David Holmes
Professor Pure Mathematics
- Name
- Prof.dr. D.S.T. Holmes
- Telephone
- +31 71 527 7133
- holmesdst@math.leidenuniv.nl
- ORCID iD
- 0000-0002-6081-2516
David Holmes studied Mathematics at the University of Warwick and Christ’s College, part of the University of Cambridge. He subsequently obtained his doctorate at the University of Warwick. In 2012 he started working as a postdoc at the Mathematical Institute of Leiden University and his research is currently supported by a Vidi grant. David is professor of Pure Mathematics at the Mathematical Institute since October 2023. He is a member of the Institute Council and the Diversity and Inclusion committee of the MI.
News
PhD Candidates
Personal webpage
Former PhD Candidates
Professor Pure Mathematics
- Science
- Mathematisch Instituut
- Mathematisch Instituut
- Botero Ana María Burgos Gil José Ignacio Holmes David de Jong Robin (2024), Rings of Siegel–Jacobi forms of bounded relative index are not finitely generated, Duke Mathematical Journal 173: .
- Biesel O. & Holmes D. (2023), Fine Compactified Moduli of Enriched Structures on Stable Curves. Memoirs of the American Mathematical Society no. 285. U.S.A.: American Mathematical Society (AMS).
- Holmes D. & Orecchia G. (2023), Logarithmic moduli of roots of line bundles on curves, Expositiones Mathematicae 41(3): 577-602.
- Holmes D.S.T., Molcho S., Orecchia G. & Poiret T. (2023), Models of Jacobians of curves, Journal für die Reine und Angewandte Mathematik 801: 115-159.
- Bae Y., Holmes D.S.T., Pandharipande R., Schmitt J. & Schwarz R.M. (2023), Pixton’s formula and Abel–Jacobi theory on the Picard stack, Acta Mathematica 230(2): 205-319.
- Botero A., Burgos Gil J.I., Holmes D.S.T. & Jong R.S. de (2022), Chern-Weil and Hilbert-Samuel formulae for singular Hermitian line bundles, Documenta Mathematica 27: 2563-2623.
- Holmes D. & Schwarz R. (2022), Logarithmic intersections of double ramification cycles, Algebraic Geometry 9(5): 574-605.
- Dellar M.E., Boerlijst S.P. & Holmes D.S.T. (2022), Improving estimations of life history parameters of small animals in mesocosm experiments: a case study on mosquitoes, Methods in Ecology and Evolution 13(5): 1148-1160.
- Holmes D. (2021), A Néron model of the universal jacobian, Annales Henri Lebesgue 4: 1727-1766.
- Holmes D.S.T. & Schmitt J. (2021), Infinitesimal structure of the pluricanonical double ramification locus, Compositio Mathematica 157(10): 2280-2337.
- Holmes D.S.T. (2020), The norm of the saturation of a binomial ideal, with applications to Markov bases, Algebraic Statistics 11(2): 169-187.
- Holmes D.S.T. & Rome N. (2020), Fields of definition of rational curves of a given degree, Journal de Théorie des Nombres de Bordeaux 32(1): 291-310.
- Holmes D. (2019), Torsion points and height jumping in higher-dimensional families of abelian varieties, International Journal of Number Theory 15(09): 1801-1826.
- Holmes D.S.T. (2019), Néron models of jacobians over base schemes of dimension greater than 1, Journal für die Reine und Angewandte Mathematik 2019(747): 109-145.
- Jong R.S. de, Holmes D.S.T. & Burgos Gil J.I. (2019), Positivity of the height jump divisor , International Mathematics Research Notices 2019(7): 2044–2068.
- Dellar M., Topp C., Pardo G., Prado A. del, Fitton N., Holmes D.S.T., Banos G. & Wall E. (2019), Empirical and dynamic approaches for modelling the yield and N content of European grasslands, Environmental Modelling and Software 122: 104562.
- Bommel R. van, Holmes D.S.T. & Müller J.S. (2019), Explicit arithmetic intersection theory and computation of Néron-Tate heights, Mathematics of Computation 89(321): 395-410.
- Holmes D.S.T. (2019), Extending the double ramification cycle by resolving the Abel-Jacobi map, Journal of the Institute of Mathematics of Jussieu 20(1): 331-359.
- Holmes D.S.T., Pixton A. & Schmitt J. (2019), Multiplicativity of the double ramification cycle, Documenta Mathematica 24: 545-562.
- Holmes D., Kass J.L. & Pagani N. (2018), Extending the double ramification cycle using Jacobians, European Journal of Mathematics 4(3): 1087-1099.
- Burgos Gil J.I., Holmes D. & Jong R.S. de (2018), Singularities of the biextension metric for families of abelian varieties, Forum of Mathematics, Sigma 6: e12.
- Holmes D.S.T. (2017), Quasi-compactness of Néron models, and an application to torsion points, Manuscripta Mathematica 153(3-4): 323–330.
- Holmes D.S.T. (2017), Quasi-compactness of Néron models, and an application to torsion points, Manuscripta Mathematica 153: 323-320.
- Biesel O.D., Holmes D.S.T. & Jong R.S. de (2017), Néron models and the height jump divisor, Transactions of the American Mathematical Society 369(12): 8685-8723.
- Holmes D.S.T. & Jong R.S. de (2015), Asymptotics of the Néron height pairing, Mathematical Research Letters 22(5): 1337-1371.
- Holmes D.S.T. & Pannekoek R. (2015), The Brauer-Manin obstruction on Kummer varieties and ranks of twists of abelian varieties, Bulletin of the London Mathematical Society 47(4): 565-574.
- Holmes D.S.T. (2014), An Arakelov-theoretic approach to naïve heights on hyperelliptic Jacobians, New York Jounal of Mathematics 20: 927-957.
- Holmes D. (2012), Computing Néron-Tate heights of points on hyperelliptic Jacobians, Journal of Number Theory 132(6): 1295-1305.
- Managing editorship academic journal