Hermen Jan Hupkes
Professor Non-linear analysis
- Name
- Prof.dr. H.J. Hupkes
- Telephone
- +31 71 527 5587
- hhupkes@math.leidenuniv.nl
- ORCID iD
- 0000-0003-1726-5323
News
Personal webpage
Former PhD Candidates
Professor Non-linear analysis
- Science
- Mathematisch Instituut
- Mathematisch Instituut
- Tsingos E., Bakker B.H., Keijzer K.A.E., Hupkes H.J. & Merks R.M.H. (2023), Hybrid cellular Potts and bead-spring modeling of cells in fibrous extracellular matrix, Biophysical Journal 122(13): 2609-2622.
- Hupkes H.J. & Vleck E.S. van (2023), Travelling waves for adaptive grid discretizations of reaction diffusion systems III: nonlinear theory, Journal of Dynamics and Differential Equations 35: 2743-2811.
- Jukic M. & Hupkes H.J. (2022), Curvature-driven front propagation through planar lattices in oblique directions, Communications on Pure and Applied Analysis 21(6): 2189-2251.
- Ganguly P.S., Lucka F., Kohr H., Franken E., Hupkes H.J. & Batenburg K.J. (2022), SparseAlign: a grid-free algorithm for automatic marker localization and deformation estimation in cryo-electron tomography, IEEE Transactions on Computational Imaging 8: 651-665.
- Bakker B.H., Faver T.E., Hupkes H.J., Merks R.M.H. & Voort J. van der (2022), Scaling relations for auxin waves, Journal of Mathematical Biology 85(4): 41.
- Tsingos E., Bakker B.H., Keijzer K.A.E., Hupkes H.J. & Merks R.M.H (2022), Modelling the mechanical cross-talk between cells and fibrous extracellular matrix using hybrid cellular Potts and molecular dynamics methods. bioRxiv. Cold Spring Harbor Laboratory. [working paper].
- Faver T.E. & Hupkes H.J. (2021), Micropterons, nanopterons and solitary wave solutions to the diatomic Fermi–Pasta–Ulam–Tsingou problem, Mathematics 4: 100128.
- Hupkes H.J. & Vleck E.S. van (2021), Travelling waves for adaptive grid discretizations of reaction diffusion systems: I: well-posedness, Journal of Dynamics and Differential Equations : .
- Hupkes H.J. & Vleck S.E. van. (2021), Travelling waves for adaptive grid discretizations of reaction diffusion systems II: linear theory, Journal of Dynamics and Differential Equations : .
- Jukic M. & Hupkes H.J. (2021), Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice, Discrete & Continuous Dynamical Systems 41(7): 3163-3209.
- Hamster C.H.S. & Hupkes H.J. (2020), Travelling waves for reaction-diffusion equations forced by translation invariant noise, Physica D: Nonlinear Phenomena 401: 132233.
- Hupkes H.J., Morelli L., Schouten W.M. & Vleck E.S. van (2020), Traveling waves and pattern formation for spatially discrete bistable reaction-diffusion equations (survey). Bohner M., Siegmund S., Simon Hilscher R. & Stehlik P. (Eds.), Difference equations and discrete dynamical systems with applications. International Conference on Difference Equations and Applications. ICDEA 2018 21 May 2018 - 25 May 2018 no. 312. Cham: Springer. 55-112.
- Ganguly P.S., Lucka F., Hupkes H.J. & Batenburg K.J. (2020), Atomic super-resolution tomography. Lukic T., Barneva R.P., Brimkov V.E., Comic L. & Sladoje N. (Eds.), Combinatorial Image Analysis. 20th International Workshop, IWCIA 2020 16 July 2020 - 18 July 2020. Lecture Notes in Computer Science no. 12148. Cham: Springer. 45-61.
- Hamster C.H.S. & Hupkes H.J. (2019), Stability of Traveling Waves for Reaction-Diffusion Equations with Multiplicative Noise, SIAM Journal on Applied Dynamical Systems 18(1): 205-278.
- Schouten-Straatman W.M. & Hupkes H.J. (2019), Nonlinear stability of pulse solutions for the discrete FitzHugh-Nagumo equation with infinite-range interactions, Discrete and Continuous Dynamical Systems - Series A 39(9): 5017-5083.
- Schouten-Straatman W.M. & Hupkes H.J. (2019), Travelling Waves for spatially discrete Systems of FitzHugh-Nagumo Type with periodic Coefficients, SIAM Journal on Mathematical Analysis 51(4): 3492-3532.
- Hupkes H.J. & Verduyn Lunel S.M. (2008), Center manifolds for periodic functional differential, Journal of Differential Equations 928(6): 1526-1565.
- Hupkes H.J. (12 June 2008), Invariant manifolds and applications for functional differential equations of mixed type (Dissertatie, Faculty of Science, Leiden University). Supervisor(s): Verduyn Lunel S.M.
- Hupkes H.J., Augeraud-Véron E. & Verduyn Lunel S.M. (2008), Center projections for smooth difference equations of mixed type, Journal of Differential Equations 244(4): 803-835.
- Hupkes H.J. & Verduyn Lunel S.M. (2007), Center Manifold Theory for Functional Differential Equations of Mixed Type, Journal of Dynamics and Differential Equations, Journal of Dynamics and Differential Equations 19: 497-560.
- Hupkes H.J. & Verduyn Lunel S.M. (2005), Analysis of Newton's Method to Compute Travelling Waves in Discrete Media, Journal of Dynamics and Differential Equations 17(3): .
- Brom H.B., Martens H.C.F., Romijn I.G., Hulea I.N., Hupkes H.J., Pasveer W.F., Michels M.A.J., Mukherjee A. & Menon R. (2004), Charge carrier properties below and above the metal-insulator transition in conjugated polymers - recent results, Physica Status Solidi 1: 144-147.
- Romijn I.G., Hupkes H.J., Martens H.C.F., Brom H.B., Mukherjee A. & Menon R. (2003), Carrier dynamics in conducting polymers: Case of PF6 doped Polypyrrole, Physical Review Letters 90(17): 176602.
- Romijn I.G., Hupkes H.J., Martens H.C.F., Brom H.B., Mukherjee A. & Menon R. (2003), The Drude parameters for metallic PF6 doped polypyrrole, Synthetic Metals 135-136: 243-244.