Tiny joints for reconfigurable microstructures
Leiden physicists exploit self-assembly of small particles to someday create functional structures such as micro-robots from the bottom up. They have now taken an important step forward by experimentally realizing joints at micrometer scale. Publication in Nanoscale.
Micrometer-sized robots have great potential, for example in medicine, as they can deliver drugs locally or perform accurate surgery. Scientists are therefore looking for ways to develop robots at this miniature scale. However, when manufacturing ever-smaller versions of functional devices, limitations are soon encountered. Leiden physicist Daniela Kraft therefore works the other way round: bottom-up instead of top-down. She uses particles of around a micrometer – so-called colloids – as components. Due to their tiny size, colloids have the additional benefit of continuously moving in random directions, which allows the structures to build themselves.
Joints
While it is already challenging to create the various parts—such as cubes, triangles, and dumbbells—and combine them in the desired way, the resulting objects are usually rigid. If you dream about creating a fully functional micro-robot, you also need parts that allow movement: joints. For the first time, Kraft and her research group have now managed to make three different types of joints at microscale: hinges, sliders and ball joints. They have published their findings in Nanoscale.
DNA
To give their joints the necessary mobility, the researchers connect the colloids through DNA linkers. Instead of being attached to a fixed place on the colloid, the linkers move freely across the surface. Kraft keeps the density relatively low at about a thousand DNA linkers per square micrometer on the colloid surface. This is sufficient to incorporate joint functionality, while at the same time not being too many to arrest the system.
Degrees of freedom
In the macroscopic world, joints not only create a mobile connection, they also provide functionality by constraining the motion to certain directions. A door hinge, for example, only allows the door to turn in one direction. To give their microscopic joints specific degrees of freedom and thus functionality, the physicists exploited the fact that colloids attach strongest at maximum contact. A sphere connected to a cubic particle can only slide along its side, because the contact area will diminish if it turns around the corner; this makes it a sliding joint (Figure 1b). Spheres connected to the waist of a dumbbell can only orbit around the center, as they feel maximum contact if they touch both halves of the dumbbell (Figure 1c). This provides a hinge function. Thirdly, spherical colloids can be used as ball joints because attached particles have the freedom to move in all directions (Figure 1a). These three types of microscopic joints transform rigid colloid structures into flexible ones that form the basis for future self-building micro robots.
Publication
Ball joint, as in figure 1a
Due to the selected cookie settings, we cannot show this video here.
Watch the video on the original website orSliding joint, as in figure 1b
Due to the selected cookie settings, we cannot show this video here.
Watch the video on the original website orHinge joint, as in figure 1c
Due to the selected cookie settings, we cannot show this video here.
Watch the video on the original website or