Anne Urai
Assistant professor
- Name
- Dr. A.E. Urai
- Telephone
- +31 71 527 3371
- a.e.urai@fsw.leidenuniv.nl
- ORCID iD
- 0000-0001-5270-6513
I investigate how the brain transforms sensory information into useful decisions, and how such decisions change with experience and internal states. My research combines psychophysics and computational modeling of behavioral data with electrophysiological recordings in humans and rodents. I am a passionate advocates for team science, open science and reproducibility, diversity and equality in academia (and beyond), and sustainable academic practices in face of the climate crisis.
More information about Anne Urai
News
Research
I investigate how the brain transforms sensory information into useful decisions, and how such decisions change with experience and internal states. My research combines psychophysics and computational modeling of behavioral data with electrophysiological recordings in humans and rodents.
I am a passionate advocates for team science, open science and reproducibility, diversity and equality in academia (and beyond), and sustainable academic practices in face of the climate crisis.
Her research combines psychophysics and computational modeling of behavioral data with electrophysiological recordings in humans and rodents. She is also a passionate advocate for team science, open science and reproducibility.
Short CV
Anne Urai studied cognitive neuroscience and philosophy at University College Utrecht, Xiamen University in China, University College London and École Normale Supérieure, Paris.
During her doctoral research in the lab of Tobias Donner at the Universitätsklinikum Hamburg-Eppendorf and University of Amsterdam, she investigated how our previous choices bias the way we interpret later information, and how this process is affected by the confidence in our decisions.
She joined Cold Spring Harbor Laboratory in New York as a postdoctoral fellow, investigating the neurophysiology of decision-making using high-density neural recordings in the mouse brain. During this time she was a core member of the International Brain Laboratory collaboration, working as part of a global team of systems and computational neuroscientists.
Her research in general focuses on the neural basis of decision-making across mammalian species, the interaction between learning and perception, and the neural basis of cognitive aging.
She is currently an NWO Veni fellow, and an active member of the Young Academy Leiden.
Assistant professor
- Faculteit der Sociale Wetenschappen
- Instituut Psychologie
- Cognitieve Psychologie
- Biderman D., Whiteway M.R., Hurwitz C. & Urai A.E. (2024), Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling and cloud-native open-source tools , Nature Methods 21: 1316-1328.
- Johnson P.A., Nieuwenhuis S. & Urai A. (2024), Pupil dynamics preceding switches in task engagement. Annual Meeting of the Cognitive Science Society 46 24 July 2024 - 27 December 2024.
- Urai A., Gunes Z. G., Fernandez K. & Fengler A. (2024), Modelling History-Dependent Evidence Accumulation across Species. Proceedings of the Annual Meeting of the Cognitive Science Society 46 24 July 2024 - 27 July 2024.
- Biderman D., Whiteway M.R., Hurwitz V., Greenspan N., Lee R.S., Vishnubhotla A., Warren R., Pedraja F., Noone D., Schartner M.M., Huntenburg J.M., Khanal A., Meijer G.T., Noel J.-P., Pan-Vazquez A., Socha K.Z., Urai A.E., Cunningham J.P., Sawtell N.B. & Paninski L. (2024), Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling and cloud-native open-source tools, Nature Methods 21: 1316-1328.
- Epp S., Jung H., Borghesani V., Klöwer M, Hoeppli M-E., Misiura M., Thompson E., Duncan N.W., Urai A.E., Veldsman M., Sadaghiani S. & Rae C.L. (2023), How can we reduce the climate costs of OHBM? : A vision for a more sustainable meeting, Aperture Neuro 3: 1-16.
- Vloeberghs R., Urai A.E. & Desender K. (2023), Unravelling the computational mechanisms underlying choice history biases. .
- Zang F., Khanal A., Foerster S., Churchland AK. & Urai A.E. (2023), Age-related changes in neural noise in a decision-making task . Cognitive Computational Neuroscience 24 August 2023 - 27 August 2023.
- Urai A.E. (2023), History-dependent decision-making across species, Cognitive Computational Neuroscience 1119: .
- Zang F., Khanal A., Foerster S, Churchland A.K. & Urai A.E. (2023), Age-related changes in neural noise in a decision-making task. Cognitive Computational Neuroscience 24 August 2023 - 27 August 2023 no. 1238.
- Urai A.E. & Kelly C. (2023), Rethinking academia in a time of climate crisis, eLife 12(e84991): .
- Ashwood Z.C., Roy N.A., Stone I.R., The International Brain Laboratory, Urai A.E., Churchland A.K., Pouget A. & Pillow J.W. (2022), Mice alternate between discrete strategies during perceptual decision-making, Nature Neuroscience 25: 201-212.
- Rae C., Farley M., Jeffery K. & Urai A.E. (2022), Climate crisis and ecological emergency: why they concern (neuro)scientists, and what we can do, Brain and Neuroscience Advances 6: 1-11.
- Urai A.E., Doiron B., Leifer A.M. & Churchland A.K. (2022), Large-scale neural recordings call for new insights to link brain and behavior, Nature Neuroscience 25(1): 11-19.
- Urai A.E. & Donner T.H. (2022), Persistent activity in human parietal cortex mediates perceptual choice repetition bias, Nature Communications 13: 6015.
- The International Brain Laboratory, Aguillon-Rodriguez V., Angelaki D., Bayer H., Bonacchi N.,Carandini.M., Cazettes F., Chapuis G.,Churchland A.K., Dan Y., Dewitt E., Faulkner M., Forrest H., Haetzel L., Hüsser M., Hofer S.B., Hu F., Khanal A., Krasniak C., Laranjeira I., Mainen Z.F., Meijer G., Miska N.J., Mrsic-Flogel T.D., Murakami M., Noel J.P., Pan-Vazquez A., Rossant C., Sanders J., Socha K., Terry R.,Urai A.E., Vergara H., WellsM., Wilson C.J., Witten I.B., Wool L.B. & Zador A.M. (2021), Standardized and reproducible decision-making in mice, eLife 10: e63711.
- Talluri B.C., Urai A.E., Bronfman Z.Z., Brezis N., Tsetsos K, Usher M. & Donner T.H. (2021), Choices change the temporal weighting of decision evidence , Journal of Neurophysiology 125: 1468–1481.
- Urai A.E.: Aguillon-Rodriguez V., Laranjeira I.C., Cazettes F., The International Brain Laboratory, Mainen Z.F. & Churchland A.K. (2021), Citric water as an alternative to water restriction for high-yield mouse behavior, eNeuro 8(1): 1-8.
- Meijer G.T., Arlandis J. & Urai A.E. (2021), There is no mouse: using a virtual mouse to generate training data for video-based pose estimation, Lab Animal 50: 172–173.
- Whiteway M.R., Biderman D., Friedman Y., Dipoppa M., Buchanan E.K., Wu A., Zhou J., Bonacchi N., Miska N.J., Noel J-P., Rodriguez E., Schartner M., Socha K., Urai A.E., Salzman C.D., The International Brain Laboratory, Cunningham J.P. & Paninski L. (2021), Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders, PLoS Computational Biology 17(9): e1009439.
- Varol E., Boussard. J., Dethe N., Winter O., Urai A.E., The International Brain Laboratory, Churchland A., Steinmetz N. & Paninski L. (2021), Decentralized motion inference and registration of neuropixel data, 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing. International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 6 June 2021 - 11 June 2021. Toronto: IEEE. 1085-1089.
- Lak A., Hueske E., Hirokawa J., Masset P., Ott T., Urai A.E., Donner T.H., Carandini M., Uchida N. & Kepecs A. (2020), Reinforcement biases subsequent perceptual decisions when confidence is low, a widespread behavioral phenomenon, eLife 9: e49834.
- Aron A.R., Ivry R., Jeffrey K., Poldrack R., Schmidt R., Summerfield C. & Urai A.E. (2020), How can neuroscientists respond to the climate emergency? , Neuron 106(1): 17-20.
- Gee J.W. de, Tsetsos K., Schwabe L., Urai A.E., McCormick D.A., McGinley M.J. & Donner T.H. (2020), Phasic arousal optimizes decision computations in mice and humans, eLife 9: e54014.
- Musall S., Urai A.E., Sussillo D. & Churchland A.K. (2019), Harnessing behavioral diversity to understand neural computations for cognition, Current Opinion in Neurobiology 58: 229-238.
- Urai A.E., Gee J.W. de, Tsetsos K. & Donner T.H. (2019), Choice history biases subsequent evidence accumulation, eLife 8: e46331.
- Talluri B.C., Urai A.E., Tsetsos K., Usher M. & Donner T.H. (2018), Confirmation bias through selective overweighting of choice-consistent evidence, Current Biology 28(19): 3128-3135.
- Colizoli O., Gee J.W. de, Urai A.E. & Donner T.H. (2018), Task-evoked pupil responses reflect internal belief states, Scientific Reports 8: 13702.
- Bergt A., Urai A.E., Donner T.H. & Schwabe L. (2018), Reading memory formation from the eyes, European Journal of Neuroscience 47(12): 1525-1533.
- Braun A., Urai A.E. & Donner T.H. (2018), Adaptive history biases result from confidence-weighted accumulation of past choices, Journal of Neuroscience 38(10): 2418-2429.
- Urai A.E., Braun A. & Donner T.H. (2017), Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias, 8: 14637.
- Urai A.E. & Murphy P.R. (2016), Commentary: sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT, Frontiers in Systems Neuroscience 10(37): .
- Campana F., Rebello I., Urai A.E., Wyart V. & Tallon-Baudry C. (2016), Visual consciousness proceeds from global to local content in goal-directed tasks and spontaneous vision, Journal of Neuroscience 36(19): 5200-5213.
- Urai A.E. & Pfeffer T. (2014), An action-independent signature of perceptual choice in the human brain. (Commentary), Journal of Cognitive Neuroscience 34(15): 5081-5082.
- Brouwer A.M., Erp J. van, Kappé B. & Urai A.E. (2011), The brain as target image detector: the role of image category and presentation time. Schmorrow D.D. & Fidopiastis C.M. (Eds.), Foundations of Augmented Cognition. Directing the future of Adaptive Systems. HCI Inernational 2011 9 July 2011 - 14 July 2011. Orlando: Springer. 3-12.