Olga Lukina
Assistant professor
- Name
- Dr. O. Lukina
- Telephone
- +31 71 527 7121
- o.lukina@math.leidenuniv.nl
- ORCID iD
- 0000-0001-8845-3618
See also
Assistant professor
- Science
- Mathematisch Instituut
- Mathematisch Instituut
- Hurder S. & Lukina O. (2024), Essential holonomy of Cantor actions, Journal of the Mathematical Society of Japan 77(1): 57-74.
- Lukina O. (2024), Non-Hausdorff germinal groupoids for actions of countable groups, Indagationes Mathematicae 35(6): 1149-1184.
- Lukina O. (2024), Workshop lorentz center dynamics on zero-dimensional spaces: new connections, Nieuw Archief voor Wiskunde 5(3): 139.
- Hurder S. & Lukina O. (2023), Prime spectrum and dynamics for nilpotent Cantor actions, Pacific Journal of Mathematics 327(1): 107-128.
- Lukina O. (2023), New impulse: back to the Netherlands after time abroad, Nieuw Archief voor Wiskunde 24(2): 95-96.
- Bruin H. & Lukina O. (2023), Rotated odometers and actions on rooted trees, Fundamenta Mathematicae 260: 233-249.
- Bruin H. & Lukina O. (2023), Rotated odometers, Journal of the London Mathematical Society 107(6): 1983-2024.
- Hurder S. & Lukina O. (2022), Nilpotent Cantor actions, Proceedings of the American Mathematical Society 150(1): 289-304.
- Cortez M.I. & Lukina O. (2022), Settled elements in profinite groups, Advances in Mathematics 404(part B): 108424.
- Lukina O. (2022), Hausdorff dimension in graph matchbox manifolds, Topology and its Applications 308: 108003.
- Alvarez Lopez J., Barral Lijo R., Lukina O. & Nozawa H. (2022), Wild Cantor actions, Journal of the Mathematical Society of Japan 74(2): 447-472.
- Gröger M. & Lukina O. (2021), Measures and stabilizers of group Cantor actions, Discrete & Continuous Dynamical Systems 41(5): 2001-2029.
- Lukina O. (2021), Galois groups and cantor actions, Transactions of the American Mathematical Society 374: 1579-1621.
- Hurder S. & Lukina O. (2021), Limit group invariants for non-free Cantor actions, Ergodic Theory and Dynamical Systems 41(6): 1751-1794.
- Hurder S., Lukina O. & Limbeek W. van (2021), Cantor dynamics of renormalizable groups, Groups, Geometry, and Dynamics 15(4): 1449-1487.
- Clark A., Hurder S. & Lukina O. (2020), Pro-groups and generalizations of a theorem of Bing, Topology and its Applications 271: 106986.
- Hurder S. & Lukina O. (2020), Orbit equivalence and classification of weak solenoids, Indiana University Mathematics Journal 69(7): 2339-2363.
- Clark A., Hurder S. & Lukina O. (2019), Classifying matchbox manifolds, Geometry & Topology 23: 1-27.
- Clark A., Hurder S. & Lukina O. (2019), Manifold-like matchbox manifolds, Proceedings of the American Mathematical Society 147: 3579-3594.
- Hurder S. & Lukina O. (2019), Wild solenoids, Transactions of the American Mathematical Society 371: 4493-4533.
- Lukina O. (2018), Arboreal Cantor actions, Journal of the London Mathematical Society 99(3): 678-706.
- Dyer J., Hurder S. & Lukina O. (2017), Molino theory for matchbox manifolds, Pacific Journal of Mathematics 289(1): 91-151.
- Dyer J., Hurder S. & Lukina O. (2017), Growth and homogeneity of matchbox manifolds, Indagationes Mathematicae 28(1): 145-169.
- Dyer J., Hurder S. & Lukina O. (2016), The discriminant invariant of Cantor group actions, Topology and its Applications 208: 64-92.
- Clark A., Hurder S. & Lukina O. (2014), Shape of matchbox manifolds, Indagationes Mathematicae 25(4): 669-712.
- Lukina O. (2012), Hierarchy of graph matchbox manifolds, Topology and its Applications 159(16): 3461-3485.
- Broer H., Efstathiou K. & Lukina O. (2010), A geometric fractional monodromy theorem, Discrete and Continuous Dynamical Systems - Series S 3(4): 517-532.
- Efstathiou K., Lukina O. & Sadovskií D.A. (2009), Complete classification of qualitatively different perturbations of the hydrogen atom in weak near-orthogonal electric and magnetic fields, Journal of Physics A: Mathematical and Theoretical 42: 055209.
- Lukina O., Takens F. & Broer H.W. (2008), Global properties of integrable Hamiltonian systems, Regular and Chaotic Dynamics 13: 602-644.
- Efstathiou K., Lukina O. & Sadovskií D.A. (2008), Most typical 1∶2 resonant perturbation of the hydrogen atom by weak electric and magnetic fields, Physical Review Letters 101(25): 253003.