2013), Biomining active cellulases from a mining bioremediation system, Journal of Biotechnology 167(4): 462-471.
- Singh R., Grigg J.C., Armstrong Z.W.B., Murphy M.E.P. & Eltis L.D. (2012), Distal heme pocket residues of B-type dye-decolorizing peroxidase: arginine but not aspartate is essential for peroxidase activity, Journal of Biological Chemistry 287(13): 10623-10630.
- Armstrong Z.W.B., Reitinger S., Kantner T. & Withers S.G. (2010), Enzymatic thioxyloside synthesis: characterization of thioglycoligase variants identified from a site-saturation mutagenesis library of Bacillus circulans xylanase, ChemBioChem 11(4): 533-538.