Stephan Hacker
Assistant Professor
- Name
- Dr. S.M. Hacker
- Telephone
- +31 71 527 4362
- s.m.hacker@lic.leidenuniv.nl
Stephan Hacker studies the target proteins of covalent inhibitors proteome-wide with resolution of the addressed binding pocket using mass spectrometry, focusing on applications of this technology to identify new druggable targets for antibiotics.
More information about Stephan Hacker
PhD candidates
News
Biography
Dr. Stephan Hacker performed his PhD studies with Prof. Andreas Marx at the University of Konstanz, Germany, and his postdoctoral research with Prof. Benjamin Cravatt at The Scripps Research Institute in La Jolla, USA. Afterwards, he moved to the Technical University of Munich, Germany, to work as an independent group leader. In 2021, he became an Assistant Professor at the Leiden Institute of Chemistry. Stephan Hacker’s group develops chemistries for novel covalent protein ligands targeting diverse amino acids as well as chemoproteomic technologies to study their target engagement with resolution of the modified amino acid residue in proteome-wide studies. His group focuses on the application of these compounds and technologies to identify new druggable target proteins in bacteria.
Assistant Professor
- Science
- Leiden Institute of Chemistry
- LIC/Chemical Biology
- LIC/CB/Molecular Physiology
- Munoz A.W., Meighen-Berger K.M., Hacker S.M., Feige M.J. & Sieber S.A. (2023), A chemical probe unravels the reactive proteome of health-associated catechols, Chemical Science 14(32): 8635-8643.
- Dienemann J.N., Chen S.Y., Hitzenberger M., Sievert M.L., Hacker S.M., Prigge S.T., Zacharias M., Groll M. & Sieber S.A. (2023), A chemical proteomic strategy reveals inhibitors of lipoate salvage in bacteria and parasites, Angewandte Chemie (International Edition) 62(31): e202304533.
- Weerapana E. & Hacker S.M. (2023), Activity-based protein profiling - celebrating the groundbreaking contributions of Benjamin Cravatt, Israel Journal of Chemistry 63(3-4): e202300059.
- Hacker S.M. & Jessen-Trefzer C. (2022), Chemical biology in drug discovery, Biological Chemistry 403(4): 361-362.
- Schmidt C., Zollo M., Bonsignore R., Casini A. & Hacker S.M. (2022), Competitive profiling of ligandable cysteines in Staphylococcus aureus with an organogold compound, Chemical Communications 58(36): 5526-5529.
- Weigert Muñoz A., Hoyer E., Schumacher K., Grognot M., Taute K.M., Hacker S.M., Sieber S.A. & Jung K. (2022), Eukaryotic catecholamine hormones influence the chemotactic control of Vibrio campbellii by binding to the coupling protein CheW, Proceedings of the National Academy of Sciences 119(10): e2118227119.
- Hacker S.M. (2022), Reversible protein inhibitors kept on target, Nature 603(7902): 583-584.
- Demange P., Joly E., Marcoux J., Zanon P.R.A., Listunov D., Rullière P., Barthes C., Noirot C., Izquierdo J.B., Rozié A., Pradines K., Hee R., Brito M.V. de, Marcellin M., Serre R.F., Bouchez O., Burlet-Schiltz O., Oliveira M.C.F., Ballereau S., Bernardes-Génisson V., Maraval V., Calsou P., Hacker S.M., Génisson Y., Chauvin R. & Britton S. (2022), SDR enzymes oxidize specific lipidic alkynylcarbinols into cytotoxic protein-reactive species, eLife 11: e73913.
- Svenningsen E.B., Ottosen R.N., Jorgensen K.H., Nisavic M., Larsen C.K., Hansen B.K., Wang Y., Lindorff-Larsen K., Torring T., Hacker S.M., Palmfeldt J. & Poulsen T.B. (2022), The covalent reactivity of functionalized 5-hydroxy-butyrolactams is the basis for targeting of fatty acid binding protein 5 (FABP5) by the neurotrophic agent MT-21, RSC Chemical Biology 3(10): 1216-1229.
- Allihn P.W.A., Hackl M.W., Ludwig C., Hacker S.M. & Sieber S.A. (2021), A tailored phosphoaspartate probe unravels CprR as a response regulator in Pseudomonas aeruginosa interkingdom signaling, Chemical Science 12: 4763-4770.
- Hubner I., Shapiro J.A., Hossmann J., Drechsel J., Hacker S.M., Rather P.N., Pieper D.H., Wuest W.M. & Sieber S.A. (2021), Broad spectrum antibiotic xanthocillin X effectively kills acinetobacter baumannii via dysregulation of heme biosynthesis, ACS Central Science 7(3): 488-498.
- Sima S., Barkovits K., Marcus K., Schmauder L., Hacker S.M., Hellwig N., Morgner N. & Richter K. (2021), HSP-90/kinase complexes are stabilized by the large PPIase FKB-6, Scientific Reports 11: 12347.
- Abbasov M.E. Kavanagh M.E., Ichu T.A., Lazear M.R., Tao Y.F., Crowley V.M., Ende C.W..A., Hacker S.M., Ho J., Dix M.M., Suciu R., Hayward M.M., Kiessling L.L. & Cravatt B.F. (2021), A proteome-wide atlas of lysine-reactive chemistry, Nature Chemistry 13(11): 1081-+.
- Lee K.M., Le P., Sieber S.A. & Hacker S.M. (2020), Degrasyn exhibits antibiotic activity against multi-resistant Staphylococcus aureus by modifying several essential cysteines, Chemical Communications 56: 2929-2932.
- Zanon P.R.A., Lewald L. & Hacker S.M. (2020), Isotopically Labeled Desthiobiotin Azide (isoDTB) Tags Enable Global Profiling of the Bacterial Cysteinome, Angewandte Chemie (International Edition) 59(7): 2829-2836.
- Bach K., Beerkens B.L.H., Zanon P.R.A. & Hacker S.M. (2020), Light-Activatable, 2,5-Disubstituted Tetrazoles for the Proteome-wide Profiling of Aspartates and Glutamates in Living Bacteria, ACS Central Science 6(4): 546-554.
- Le P.L., Kunold E., Macsics R., Rox K., Jennings M.C., Ugur I., Reinecke M., Chaves-Moreno D., Hackl M.W., Fetzer C., Mandl F.A.M., Lehmann J., Korotkov V.S., Hacker S.M., Kuster B., Antes I., Pieper D.H., Rohde M., Wuest W.M., Medina E. & Sieber S.A. (2020), Repurposing human kinase inhibitors to create an antibiotic active against drug-resistant Staphylococcus aureus, persisters and biofilms, Nature Chemistry 12: 145-+.
- Gleissner C.M.L., Pyka C.L., Heydenreuter W., Gronauer T.F., Atzberger C., Korotkov V.S., Cheng W.T., Hacker S.M., Vollmar A.M., Braig S. & Sieber S.A. (2019), Neocarzilin A Is a Potent Inhibitor of Cancer Cell Motility Targeting VAT-1 Controlled Pathways, ACS Central Science 5(7): 1170-1178.
- null
- Ermert S., Hacker S.M., Buntru A., Scheffner M., Hauck C.R. & Marx A. (2017), Different Enzymatic Processing of gamma-Phosphoramidate and gamma-Phosphoester-Modified ATP Analogues, ChemBioChem 18(4): 378-381.
- Hacker S.M., Backus K.M., Lazear M.R., Forli S., Correia B.E. & Cravatt B.F. (2017), Global profiling of lysine reactivity and ligandability in the human proteome, Nature Chemistry 9: 1181-1190.
- Gotz K.H., Hacker S.M., Mayer D., Durig J.N., Stenger S. & Marx A. (2017), Inhibitors of the Diadenosine Tetraphosphate Phosphorylase Rv2613c of Mycobacterium tuberculosis, ACS Chemical Biology 12(10): 2682-2689.
- Ermert S., Marx A. & Hacker S.M. (2017), Phosphate-Modified Nucleotides for Monitoring Enzyme Activity, Topics in Current Chemistry 375: 28.
- Lange S., Hacker S.M., Schmid P., Scheffner M. & Marx A. (2017), Small-Molecule Inhibitors of the Tumor Suppressor Fhit, ChemBioChem 18(17): 1707-1711.
- Hacker S.M., Buntz A., Zumbusch A. & Marx A. (2015), Direct Monitoring of Nucleotide Turnover in Human Cell Extracts and Cells by Fluorogenic ATP Analogs, ACS Chemical Biology 10(11): 2544-2552.
- Hacker S.M., Welter M. & Marx A. (2015), Synthesis of γ‐Phosphate‐Labeled and Doubly Labeled Adenosine Triphosphate Analogs, Current Protocols in Nucleic Acid Chemistry 60: .
- Hacker S.M., Hintze C., Marx A. & Drescher M. (2014), Monitoring enzymatic ATP hydrolysis by EPR spectroscopy, Chemical Communications 50: 7262-7264.
- Hacker S.M., Mortensen F., Scheffner M. & Marx A. (2014), Selective Monitoring of the Enzymatic Activity of the Tumor Suppressor Fhit, Angewandte Chemie (International Edition) 53(38): 10247-10250.
- Acosta O.B.G., Hardt N., Hacker S.M., Strittmatter T., Schink B. & Marx A. (2014), Thiamine Pyrophosphate Stimulates Acetone Activation by Desulfococcus biacutus As Monitored by a Fluorogenic ATP Analogue, ACS Chemical Biology 9: 1263-1266.
- Hacker S.M., Mortensen F., Scheffner M. & Marx A. (2014), Selektive Beobachtung der enzymatischen Aktivität des Tumorsuppressors Fhit, Angewandte Chemie 126(38): 10413-10416.
- Hacker S.M., Hardt N., Buntru A., Pagliarini D., Mockel M., Mayer T.U., Scheffner M., Hauck C.R. & Marx A. (2013), Fingerprinting differential active site constraints of ATPases, Chemical Science 4: 1588-1596.
- Hacker S.M., Pagliarini D., Tischer T., Hardt N., Schneider D., Mex M., Mayer T.U., Scheffner M. & Marx A. (2013), Fluorogenic ATP Analogues for Online Monitoring of ATP Consumption: Observing Ubiquitin Activation in Real Time, Angewandte Chemie (International Edition) 52(45): 11916-11919.
- Hardt N., Hacker S.M. & Marx A. (2013), Synthesis and fluorescence characteristics of ATP-based FRET probes, Organic and Biomolecular Chemistry 11(48): 8298-8305.
- Hacker S.M., Pagliarini D., Tischer T., Hardt N., Schneider D., Mex M., Mayer T.U., Scheffner M. & Marx A. (2013), Fluorogene ATP-Analoga zur Detektion von ATP-Verbrauch: Beobachtung der Aktivierung von Ubiquitin in Echtzeit, Angewandte Chemie 125(45): 12133-12137.
- Hacker S.M., Mex M. & Marx A. (2012), Synthesis and Stability of Phosphate Modified ATP Analogues, Journal of Organic Chemistry (JOC) 77(22): 10450-10454.