David Lilienfeldt
Postdoc
- Name
- Dr. D.T.B.G. Lilienfeldt
- Telephone
- +31 71 527 2727
- d.t.b.g.lilienfeldt@math.leidenuniv.nl
- ORCID iD
- 0000-0003-2309-4735
David Lilienfeldt is a postdoc at the Mathematical Institute and the first person the Edixhoven Postdoctoral Fellowship has been awarded to.
Postdoc
- Science
- Mathematisch Instituut
- Mathematisch Instituut
- Lilienfeldt D.T.B.G. & Shnidman A. (2024), Derivatives of Rankin-Selberg L-functions and heights of generalized Heegner cycles. [working paper].
- Jarossay D., Lilienfeldt D.T.B.G., Saettone F.M., Weiss A. & Zehavi S. (2024), Polylogarithmic motivic Chabauty-Kim for P1\{0,1,∞}: the geometric step via resultants. [working paper].
- Lilienfeldt D.T.-B.G. (2024), Twisted triple product root numbers and a cycle of Darmon-Rotger. [working paper].
- Čoupek P., Lilienfeldt D.T.B.G., Xiao L.X. & Yao Z. (2023), Geometric quadratic Chabauty over number fields, Transactions of the American Mathematical Society 376(4): 2573–2613.
- Lilienfeldt D.T.B.G. (2023), Torsion properties of modified diagonal classes on triple products of modular curves, Canadian Mathematical Bulletin 66(1): 68-86.
- Lilienfeldt D.T.B.G. & Shnidman A. (2023), Experiments with Ceresa classes of cyclic Fermat quotients, Proceedings of the American Mathematical Society 151(3): 931-947.
- Lilienfeldt D.T.B.G. (2022), Heegner cycles in Griffiths groups of Kuga-Sato varieties (Cornell University ). [working paper].
- Bertolini M., Darmon H., Lilienfeldt D. & Prasanna K. (2021), Generalised Heegner cycles and the complex Abel–Jacobi map, Mathematische Zeitschrift 298: 385-418.
- Lilienfeldt D.T.B.G. (1 June 2021), Algebraic cycles and Diophantine geometry: generalised Heegner cycles, quadratic Chabauty and diagonal cycles (Dissertatie. Department of Mathematics and Statistics, Science, McGill University). Supervisor(s): Darmon H.