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Chapter 0 Introduction 

0.1 Standard method of MDPs 

There are three main methods for MDPs: Policy iteration, Linear programming and Value iteration. 
We will give a short introduction for these three methods first. 
Policy iteration 
In the method of policy iteration, we constructed a sequence of deterministic policies, which have 
increasing value vectors. As the space of deterministic policies is finite, this method will terminate 
with an optimal policy within a finite number of iterations. The optimal value vector will be 
generated as by-product. 
Linear programming 
This method transforms the MDP models into a linear programming problem. Furthermore, there 
is a correspondence between extreme feasible points of the linear programming problem and 
deterministic policies of the MDP model. Hence once we get the optimal solution of the linear 
programming problem, we get the optimal deterministic policy for the MDP model. In this thesis, 
we will only consider linear programming method for MDPs. 
Value iteration 
Converse to the policy iteration, the value iteration focuses on value vectors. In this method, the 

value vector is successively approximated, starting with some guess 1v , by a sequence ∞
=1}{ n

nv , 

which converges to the optimal value vector. This method is also called successive approximation. 
Finally, we will get a value vector, whose distance to the optimal value vector is smaller than a 
given accuracy parameter ε . A so-called ε -optimal policy is constructed as a by-product. 
 

0.2 Heuristic approach to MDPs based on the IPM 

IPM is an efficient method to solve linear programming problem. The general idea about using 
IPM to solve MDPs is: get an ε -optimal solution of the linear programming problem from IPM, 
and get a corresponding ε -optimal policy. However, in MDPs, nearly always we can get a better 
result: an optimal deterministic policy, and also quicker.  
 
The idea is: once we get a feasible solution in the linear programming problem with IPM, we 
transform it into a stationary policy. Based on this policy, we make a new heuristic policy. Then, 
we can do several tests to check whether this heuristic policy is an optimal policy. If it is not, we 
just go some more steps in IPM, until the heuristic policy changes, and check again. 
 
Because of some unique properties of MDPs, this heuristic method works very fast.  
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In this thesis, we start with the MDPs models and two important criteria: total expected discounted 
rewards and average expected rewards. In Chapter 2, we will introduce the Interior point method 
based on Self-concordant functions, which can be used for solving the Linear programming 
problem in Chapter 1. Chapter 3 will deal with how to make an heuristic approach in the IPM to 
solve the LP problem in Chapter 1. Appendix A contains some technical lemmas, and in Appendix 
B the codes are given. Some numerical results are reported in Appendix C. 
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Chapter 1 Introduction to Markov decision processes 

In this chapter, we introduce the model of a Markov decision process (MDP) and we present several 
optimality criteria. 

1.1 The MDP model 

1. State space 
At any time point at which a decision has to be made, the state of the system is observed by the 
decision maker. The set of possible states is called the state space. Although the state space could be 
finite, denumerable, compact or even more general, in this study we only consider the MDP model 

with finite state space. The state space will be denoted by },...,2,1{ NS = . 

2. Action sets 
When the decision maker observes that the state of the system is state i , he chooses an action from 
a certain action set, which may depend on the observed state: the action set in state i  is denoted by 

)(iA . Similarly to the state space, we assume that the action sets are finite. 

3. Decision time points 
The time intervals between the decision points may be constant or random. In the first case the 
model is said to be a Markov decision process; when the times between consecutive decision points 
are random the problem is called a semi-Markov decision problem. In this thesis, we restrict 
ourselves to Markov decision processes. 
4. Rewards  
Given the state of the system and the chosen action, an immediate reward is earned. Such reward 
only depends on the decision time point, the observed state and the chosen action and not on the 
history of the process. The immediate reward at decision time point t  for an action a  in state i  

will be denoted by )(art
i ; if the reward is independent of the time t , we denote )(ari  instead of 

)(art
i . In this study we consider only stationary rewards. 

5. Transition probabilities 
Given the state of the system and the chosen action, the state at the next decision time point is 
determined by a transition law. These transitions only depend on the decision time point, the 
observed state and the chosen action and not on the history of the process. This property is called the 
Markov property. If the transitions depend on the decision time point, the problem is said to be 

non-stationary, and by )(apt
ij  the probability denotes that the next state is state j , given that the 

state at time t  is state i  and that action a  is chosen. If the transitions are independent of the 

time points, the problem is called stationary, and the transition probabilities are denoted by )(apij . 
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In this thesis we restrict ourselves to stationary transitions. 
6. Planning horizon 
This process has a planning horizon. This horizon may be finite, infinite or with random length. In 
this study the planning horizon will be infinite. 
7. Optimality criterion 
The objective is to determine a policy, i.e. a decision rule for each decision time point and each 
history of the process, which optimizes the performance of the system. The performance is 
measured by a utility function. This function assigns to each policy, given the starting state of the 
process, a value. In this thesis, we consider criteria based on discounted and average rewards. 

1.2 Policies and Optimality criteria 

1.2.1 Policies 

A policy R  is a sequence of decision rules: ,...),...,,( 21 tR πππ= , where tπ  is the decision 

rule at time point ,....2,1, =tt  the decision rule tπ  may depend on all information of the system 

until time t , i.e. on the states at the time points t,...,2,1  and the actions at the time points 

1,...,2,1 −t . The formal definition of a policy is as follows. 

Let )}(,|),{( iAaSiaiAS ∈∈=×  and let tH  denote the set of the possible histories of the 

system up to time point t , i.e. 

   );11,),(|),,,...,,{( 1111 SitkASaiiaiaiH tkktttt ∈−≤≤×∈= −− .    (1.1) 

A decision rule tπ  at time point t  gives the probability, as a function of the history tH  to the 

action space, of choosing action a , i.e. 

   0≥t
ah tt

π  for every )( tt iAa ∈  and 1=∑
t

tt
a

t
ahπ  for every tt Hh ∈ .   (1.2) 

Let C  denote the set of all policies. A policy is said to be Markov if the decision rule tπ is 

independent of ),,...,,( 1111 −− tt aiai  for every Nt∈ . Hence, in a Markov policy the decision rule 

at time t  only depends on the state ti ; therefore the notation t
ai tt

π  is used. Let )(MC  be the 

set of Markov policies. If a policy is a Markov policy and the decision rules are independent of the 

time point t , i.e. ...21 == ππ , then the policy is called stationary. Hence, a stationary policy is 

determined by a nonnegative function π  on AS ×  such that 1=∑
a

iaπ  for every Si∈ . The 
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stationary policy ,...),( ππ=R  is denoted by ∞π , and the set of stationary policies by )(SC . If 

the decision rule π  of a stationary policy ∞π  is nonrandomized, i.e. for every Si∈ , we have 

1=iaπ  for exactly one action ia  (consequently 0=iaπ  for every iaa ≠ ), then the policy is 

called deterministic. Therefore, a deterministic policy can be described by a function f  on S , 

where )(if  is the chosen action ia , Si∈ . A deterministic policy is denoted by ∞f  and the 

set of deterministic policies by )(DC . 

A matrix )( ijpP =  is a transition matrix if 0≥ijp  for all ),( ji  and 1=∑ j ijp  for all i . 

Markov policies, and consequently also stationary and deterministic policies, induce transition 
matrices. 
 
Assumption 1.1 
In the following chapters, we only consider stationary policies, that means the immediate rewards 

and the transition probabilities are stationary, and denoted by )(ari  and )(apij , respectively, for 

all ji,  and a . 
 

For the stationary policy ,...),( ππ=R  the transition matrix )(πP  and the reward vector )(πr  

are defined by  

    ∑=
a

iaijij apP ππ )()(  for every SSji ×∈),( ;      (1.3) 

    ∑=
a

iaii arr ππ )()(  for every Si∈ .        (1.4) 

Let the random variables tX  and tY  denote the state and action at time t , ,...2,1=t . For any 

policy R  and any initial distribution β , i.e. iβ  is the probability that the system starts in state 

i , let },{, aYjXP ttR ==β  be the notation for the probability that at time t  the state is j  and 

the action is a . If 1=iβ  for some Si∈ , then we write RiP,  instead of RP ,β . The expectation 

operator with respect to the probability measure RP ,β  or RiP,  is denoted by RE ,β  or RiE ,  

repectively. 
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1.2.2 Optimality criteria                                                                

Total expected discounted rewards over an infinite horizon 

An amount r  earned at time point 1 can be deposited in a bank with interest rate ρ . Then this 

amount grows and becomes r⋅+ )1( ρ  at time point 2 , r⋅+ 2)1( ρ  at time point 3, etc. Hence, 

an amount r  at time point 1 is comparable with rt ⋅+ −1)1( ρ  at time point t , ,...2,1=t . 

Let 1)1( −+= ρα , called the discount factor. Note that )1,0(∈α . Then, conversely, an amount 

r  received at time point t  can be considered as equivalent to an amount rt ⋅−1α  at time point 1. 

The total expected α -discounted rewards, given initial state i  and a policy R , is denoted by 

)(Rvi
α  and defined by 

   ∑∑∑ ⋅===⋅=
∞

=

−
∞

=

−

aj
jttRi

t

t

t
tX

t
Rii araYjXPYrERv

t
,

,
1

1

1

1
, )(},{)}({)( ααα . 

For a stationary policy ∞π , we have: 

   ∑
∞

=

−−∞ =
1

11 )()()(
t

tt rPv ππαπα . 

The value-vector αv  and the optimality of a policy *R  are defined by  

   )(sup: Rvv
R

αα =    and  αα vRv =:)( * . 

In the following section, it will be shown that there exists an optimal deterministic policy ∞
*f  for 

this criterion and that the value vector αv  is the unique solution of the so-called optimality 

equation 

   Sixaparx
j

jijiiAai ∈+= ∑
∈

  },)()({max
)(

α . 

Furthermore, it will be shown that ∞
*f  is an optimal policy if 

   SiiAavaparvfpfr
j

jiji
j

jiji ∈∈+≥+ ∑∑ ),(  ,)()()()( **
αα αα . 
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Average expected reward over an infinite horizon 

In the criterion of average rewards the limiting behavior of ∑
=

T

t
tX Yr

T t
1

)(1
 is considered for 

∞→T . Since ∑
=

∞→

T

t
tXT

Yr
T t

1

)(1lim  may not exist and interchanging limit and expectation is not 

allowed, in general, there are four different evaluation measures which can be considered: 
1. Lower limit of the average expected rewards: 

SiYrE
T

R
T

t
tXRiTi t

∈= ∑
=

→∞
  ,)}({1inflim)(

1
,φ , with value vector )(sup R

R
φφ = . 

2. Upper limit of the average expected rewards: 

SiYrE
T

R
T

t
tXRi

T
i t

∈= ∑
=∞→

  ,)}({1suplim)(
1

,φ , with value vector )(sup R
R
φφ = . 

3. Expectation of the lower limit of the average rewards: 

SiYr
T

ER
T

t
tXTRii t

∈= ∑
=

∞→
  ,)}(1inflim{)(

1
,ψ , with value vector )(sup R

R
ψψ = . 

4 Expectation of the upper limit of the average rewards: 

SiYr
T

ER
T

t
tXTRii t

∈= ∑
=

∞→
  ,)}(1inflim{)(

1
,ψ , with value vector )(sup R

R
ψψ = . 

 
Lemma 1.1 

)()()()( RRRR ψφφψ ≤≤≤  for every policy R . 

Proof 
The second inequality is obvious. The first and the last inequality follow from Fatou’s lemma (e.g. 
Bauer [1], p.126): 

)()}({1inflim)}(1inflim{)(
1

,
1

, RYrE
T

Yr
T

ER i

T

t
tXRiT

T

t
tXTRii tt

φψ =≤= ∑∑
=

→∞
=

→∞
 

and 

   )()}(1inflim{)}({1suplim)(
1

,
1

, RYr
T

EYrE
T

R i

T

t
tXTRi

T

t
tXRi

T
i tt

ψφ =≤= ∑∑
=

∞→
=∞→

.    

For these 4 criteria the value vector and the concept of an optimal policy can be defined in the usual 
way. In Bierth [2] is shown that 

   )()()()( ∞∞∞∞ === πψπφπφπψ  for every deterministic policy ∞π , 

and that for all 4 criteria there exists a deterministic optimal policy. Hence, the 4 criteria are 
equivalent in the sense that an optimal deterministic policy for one criterion is also optimal for the 
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others. 
 

1.3 Discounted Rewards 

1.3.1 Introduction 

This section deals with the total expected discounted reward over an infinite planning horizon. This 
criterion is quite natural when the planning horizon is rather large and returns at the present time are 
of more value than returns of the same value which are earned later in time. We recall that the total 

expected −α discounted rewards, given initial state i  and a stationary policy ∞π , is denoted by 

)( ∞πα
iv  and satisfies 

   )()}({)()()( 1

1

11 ππαππαπα rPIrPv
t

tt −
∞

=

−−∞ −==∑ . 

The second equation follows from 

  tt PIPPIPI )}({})}({)({)}({ 1 παπαπαπα −=+++⋅− −L  

and  

0)}({ →tP πα  for ∞→t . 

 
In the next section, we first show some theorems of monotone contraction mappings in the context 
of MDPs without proof. For the proof we refer to Kallenberg [9]. Then, the optimality equation, 
bounds for the value vector and suboptimal actions are considered. Finally, the linear programming 
method is introduced. 
 

1.3.2 Monotone contraction mappings 

Let X  be a Banach space with norm |||| ⋅ , and let XXB →: . The operator B  is called a 

contraction mapping if for some )1,0(∈β  

   |||||||| yxByBx −≤− β  for all Xyx ∈, .        (1.5) 

The number β  is called the contraction factor of B . An element Xx∈  is said to be a 

fixed-point of B  if ** xBx = . The next theorem shows the existence of a unique fixed-point for 
a contraction mapping in a Banach space. 
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Theorem 1.1 (Fixed-point Theorem) 
Let X  be a Banach space and suppose XXB →:  is a contraction mapping. Then, 

(1) xBx n
n ∞→= lim*  exists for every Xx∈ , and *x  is a fixed-point of B . 

(2) *x  is the unique fixed-point of B . 
 

The next theorem gives bounds on the distance between the fixed-point *x  and iterations xBn  

for ,...2,1,0=n . 

 
Theorem 1.2 
Let X  be a Banach space and suppose XXB →:  is a contraction mapping with contraction 

factor β  and fixed-point *x . Then, 

(1) NnXxxBxxBxBxBx nnnn ∈∈∀−−≤−−≤− −−− ,  ||,||)1(||||)1(||*|| 111 ββββ ; 

(2) XxxBxxx ∈∀−−≤− −   ||,||)1(||*|| 1β . 

 
Remark: 

The above theorem implies that the convergence rate of xBn  to the fixed-point is at least linear. 

(cf. Stoer and Bulirsch [13], p.251). This kind of convergence is called geometric convergence. 
 
Let X  be a partially ordered set and XXB →: . The mapping B  is called monotone if 

yx ≤  implies ByBx ≤ . 

 
Theorem 1.3 
Let X  be a partially ordered Banach space. Suppose that XXB →:  is a monotone 
contraction mapping with fixed-point *x . Then 
(1) xBx ≤  implies xBxx ≤≤* ; 
(2) xBx ≥  implies xBxx ≥≥* . 
 
Lemma 1.2 

(1) Let NN RRB →:  be a monotone contraction mapping with contraction factor β , and let 

d  be a scalar. Then edyx ⋅+≤  implies edByBx ⋅⋅+≤ ||β . 

(2) Let NN RRB →:  be a mapping with the property that edyx ⋅+≤  implies 

edByBx ⋅⋅+≤ ||β  for some 10 <≤ β  and for all scalars d . Then B  is a monotone 
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contraction, with respect to the supremum norm, with contraction factor β . 

 
Lemma 1.3 

Let NN RRB →:  be a monotone contraction mapping, with respect to the supremum norm, with 

contraction factor β  and fixed-point *x . Suppose that there exist scalars a  and b  such that 

ebxBxea ⋅≤−≤⋅  for some NRx∈ . Then, 

.||)1(||)1(*||)1(||)1( 1111 ebxebBxxeaBxeax ⋅−+≤⋅−+≤≤⋅−−≤⋅−− −−−− ββββββ

 
Corollary 1.1 

Let B  be a monotone contraction in NR , with respect to the supermum norm ∞⋅ |||| , with 

contraction factor β  and fixed-point *x . Then 

.||||)1(||||)1(                                     

*||||)1(||||)1(
11

11

exBxxexBxBx

xexBxBxexBxx

⋅−⋅−+≤⋅−⋅−+≤

≤⋅−⋅−−≤⋅−⋅−−

∞
−

∞
−

∞
−

∞
−

βββ

βββ
 

 
Lemma 1.4 

Let NN RRB →:  be a monotone contraction in NR , with respect to the supremum norm, with 

contraction factor β , fixed-point *x  and with the property that ecBxecxB ⋅+=⋅+ β)(  for 

every NRx∈  and scalar c . 

Suppose that there exist scalars a  and b  such that ebxBxea ⋅≤−≤⋅  for some NRx∈ . 

Then, 

ebxebBxxeaBxeax ⋅−−≤⋅−+≤≤⋅−+≤⋅−+ −−−− 1111 )1()1(*)1()1( ββββββ . 

 
1.3.3 The optimality equation 

Suppose that at time point 1=t , when the system is in state i , action )(iAa∈  is chosen, and 

that from 2=t  on an optimal policy is followed. Then, the total expected α -discounted reward 

is equal to ∑+
j

jiji vapar αα )()( . Since any optimal policy obtains at least this amount, we have 

   Sivaparv
j

jijiiAai ∈+≥ ∑∈   },)()({max )(
αα α . 

On the other hand, let ia  be the action chosen by an optimal policy in state i . Then, 
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   Sivaparvaparv
j

jijiiAa
j

jiijiii ∈+≤+= ∑∑ ∈   },)()({max)()( )(
ααα αα . 

Hence, αv  is a solution of  

Sixaparx
j

jijiiAai ∈+= ∑∈   },)()({max )(
αα α .        (1.6) 

According to the contraction mapping theory in section 1.3.2, αv  is a fixed-point of the mapping 

NN RRU →: , defined by 

   SixaparUx
j

jijiiAai ∈+= ∑∈   },)()({max)( )( α .       (1.7) 

Besides the mapping U , defined above, we introduce for any randomized decision rule π  a 

mapping NN RRL →:π , defined by 

   xPrxL )()( παππ +=  .            (1.8) 

Let )(ifx  be such that 

   Sixaparxifpifr
j

jijiiAa
j

jxijxi ∈+=+ ∑∑ ∈   },)()({max))(())(( )( αα . 

Then, 

   xLUxxL fff x
max== , 

where the maximization is taken over all deterministic decision rules f . 

Let ∞||)(|| πP  be the subordinate matrix norm (cf. Stoer and Bulirsch [13], p.178), then 

∞||)(|| πP  satisfies 

   1)(max||)(|| == ∑∞
j

iji pP ππ . 

 
Theorem 1.4 

The mapping πL  and U  are monotone contraction mappings with contraction factor α . 

Proof 

Suppose that yx ≥ . Let π  be any stationary decision rule. Because 0)( ≥πP , 

   yLyPrxPrxL ππ παππαπ =+≥+= )()()()( ,       (1.9) 

i.e. πL  is monotone. U  is also monotone, since 

   UyyLxLxLUx
yy ffff =≥≥= max . 
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Furthermore, we obtain 

   ∞∞∞∞∞ −⋅=−≤−=− ||)(||||)(||||)(||||))((|||||| yxyxPyxPyLxL απαπαππ , 

i.e. πL  is a contraction mapping with contraction factor α . The derivation for operatior U  is 

   eyxyxfPyLxLyLxLUyUx xffff xxyx
⋅−⋅≤−⋅=−≤−=− ∞||||))(( αα . (1.10) 

Interchanging x  and y  yields 

   exyUxUy ⋅−⋅≤− ∞||||α .            (1.11) 

From (1.10) and (1.11) in follows that ∞∞ −⋅≤− |||||||| yxUyUx α , i.e. U  is a contraction 

mapping with contraction factor α . 
 
The next theorem shows that for any randomized decision rule π , the total expected 

−α discounted reward of the policy ∞π  is the fixed-point of the mapping πL . 

 
Theorem 1.5 

)( ∞παv  is the unique solution of the functional equation xxL =π . 

Proof 

Theorem 1.1 and Theorem 1.4 imply that it is sufficient to show that )()( ∞∞ = ππ αα
π vvL . 

We have 

   
.0)()}()}{({)(                               

)()}({)()()(
1 =−−−=

−−=−
−

∞∞∞

ππαπαπ

ππαπππ ααα
π

rPIPIr

vPIrvvL
 

 
Corollary 1.2 

xLv n
n π

α π ∞→
∞ = lim)(  for any NRx∈ . 

 

The next theorem shows that the value vector αv  is the fixed-point of the mapping U . 

 
Theorem 1.6 

αv  is the unique solution of the functional equation xUx = . 

Proof 

It is sufficient to show that αα vUv = . Let ,...),( 21 ππ=R  be an arbitrary Markov policy. Then, 
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),()()()(         

)()()()()()(         

)()()()()()(

22
11

132
1

111

12
2

111

1 RvLRvPr

rPPPPr

rPPPrRv
ss

s
s

tt
t

t

α
π

α

α

παπ

ππππαπαπ

ππππαπ

=+=

+=

+=

+∞

=
−

−∞

=
−

∑
∑

L

L

 

where ,...),( 32
2 ππ=R . From the monotonicity of 1π

L  and the definition of U , we obtain 

   )(  ,)()( 11 2 MCRUvvLRvLRv ∈≤≤= αα
π

α
π

α . 

Hence, ααα UvRvv MCR ≤= ∈ )(sup )( . Take any 0>ε . Since )(sup )( Rvv MCR
αα

∈= , for any 

Sj∈  there exists a Markov policy ),...)(),(( 21 jjRj ππε =  such that εαεα −≥ jjj vRv )( . 

Let )(iAai ∈  be such that Sivaparvapar
j jijiaj jiijii ∈+=+ ∑∑   },)()({max)()( αα αα . 

Consider the policy ,...),( 21* ππ=R  defined by 

   2  ),(  ),( and    
otherwise  0

aa if    1
2

1-tt
...i

i1
11

≥∈=
⎩
⎨
⎧ =

= tiAai taiaiaia tt
πππ , 

i.e. *R  is the policy that chooses ia  in state i  at time point 1=t , and if the state at time 

2=t  is 2i , then the policy follows ε
2i

R  where the process is considered as originating in state 

2i . 

Therefore,  

.  ,)(})()({max    

))(()()()()()( *

SiUvvapar

vaparRvaparRvv

ij jijia

j jiijiij jjiijiiii

∈−=−+=

−+≥+=≥

∑
∑∑

αεαεα

εαα

αα

αεααα

 

  Since 0>ε  is arbitrarily chosen, αα Uvv ≥ . 

 

Because ααα
α
vLUvv

v
f== , it follows from Theorem 1.5 that )( ∞= α

αα
vfvv , i.e. ∞

αvf  is an 

optimal policy. If )(DCf ∈∞  satisfies 

   Sivaparvfpar
j

jijia
j

jiji ∈+=+ ∑∑   },)()({max)()( αα αα , 

then ∞f  is called a conserving policy. Conserving polices are optimal. Therefore, the equation 

xUx =  is called the optimality equation. 
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Corollary 1.3 
(1) There exists a deterministic α -discounted optimal policy.  

(2) xUv n
n→∞= limα  for any NRx∈ . 

(3) Any conserving policy is α -discounted optimal. 
 

As already mentioned, we derive some bounds for the value vector αv . These bounds can be 

obtained from Lemma 1.4. Therefore, we note that the mappings πL  and U  satisfy, for any 

NRx∈  and scalar c , ecxLecxL ff ⋅+=⋅+ α)(  and ecUxecxU ⋅+=⋅+ α)( . 

 
Theorem 1.7 

For any NRx∈ , we have 

(1) ≤≤≤⋅−−−≤⋅−−− ∞
∞

−
∞

− ααααα vfvexUxUxexUxx x )(||||)1(||||)1( 11  

       exUxxexUxUx ⋅−−+≤⋅−−+ ∞
−

∞
− ||||)1(||||)1( 11 ααα . 

(2) ∞
−

∞ −−≤− ||||)1(|||| 1 xUxxv αα . 

(3) ∞
−

∞
∞ −−≤− ||||)1(2||)(|| 1 xUxfvv x αααα . 

Proof 

Take any NRx∈ . By Lemma 1.4, for ∞−−= |||| xUxa , ∞−= |||| xUxb  and 
xfLB = , we 

obtain (notice that UxxLBx
xf == ), 

ααααα vfvexUxUxexUxx x ≤≤⋅−−−≤⋅−−− ∞
∞

−
∞

− )(||||)1(||||)1( 11 . 

Next, again applying Lemma 1.4, for UB =  the remaining part of (1) implies, 

   exUxxexUxUxv ⋅−−+≤⋅−−+≤ ∞
−

∞
− ||||)1(||||)1( 11 αααα . 

The part (2) and (3) follow directly from part (1). 
 
Theorem 1.8 

For any NRx∈ , we have 

(1) ≤≤≤⋅−−−≤⋅−−− ∞−− ααααα vfvexUxUxexUxx xiiii )()(min)1()(min)1( 11  

 exUxxexUxUx iiii ⋅−−+≤⋅−−+ −− )(max)1()(max)1( 11 ααα . 

(2) )()1(2||)(|| 1 xUxspanfvv x −−≤− −
∞

∞ αααα  where iiii yyyspan minmax:)( −= . 
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Proof 

Notice that exUxxUxexUx iiii ⋅−≤−≤⋅− )(max)(min . It is easy to verify that for 

ii xUxa )(min −=  and ii xUxb )(max −=  the proof is similar to the proof of Theorem 1.7. 

 
Remark 

Since ∞−≤−− ||||)(min xUxxUx ii  and ∞−≤− ||||)(max xUxxUx ii , we have 

∞−≤− ||||2)( xUxxUxspan . Consequently, the bounds of Theorem 1.8 are stronger than the 

bounds of Theorem 1.7. 
 

Next, we discuss the elimination of suboptimal actions. An action )(iAa∈  is called suboptimal if 

there doesn’t exist an α -discounted optimal policy )(DCf ∈∞  with aif =)( . Because ∞f  

is α -discounted optimal if and only if αα vfv =∞ )( , and because αα Uvv = , an action 

)(iAa∈  is suboptimal if and only if 

    ∑+>
j

jijii vaparv αα α )()( ,           (1.12) 

Suboptimal actions can be disregarded. Notice that formula (1.12) is unuseful, because αv  is 

unknown. However, by upper and lower bounds on αv  as given in Theorem 1.7 and 1.8, 

suboptimal tests can be derived, as illustrated in the following theorem. 
 
Theorem 1.9 

Suppose that yvx ≤≤ α . If i
j

jiji Uxyapar )()()( <+ ∑α , then action )(iAa∈  is 

suboptimal. 
Proof, 

∑∑ +≥+>≥=
j

jiji
j

jijiiii vaparyaparUxUvv ααα αα )()()()()()( . 

The first inequality follows from the monotonicity of U . 
 
Corollary 1.4 

Suppose that for some scalars b  and c , we have ecxvebx ⋅+≤≤⋅+ α . If  

   )()()()( bcUxxapar i
j

jiji −−<+ ∑ αα ,         (1.13) 

then action )(iAa∈  is suboptimal. 
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Proof 

ii
j

jiji
j

jiji ebxUbUxcxaparcxapar )}({)()()())(()( ⋅+=+<++=++ ∑∑ αααα . 

 
Applying corollary 1.4 on the bound of Theorem 1.8, gives the following test for the elimination of 

a suboptimal action )(iAa∈ : 

   )()1()()()( 1 xUxspanUxxapar i
j

jiji −−−<+ −∑ ααα .     (1.14) 

 

1.3.4 Linear programming 

The value-vector αv  is the unique solution of the optimality equation (1.6), i.e. 

   Sivaparv
j

jijiiAai ∈+= ∑∈   },)()({max )(
αα α . 

Hence αv  satisfies 

   ∑+≥
j

jijii vaparv αα α )()(  for all ASai ×∈),( .       (1.15) 

Intuitively it is clear that αv  is the smallest vector which satisfies (1.15). This property is the key 

property for the linear programming approach to compute the value-vector. It turns out that an 
optimal policy can be obtained from the dual linear program. We also show a one-to-one 
correspondence between the stationary policies and the feasible solutions of the dual program, such 
that the extreme points correspond to the deterministic policies. Furthermore, we show that the 
exclusion of suboptimal actions can be included in the linear programming method. 
 

A vector NRv∈  is said to be α -superharmonic if 

   ∑+≥
j

jijii vaparv )()( α  for all ASai ×∈),( .       (1.16) 

 
Theorem 1.10 

αv  is the smallest α -superharmonic vector. 

Proof 

Since ∑∑ +≥+= ∈
j

jiji
j

jijiiAai vaparvaparv ααα αα )()(})()({max )(  for all ASai ×∈),( , 

αv  is α -superharmonic. Suppose that NRv∈  is also α -superharmonic. Then  

   vfParv )()( α+≥  for every )(DCf ∈∞ , 
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which implies )()}({ frvfPI ≥−α . Since 0)()}({
0

1 ≥=− ∑
∞

=

−

t

tt fPfPI αα , we obtain 

   )(),()()}({ 1 DCffvfrfPIv ∈=−≥ ∞∞− αα . 

Hence, vfvv fi ≤= ∞ )(max αα , i.e. αv  is the smallest α -superharmonic vector. 

 
Corollary 1.5 

αv  is the unique optimal solution of the linear programming problem 

   }),(  ),()}({|min{ ASaiarvapv i
j

jijij
j

jj ×∈≥−∑∑ αδβ ,     (1.17) 

where jβ  is any strictly positive number for every Sj∈ . 

Proof 

From theorem 1.10 it follows that αv  is a feasible solution of (1.17) and that vv ≤α  for every 

feasible solution v  of (1.17). Hence, αv  is the unique solution of (1.17). 

 

By corollary 1.5, the value vector αv  can be found as optimal solution of the linear program (1.17). 

This program does not give an optimal policy. However, an optimal policy can be obtained from the 
solution of the dual program 

   
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×∈≥

∈=−∑
∑

ASaiax

Sjaxap
axar

i

j
ai

iijij

ai
ii

),(,0)(                          

  ,)()}({
)()(max ),(

),(

βαδ
.    (1.18) 

 
Theorem 1.11 

(1) Any feasible solution x  of (1.18) satisfies Sjax
a j ∈>∑   ,0)(  

(2) The dual program (1.18) has a finite optimal solution, say *x . 

(3) Any )(* DCf ∈∞  with 0))(( *
* >ifxi  for every Si∈  is an α -discounted optimal 

policy. 
Proof 
(1) Let x  be a feasible solution of (1.18). From the constraints of (1.18) it follows that 

    Sjaxapax j
ai

iijj
a

j ∈>≥+= ∑∑   ,0)()()(
),(

βαβ . 

(2) Since the primal program (1.17) has a finite optimal solution, namely the value-vector αv , it 

follows from the theory of linear programming that the dual program (1.18) also has a finite optimal 
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solution. 

(3) Take any )(* DCf ∈∞  with 0))(( *
* >ifxi  for every Si∈  (such policy exists by part (1)). 

Because 0))(( *
* >ifxi , Si∈ , the complementary slackness property of linear programming 

implies 

Sifrvfp i
j

jijij ∈=−∑   ),()}({ **
ααδ . 

Hence, in vector notation, 

   )()}({ ** frvfPI =− αα  which implies )()()}({ **
1

*
∞− =−= fvfrfPIv αα α , 

 i.e. ∞
*f  is an α -discounted optimal policy. 

 
If the simplex method is used, then the programs (1.17) and (1.18) are solved simultaneously. Hence 

by the simplex method both the value vector αv  and an optimal policy are computed. 

 
Next, we show the one-to-one correspondence between the feasible solution of (1.18) and the set 

)(SC  of stationary policies. For )(SC∈∞π  the vector )(πx  with component 

ASaiaxi ×∈),(),(π , is defined by 

   ASaiPIax iai
T

i ×∈⋅−= − ),(  ,})}({{)( 1 ππαβπ .       (1.19) 

Define for any Nt∈  and ASai ×∈),(   a random variable )(t
ian  by 

   
⎩
⎨
⎧ =

=
otherwise.               0

);,(),(X if   1 t)( aiY
n tt

ia  

Then, the total discounted number of times that ),(),(Xt aiYt =  equals ∑∞

=
−

1t
)(1 t

ia
t nα . 

 
Lemma 1.5 

Given initial distribution β , i.e. jjXP β== }{ 1  for all Sj∈ , and a stationary policy ∞π , 

)(axi
π  satisfies ASainEax t

ia
t

i ×∈= ∑∞

=
− ),(  },{)(

1t
)(1

, απβ
π . 

Proof 

Since ∑∞

=
−−− =−

1t
111 )()}({ παπα tt PPI , we have 
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}.{         

}{}}|,{{         

}}|{{})({)(

1t
)(1

,

)(
,1t

1
11

1

11
1

1
11

∑
∑∑∑
∑∑∑∑

∞

=
−

∞

=
−∞

=
−

∞

=
−∞

=
−−

=

⋅=====

⋅===⋅⋅=

t
ia

t

t
ia

t
ttj jt

t

iatj jt
t

iajit
tt

j ji

nE

nEjXaYiXP

jXiXPPax

α

αβα

πβαππαβ

πβ

πβπ

π
π

 

Conversely, for a feasible solution x  of (1.18), define )(xπ  with elements x
iaπ  by 

   ASai
ax

ax

a i

ix
ia ×∈=

∑
),(  ,

)(
)(π .           (1.20) 

 
Theorem 1.12 
The mapping (1.19) is a one-to-one mapping of the set of stationary policies onto the set of feasible 
solution of the dual program (1.18) with (1.20) as the inverse mapping; furthermore, the set of 

extreme feasible solution of (1.18) corresponds to the set )(DC  of deterministic policies. 

Proof 

First, we show that πx  is a feasible solution of (1.18). 

   

.  ,)}}({)}({{                                       

)}({})}({{                                       

)}({})}({{                                       

})}({{)}({)()}({

1

1

1

1
),(),(

SjPIPI

PIPI

apPI

PIapaxap

jj
T

iji i
T

iaa ijiji i
T

iai
T

ai ijijai iijij

∈=−⋅−=

−⋅−=

⋅−⋅−=

⋅−−=−

−

−

−

−

∑
∑∑

∑∑

βπαπαβ

παπαβ

παδπαβ

ππαβαδαδ π

 

Since 0)(  ,0)}({)}({
0

1 ≥≥=− ∑∞

=
− axPPI it

t ππαπα  for every ASai ×∈),( . 

Next, we prove the one-to-one correspondence. Let x  be a feasible solution of (1.18). 

Then, (1.20) yields i
x
iai xax ⋅= π)( , where Siaxx

a ii ∈=∑   ,)( . Therefore, we can write 

   
.  ,))}(({     

)}({)()}({
),(),(

∑
∑∑

∈−=

⋅⋅−=−=

i iijij

ai i
x
iaijijai iijijj

Sjxxp

xapaxap

παδ

παδαδβ
 

Hence, in vector notation,  

TTTTT xxxPIxeixPIx ))}(({))}(({  ..  ))},(({ 1 ππαβπαβ =−=−= − . 

Conversely,  

   ASai
ax

ax x
ia

a i

ix
ia ×∈==

∑
),(  ,

)(
)()( π

ππ π

π
π .         (1.21) 

Therefore, we have shown the one-to-one correspondence and that (1.20) is the inverse of (1.19). 

Finally, we show the correspondence between the extreme points of (1.18) and the set )(DC . 

Let )(DCf ∈∞ . Then, for every Si∈ , 
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⎩
⎨
⎧

≠
=−

=
−

).(,                             0
);(,})}({{

)(
1

ifa
ifaPI

ax i
T

f
i

παβ
 

Suppose fx  is not an extreme feasible solution. Then, there exist feasible solutions 1x  and 2x  

of (1.18) and a real number )1,0(∈λ  such that 21 xx ≠  and 21 )1( xxx f λλ −+= . 

Since Siifaax f
i ∈≠=   ),(,0)( , we have Siifaaxax ii ∈≠==   ),(  ,0)()( 21 . 

Hence, the N -vectors ))((11 ifxx i=  and ))((22 ifxx i=  are solutions of the linear system 

TT fPIx βα =− )}({ . However, this linear system has a unique solution 

1)}({ −−= fPIx TT αβ . This implies 121 )}({ −−== fPIxx T αβ , which contradicts 

21 xx ≠ . Hence, we have shown that fx  is an extreme solution. 

Conversely, let x  be an extreme feasible solution of program (1.18). Since (1.18) has N  
constraints, x  has at most N  positive components. On the other hand, Theorem 1.11, part (1), 
implies that in each state there is at least one positive component. Consequently, x  has in each 
state i  exactly one positive component, i.e. the sorresponding stationary policy is deterministic. 
 
Algorithm 1.1 Linear programming algorithm 

1. Take any vector β , where Sjj ∈>   ,0β . 

2. Use a linear programming algorithm to compute optimal solutions *v  and *x  of the dual  
pair of linear programs: 

    }),(  ),()}({|min{ ASaiarvapv i
j

jijij
j

jj ×∈≥−∑∑ αδβ  

and  

    
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×∈≥

∈=−∑
∑

ASaiax

Sjaxap
axar

i

j
ai

iijij

ai
ii

),(,0)(                          

  ,)()}({
)()(max ),(

),(

βαδ
. 

3. Take )(* DCf ∈∞  such that 0))(( *
* >ifxi  for every Si∈ . 

 *v  is the value-vector av  and ∞
*f  is an α -discounted optimal policy (STOP). 

 
Next, we discuss the elimination of suboptimal actions with test (1.14).  

Let )(ay f
i  be the dual slack variable. i.e.  

)()()}({)( arfvapay i
j

jijij
f

i −−=∑ ααδ . 

Since 
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   SiayvvaparxUx f
iajj jijiai ∈−=−+=− ∑   ),(min})()({max)( ααα  

and  

)(minmax)(minmin)( ayayxUxspan f
iai

f
iai −=− , 

then the test (1.14) becomes 

   )}(minmax)(min{min)1()(min)( 1 ayayayay f
iai

f
iai

f
iai

f
i −−−> −αα , 

which results in the following theorem. 
 
Theorem 1.13 

If )}(minmax)(min{min)1()(min)( 1 ayayayay f
iai

f
iai

f
iai

f
i −−−> −αα , then action 

)(iAai ∈  is suboptimal. 

 

1.4 Average Rewards 

1.4.1 Introduction 

When decisions are made frequently, so that the discount rate is very close to 1, or when 
performance criterion cannot easily be described in economic terms with discount factors, the 
decision maker may prefer to compare policies on the basis of their average expected rewards 
instead of their expected total discounted rewards. Consequently, the average rewards criterion 
occupies a cornerstone of queueing control theory especially when applied to control computer 
systems and communication networks. In such systems, the controller makes frequent decisions and 
usually assesses system performance on the basis of throughput rate or the average time a job 
remains in the system. This optimality criterion may also be appropriate for inventory systems with 
frequent restocking decisions. 
 
In this section we start with theorems about the stationary matrix, the fundamental matrix and the 
deviation matrix of a Markov chain, without proof. For the proof we refer to Kallenberg [9]. These 
matrices play an important role in the average reward criterion and also in more sensitive criteria. 
The most sensitive criterion is Blackwell optimality. The existence of a deterministic Blackwell 
optimal policy is shown in a separate section. Laurent series expansion relates the average reward to 
the total discounted reward. This is the subject of section 1.4.4. The optimality equation for average 
rewards is the subject of section 1.4.5 and section 1.4.6 deals with linear programming. 
 

1.4.2 The stationary, fundamental and deviation matrices 

The stationary matrix 



 24

Consider a policy )(DCf ∈∞ . In average reward MDPs, the limiting behavior of nfP )}({  as 

n  tends to infinity plays an important role. In general, n
n fP )}({lim ∞→  does not exist. Therefore, 

we consider other types of convergence. 

Let ∞
=0}{ nnb  be a sequence. This sequence is called Cesaro convergent with Cesaro limit b  if  

   ∑ −

=∞→
1

0

1lim n

k kn b
n

 exists and is equal to b . 

We denote this convergence by bb cnn =∞→lim  or bb cn → . The sequence is said to be Abel 

convergent with Abel limit b  if 

   ∑∞

=↑ −
01 )1(lim

n n
nbααα  exists and is equal to b . 

This convergence is denoted by bb ann =∞→lim  or bb an → . Ordinary convergence implies 

both Cesaro and Abel convergence, but the converse statement is not true. The next result is well 
known in the theory of the summability of series (e.g. Powell and Shah [11], p.9). 
 
Theorem 1.14 

If the sequence ∞
=0}{ nnb  is Cesaro convergent to b , then ∞

=0}{ nnb  is also Abel convergent to b . 

 
Remark 
The converse statement of Theorem 1.14 is not true. 
 
Theorem 1.15 
Let P  be any stochastic matrix, i.e. the matrix of a Markov chain. Then, 

(1) ∑ −

=∞→=
1

0

1lim:* n

k
k

n P
n

P  exists, i.e. *PP c
n → . 

(2) ***** PPPPPPP === . 
 
The matrix *P  is called the stationary matrix of the stochastic matrix P . 
 
Corollary 1.6 

0*)(lim
01 =−∑∞

=↑ n
nn PPαα . 

 

Let nP  be any stochastic matrix with ergodic classes mEEE ,...,, 21  and transient states T . By 

renumbering of the states the matrix can be written in the following so-called standard form: 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅⋅⋅
⋅⋅⋅⋅

⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅⋅

=

QAAA
P

P
P

P

m

m

21

2

1

000
0
0
0
000
00

,        (1.22) 

where the matrix kP  corresponds to the ergodic class mkEk ≤≤1, , and the matrix Q  to the 

transient states. It is well known (e.g. Doob[4] p. 180), that 0→nQ  for ∞→n . Since 

    nn QIQQIQI −=++− − ))(( 1L ,         (1.23) 

the right hand side of (1.23) tends to I , i.e. QI −  is nonsingular and ∑∞

=
− =−

0
1)(

n
nQQI . 

From the theory of Markov chain it is also well know (e.g. Chung[3] p.33) that the stationary matrix 

of an ergodic class has strictly positive, identical rows, say kπ  for kP , and that kπ  is the 

unique solution of the following system of linear equations 

    
⎪⎩

⎪
⎨
⎧

=

∈=−

∑
∑

∈

∈

.1
;  ,0)(

k

k

Ei i

kEi iijij

x
Ejxpδ

.         (1.24) 

Since (1.24) is a system of 1|| +kE  equations and || kE  variables, the first equation can be 

deleted for the computation of kπ . 

 
The following results are also well known (e.g. Feller[5]). 
 
Lemma 1.7 

Let k
ia  be the probability that, starting from state Ti∈ , the Markov chain will be absorbed in 

ergodic class mkEk ≤≤1  , . Then Tiak
i ∈  , , is the unique solution of the linear system 

kbxQI =− )( , where eAb k
k = . 

 
Theorem 1.16 
Let P  be any stochastic matrix written in the standard form (1.22). Then, 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅⋅⋅
⋅⋅⋅⋅

⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅⋅

=

0
000
0
0
0
000
00

**
2

*
1

*

*
2

*
1

*

m

m

AAA
P

P
P

P ,       (1.25) 

where *
kP  has identical rows kπ , which are the unique solution of (1.24) and 

mkeAQIA Tk
kk ≤≤−= − 1  ,}}{{}{ 1* π . 

 

Algorithm 1.2 Determination of the stationary matrix *P  

1. Determine the ergodic classes mEEE ,...,, 21  and the transient states T  and write P  in 

standard form (1.22). 

2. Determine for mk ,...,2,1= : 

a. the unique solution k
k
j Ej∈  ,π , of the linear system 

⎪⎩

⎪
⎨
⎧

=

==−

∑
∑

∈

∈

1
,...3,2  ,0)(

k

k

Ei i

Ei iijij

x
jxpδ

. 

b. the unique solution Tiak
i ∈  ,  of the linear system Tipxp

kEl ilTj jijij ∈=− ∑∑ ∈∈
  ,)(δ . 

3. 
⎪
⎩

⎪
⎨

⎧

=∈∈
=∈∈

=
else                                0

,...,2,1,EjT,i    
,...,2,1,,Ei         

k

k
* mkxa

mkEjx
p k

j
k
i

k
k
j

ij . 

 
The fundamental matrix and the deviation matrix 
 
Theorem 1.17 

Let P  be any stochastic matrix. Then *PPI +−  is nonsingular and 1*)(: −+−= PPIZ  

satisfies ∑ ∑=

−

=∞→ −=
n

i

i

k
k

n PP
n

Z
1

1

0
*)(1lim . 

 

The matrix 1*)(: −+−= PPIZ  is called the fundamental matrix of P . 

The deviation matrix D  is defined by *
1

1

0
** )(1lim: PPP

n
PZD n

i

i

k
k

n −−=−= ∑ ∑=

−

=∞→ . 

 



 27

Theorem 1.18 
The deviation matrix D  satisfies 

(1) ∑ ∑=

−

=∞→ −=
n

i

i

k
k

n PP
n

D
1

1

0
*)(1lim . 

(2) 0)()( **** =−+−=−+−== IPPIDIPDPIDPDP . 

 
The fundamental and the deviation matrix can be computed as follows. From (1.22) and (1.25) if 
follows that  

     

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−⋅⋅⋅⋅
⋅⋅⋅⋅

⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅⋅

=+−

QIDDD
C

C
C

PPI

m

m

21

2

1

*

000
0
0
0
000
00

, 

where *
kkk PPIC +−=  and mkAAD kkk ≤≤+−= 1,* . Hence, 

     

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−⋅⋅⋅⋅
⋅⋅⋅⋅

⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅⋅

=+−=

−

−

−

−

−

1
21

1

1
2

1
1

1*

)(
000
0
0
0
000
00

)(

QISSS
C

C
C

PPIZ

m

m

, 

Where mkCDQIS kkk ≤≤−−= −− 1  ,)( 11 . Then, the deviation matrix is simply *PZ − . 

 
Theorem 1.19 

(1) ∑∞

=↑ −=
0

*
1 )(lim

n
nn PPZ αα . 

(2) ∑∞

=↑ −=
0

*
1 )(lim

n
nn PPD αα . 

 
The following theorem gives the relation between average rewards, discounted rewards over an 
infinite horizon and total rewards over a finite horizon. 
 
Theorem 1.20 

Let ∞f  be a deterministic policy. Then, 
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(1) )()()( * frfPf =∞φ . 

(2) )()1(lim)( 1
∞

↑
∞ −= fvf α

α αφ . 

(3) )()()()()()()( frfDfPfrfDfTfv TT −+= ∞∞ φ . 

 
The regular case 
A Markov chain P  is called a regular Markov chain if the chain is irreducible and aperodic. In that 

case it can be shown that n
n PP ∞→= lim* . Since **)( PPPP nn −=−  for ,...2,1=n  we 

have 0)( * →− nPP  if ∞→n . Therefore, 

      ∑
∞

=

− −=+−=
0

*1* )()(:
n

nPPPPIZ . 

Because *PZD −=  and ∑∑ ∞

=

∞

=
−+=−+=

1
*

1
* )()(

n
n

n
n PPIPPIZ , we obtain 

      ∑
∞

=

−=
0

*)(
n

n PPD , 

i.e. D  represents the total deviation with respect to the stationary matrix. This explains the name 
deviation matrix. 
 

1.4.3 Blackwell optimality 

In this section we prove the existence of a deterministic policy ∞
0f  such that αα vfv =∞ )( 0  for 

all )1,[ 0αα ∈  for some 10 0 <≤α . Such a policy is called a Blackwell optimal policy. The next 

theorem shows that the interval )1,0[  can be partitioned in a finite number of subintervals such 

that in each subinterval there exists a deterministic policy which is optimal over the whole 
subinterval. 
 
Theorem 1.21 

There are numbers 101 ,,...,, −− αααα mm  and deterministic policies ∞∞
−

∞
01,...,, fff mm  such that 

(1) 1...0 101 =<<<<= −− αααα mm ; 

(2) αα vfv j =∞ )(  for all 0,...,1,  ),,[ 1 −=∈ − mmjjj ααα  

Proof  
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For any deterministic policy )(  , ∞∞ fvf α  is the unique solution of the linear system 

      )()}({ frxfPI =−α . 

By Cramer’s rule* )( ∞fvi
α  is a rational function in α  for each component i . 

Suppose that a deterministic Blackwell optimal policy does not exist. For any fixed α  a 

deterministic α -discounted optimal policy exists. This implies a series ,...}2,1  ,{ =kkα  and a 

series ,...}2,1  ,{ =kfk  such that 

...21 ≤≤αα  with 1lim =∞→ kk α  and )()( 1
∞
−

∞ >= kk fvfvv ααα  for ,...3,2  , == kkαα  

Since there are only a finite number of deterministic policies, there must be a couple of policies, say 

∞f  and ∞g , such that for some nondecreasing subsequence ,...2,1  , =n
nkα  with 

1lim =→∞ nkn α  

     
⎪⎩

⎪
⎨
⎧

=<
=>

∞∞

∞∞

,...,for   )()(
,...,for   )()(

42

31

kk

kk

gvfv
gvfv

ααα
ααα

αα

αα

       (1.26) 

Let )()()( ∞∞ −= gvfvh ααα , then )(αih  is a continuous rational function in α  on )1,0[  

for each Si∈ . From (1.26) it follows that )(αih  has an infinite number of zeros, which is in 

contradiction with the rationality of )(αih . Hence, there exists a deterministic Blackwell optimal 

policy, i.e. a policy ∞
0f  such that αα vfv =∞ )( 0  for all )1,[ 0αα ∈  for some 10 0 <≤α . 

With similar arguments it can be shown that for each fixed )1,0[∈α  there is a lower bound 

αα <)(L  and a deterministic policy ∞
)(αLf  such that α

α
α vfv L =∞ )( )(  for all )),(( ααα L∈ . 

Similarly, for each fixed )1,0[∈α  there is an upper bound αα >)(U  and a deterministic policy 

∞
)(αUf  such that α

α
α vfv U =∞ )( )(  for all ))(,( ααα U∈ . 

The open intervals )}1,0(|))(),({(   )),0(,1( ∈− ααα ULU  and )2),1((L  are a covering of the 

compact set ]1,0[ . By the Heine-Borel-Lebesque covering theorem, the interval ]1,0[  is covered 

by a finite number of intervals, say }1,...,2,1  )),(),({( )),0(,1( −−=− mmjULU jj αα  and 

                                                        
* see e.g. J.B. Fraleigh and R.A. Beauregard: Linear Algebra, Addison Wesley, 1987, p. 214. 
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)2),1((L . We may assume that  

     )()1(),0()L(  ,1...0: 11-m101 αααααα ULUmm <<=<<<<= −−  

and 

     2,...,2,1  ),()()()( 11 −−=<<< −− mmjUULL jjjj αααα . 

Since the rational function α
α

α
α

α vfvfv
jj UL == ∞∞

−
)()( )()( 1

 for all ))(),(( 1 jj UL ααα −∈  we 

have 

     mjfvfv
jj UL ,...,1,0  ),()( )()( 1

== ∞∞
− α

α
α

α . 

Let mjff
jUj ,...,1,0  ,)( == α . Then,  

αα vfv j =∞ )(  for all mjjj ,...,1,0  ),,( 1 =∈ −ααα . 

Since )( ∞fvα  is continuous in α , also  

αα vfv j =∞ )(  for mjj ,...,1,0  , ==αα . 

 

1.4.4 The Laurent series expansion 

Theorem 1.20 part (2) shows a relation between discounted and average rewards when the discount 

factor tends to 1. This relation is based on the Laurent expansion of )( ∞fvα  close to 1=α  as 

expressed in the next theorem. 
 
Theorem 1.22 

Let ,...0,1  ),( −=kfuk  be  defined by )()()( *1 frfPfu =− , )()()(0 frfDfu =  and 

0  ),()()(1 ≥−=+ kfufDfu kk . Then, ∑∞

−=
∞ =

1
)()(

k
kk fufv ρα α  for 1)(0 <<αα f , 

where 
α
αρ −

=
1

 and 
||)(||1

||)(||)(0 fD
fDf

+
=α . 

Proof 

Let ∑∑ ∞

=

∞
∞

−=
+

−
==

01
)(1

1
)()(1)(

k
kk

k
kk fuffufx ρ

αα
φρ

α
 . 

Since )()}(){()( frfDfDfu kk −=  for 0≥k , the series ∑∞

=0
)(

k
kk fuρ  is well defined if 
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1||)(|| <fDρ , i.e. 
||)(||1

||)(||
fD

fD
+

≥α . 

Since )( ∞fvα  is the unique solution of the linear system )()}({ frxfPI =−α , it is sufficient 

to show that )()()}({ frfxfPI =−α , i.e. 0)()}({)(:)( =−−= fxfPIfrfy α . 

∑∞

=
−−−

−
−−=

0

*

)()}({)()}({
1

)()()}({)()(
k

k frfDfDfPIfrfPfPIfrfy ρ
α

α
α

α  

.0         

)()}({)()()()}({)()()}({         

)()}({)()()()}({)()}({         

)()}({)()}({)}({)()}({         

)()}({)(-1-                                                                                    

)()}({)()}({)()}({         

)()}({)(})1())(({)()()(         

1
*

1
*

1
*

0
*

0
1

0
**

0

0
*

0
*

=

−++−−−−=

−++−−−=

−+−−−−=

−

−−−−=

−−+−−−=

∑∑
∑∑
∑∑

∑

∑

∑

∞

=

∞

=

∞

=

∞

=

∞

=
+∞

=

∞

=

∞

=

∞

=

k
k

k
k

k
k

k
k

k
k

k
k

k
k

k
k

k
k

frfDfrfPfrfDfrfrfPI

frfDfrfPfrfDfrfPI

frfDfrfDfPIfrfPI

frfDfD

frfDfDfPIfrfPI

frfDfDIfPIfrfPfr

ρρ

ρρ

ρρ

ρ
α
α

ρ

ρ
α

αα

 
Corollary 1.7 

)()(
1

)()( 0 αε
α

φα ++
−

=
∞

∞ fuffv , where )(αε  satisfies 0)(lim 1 =↑ αεα . 

Proof 

From Theorem 1.22 if follows that ∑∞

= +
∞ −

++
−

=
1 1

0

)()1()(
1

)()(
k

k
k

k

fu
fuffv

α
α

αα
φα . 

Since L+−+−+=
−−

= 2)1()1(1
)1(1

11 αα
αα

, we may write 

)()(
1

)()( 0 αε
α

φα ++
−

=
∞

∞ fuffv ,  

where 0)(lim 1 =↑ αεα . 
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1.4.5 The optimality equation 

In the discounted case, the value vector is the unique solution of an optimality equation. For the 
average reward criterion a similar result holds, but the equation is more complicated. 
 
Theorem 1.23 
Consider the system 

     
⎪⎩

⎪
⎨
⎧

∈+=+

∈=

∑
∑

∈

∈

Siyaparyx
Sixapx

j jijixiAaii

j jijiAai

},)()({max
,)(max

),(

)(
     (1.27) 

where SixapxiAaxiA
j jiji ∈=∈= ∑   },)(|)({),( . 

This system has the following properties: 

(1) )(  ),( 0
0

0
1 fuyfux == − , where ∞

0f  is a Blackwell optimal policy, satisfies (1.27). 

(2) If ),( yx  is a solution of (1.27), then φ=x , the value vector. 

Proof 

Since ∞
0f  is a Blackwell optimal policy, for α  sufficiently close to 1, say )1,[ 0αα ∈ , one can 

write  

ASaivaparvaparvfv
j jijij jijiiAaii ×∈+≥+== ∑∑∈

∞ ),(  ,)()(})()({max)( )(0
αααα αα . 

Combining this result with Corollary 1.7 gives for all )1,[ 0αα ∈ : 

,),(  )},()(
1

)(
{)()1(                                                           

)}()(
1

)(
{)()(                                 

),(  )},()(
1

)(
{)()}1(1{)()()(

1
)(

0
00

0
00

0
00

0
00

ASaifu
f

ap

fu
f

apar

ASaifu
f

aparfuf

jj
j

j ij

jj
j

j iji

jj
j

j ijiii
i

×∈++
−

−

+++
−

+=

×∈++
−

−−+≥++
−

∞

∞

∞∞

∑

∑

∑

αε
α

φ
α

αε
α

φ

αε
α

φ
ααε

α
φ

i.e.  

.0)()}()()()()()({)}()()({
1

1
00

0
0

0
00 ≥+−−−+−

−
∞∞∞ ∑∑∑ αεφφφ

α
fapfuaparfufapf jj ijjj ijiijj iji

Since this result holds for all )1,[ 0αα ∈ , the term multiplied by 
α−1

1
 has to be nonnegative, i.e. 

    )()()( 00
∞∞ ∑≥ fapf jj iji φφ  for all Si∈  and )(iAa∈ .     (1.28) 

Furthermore, when )()()( 00
∞∞ ∑= fapf jj iji φφ , the next term has to be nonnegative, i.e. 

)()()()()()()()()()( 00
0

00
0

0
0 ∞∞ −−=−−≥ ∑∑∑ ffuaparfapfuaparfu ijj ijijj ijjj ijii φφ . 

(1.29) 
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For Siifa ∈=   ),(0 , the inequalities in (1.28) and (1.29) are equalities, because: 

   )()()()()()()()( 0000
*

000
*

0
∞∞ === ffPfrfPfPfrfPfi φφ  

and  

).()()()()()}()()({)()()( 0
0

0000000
*

000
0 fufPffrfrfDfPfPIfrfDfu +−=+−== ∞φ

By these results, part (1) is shown. For part (2), let ),( yx  be a solution of (1.27). Then, for any 

xfPxDCf )(),( ≥∈∞ , implying that xfPx n )(≥  for all Nn∈ , and consequently, 

xfPx )(*≥ . 

Furthermore, since )}(){(0 * fPxfP −=  and all elements of )(* fP  and )( fPx −  and 

nonnegative, 0)}(){(* =− jij fPxfp  for all Sji ∈, , implying that 0)}(){(* =− iii fPxfp  

for all Si∈ . 

For an ergodic state 0)(, * >fpi ii , and consequently 0)( =−∑ jj iji xapx , i.e. ),()( xiAif ∈ , 

and therefore, by (1.27) ∑+≥+
j jijiii yfpfryx )()( . 

The columns of )(* fP  corresponding to the transient states are zero, implying that 

    yfPfyfPfrfPyxfP )()(})()(){())(( *** +=+≥+ ∞φ ,  

i.e. 

     xxfPf ≤≤∞ )()( *φ .           (1.30) 

On the other hand, any solution of system (1.27) gives a policy ∞g  which satisfies xgPx )(=  

and ygPgryx )()( +=+ . Hence, xgPx )(*=  and therefore, 

   xygPygPxygPyxgPgfgPg =−+=−+==∞ })(){(})(){()()()( ***φ . (1.31) 

From (1.30) and (1.31) if follows that Sixapx ij jijiAai ∈== ∑∈   ,)(max )( φ . 

 
Remarks 

1. Since the x -vector in (1.27) is unique, namely φ=x , the set ),( xiA  is also unique for all 

Si∈ . 

2. If policy ∞f  satisfies φφ )( fP=  and yfPfry )()( +=+φ  for some vector y , then 
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the policy is average optimal, namely  

   )(})()(){()( ** ∞=−+== fyyfPfrfPfP φφφ . 

3. The proof suggests that a Blackwell optimal policy ∞
0f  is also average optimal, i.e. 

)()( 0 Rf φφ ≥∞  for every policy R . This result is shown below (Corollary 1.8). 

4. If φ  has identical components (e.g. if there is a unichain average optimal policy), then the first 

equation of (1.27) is superfluous and (1.27) can be replaced by the single optimality equation  

Siyaparyx
j jijiiAai ∈+=+ ∑∈   },)()({max )( .      (1.32) 

 
Theorem 1.24 

)()()1(lim 1 RRv φα α
α ≥−↑  for all policies R . 

Proof 

For )(DCf ∈∞  we have shown in Theorem 1.20 part (2) that  

  )()1(lim)( 1
∞

↑
∞ −= fvf α

α αφ . 

For an arbitrary policy R  the deviation is as follows. 

Let Si∈  be any starting state and let ,...2,1  ),(},{
),( , =⋅===∑ taraYjXPx jaj ttRit  

Since the sequence ,..}.2,1|{ =txt  is bounded, we may write 

  ∑ ∑∑∑ ∞

=
−

=

∞

=
−∞

=
−− ⋅=⋅=−

1
1

11
1

1
11 }{}{}{)()1(

t
tt

s stt
t

t
t

i xxRv αααα α , 

∑∞

=
−− =−

1
12)1(

t
ttαα  for )1,0(∈α , and therefore, )()1(}{)( 2

1
1 RtR it

t
i φααφ ⋅−⋅= ∑∞

=
−  

Hence, ∑ ∑∞

=
−

=
⋅−⋅−=−−

1
1

1
2 )}(1{)1()()()1(

t
t

i
t

s sii tRx
t

RRv αφαφα α . 

Choose any arbitrary 0>ε . Since ∑=∞→=
T

t tTi x
T

R
1

1inflim)(φ , there exists a εT  such that 

εφ +< ∑ =

T

t ti x
T

R
1

1)(  for all εTT > . This gives 

.)1()1()}(1{)1(
1

12121
1

2 εααεααεαφα
εε

−=−−≥−−>−− ∑∑∑ ∑ ∞

=
−

>
−

>
−

= t
t

Tt
t

Tt
t

i
t

s s tttRx
t

We also have  

εαφααφα
εεε

−>−−≥−− ∑∑∑ ∑ ≤
−

=≤≤≤
−

= Tt
t

i
t

s xTtTt
t

i
t

s s tRx
t

tRx
t

1
11

21
1

2 )}(1{min)1()}(1{)1(

for α  sufficiently close to 1. Hence, εφα α 2)()()1( −≥−− RRv ii  for α  sufficiently close to 

1, i.e. )()()1(lim 1 RRv φα α
α ≥−↑ . 
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Corollary 1.8 

A Blackwell optimal policy ∞
0f  is also average optimal and consequently there exists a 

deterministic optimal policy. 
Proof 

Let ∞
0f  be a Blackwell optimal policy and R  an arbitrary policy. Then, 

)()()1(lim)1(lim)()1(lim)( 11010 RRvvfvf φαααφ α
α

α
α

α
α ≥−≥−=−= ↑↑

∞
↑

∞ . 

 

1.4.6 Linear programming 

To apply linear programming in order to obtain the value vector and an average optimal policy we 
need a property for which the value vector is an extreme element. Such property, called 

superharmonicity, can be derived from the optimality equation. A vector NRv∈  is 

average-superharmonic if there exists a vector NRu∈  such that the pair ),( vu  satisfies the 

following sustem of inequalities 

   
⎪⎩

⎪
⎨
⎧

×∈+≥+

×∈≥

∑
∑

ASaiuaparuv
ASaivapv

j jijiii

j jiji

),(every for          )()(
),(every for                     )(      

.   (1.33) 

 
Theorem 1.25 

The value vector φ  is the smallest average-superharmonic vector. 

Proof 

Let ∞
0f  be a Blackwell optimal policy. From Theorem 1.23 it follows that 

   
⎪⎩

⎪
⎨
⎧

∈∈+≥+

∈∈≥

∑
∑

),(,every for   )()()()(
)(,every for                        )(      

0
0

0
0 φφ

φφ
iAaSifuaparfu

iAaSiap

j jijiii

j jiji
. (1.34) 

where SiapiAaiA
j jiji ∈=∈= ∑   },)(|)((),( φφφ . 

Let SifuaparfuiAaiA
j jijiii ∈+<+∈= ∑   },)()()()(|)(()( 0

0
0

0* φ . 

Define  

∑−=
j jijii apas φφ )()( , ASaifuaparfuat

j jijiiii ×∈−−+= ∑ ),(  ,)()()()()( 0
0

0
0φ , 
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⎪
⎩

⎪
⎨

⎧

=

≠∈∈
=

∈

∈

U

U

Si

Si
i

i

iA

iASiiAa
at
as

M
φ

φ

)( if                                            0

)( if      }),(|
)(
)(min{

*

**

 and φ⋅−= Mfuu )( 0
0 . 

For ),( φiAa∈ , we have 

 ∑= j jiji ap φφ )(  

and 
 

.)()(})(){()()( 0
0

0
0 ∑∑ +=⋅−+≥⋅−+=+

j jijij jjijiiiiii uaparMfuaparMfuu φφφφ

For )(* iAa∈ , we have 

 ∑> j jiji ap φφ )(  

and  

.)()()()()()()(t             

})()({)(

0
0

i

0
0

∑∑
∑

+≥⋅−++=

+⋅−+=+

j jijiij jiji

j jijiiiii

uaparasMfuapara

apasMfuu φφφ
 

For )}(),({ * iAiAaa ∪∈∉ φ , we have 

∑> j jiji ap φφ )(  

and 

 
.)()()()()(             

})(){()()(t)( 0
0

i0
0

∑∑
∑

+≥++=

⋅−++≥⋅−+=+

j jijij jijii

jj jijiiiiii

uaparuaparat

MfuaparaMfuu φφφφ
 

Hence, the value vector φ  is average-superharmonic. 

Suppose that y  is also average-superharmonic with corresponding vector x . Then, 

yfPy )( 0≥ , implying that 

  φφ ===−+≥≥ ∞ )()()(}))(()(){()( 000
*

000
*

0
* ffrfPxIfPfrfPyfPy ,  

i.e. φ  is the smallest average-superharmonic vector. 

 
Corollary 1.9 
From the proof of Theorem 1.25 it follows that there exists a solution of the modified optimality 
equation 
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⎪⎩

⎪
⎨
⎧

∈+=+

∈=

∑
∑

∈

∈

Siyaparyx
Sixapx

j jijiiAaii

j jijiAai

  },)()({max
  ,)(max

)(

)(
     (1.35) 

with φ=x  as unique x -vector in this solution. 

 
Corollary 1.10 

The value vector φ  is the unique v -part of an optimal solution ),( vu  of the linear program 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×∈≥−+

×∈≥−

∑
∑∑ ASaiuapv

ASaivap
v

j jijiji

j jijij

j
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where Sjj ∈> ,0β , is arbitrarily chosen. 

The dual linear program of (1.36) is 
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Theorem 1.26 

Let ),( yx  be an extreme optimal solution of (1.37). Then, any )(0 DCf ∈∞ , where 

0))(( >ifxi  if 0)( >∑a i ax  and 0))(( >ifyi  if 0)( =∑a i ax  is an average optimal 

policy. 
Proof 

First, notice that ∞f  is well defined, because for every Sj∈ , 
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β , 

Let }0)(|{ >∈= ∑a ix axSiS . Since xi Siifx ∈>   ,0))((  and Siifyi ∉>   ,0))(( , it 

follows from the complementary slackness property of linear programming that 

  xij jijiji Siifruifp ∈=−+∑   )),(())}(({δφ       (1.38) 

and 

  xj jijij Siifp ∉=−∑   ,0))}(({ φδ .         (1.39) 

The primal program (1.36) implies ASaiap
j jijij ×∈≥−∑ ),(  ,0)}({ φδ . Suppose that 

0))}(({ >−∑ j jkjkj kfp φδ  for some xSk∈ . Since 0))(( >kfxk , this implies that 

0))(())}(({ >⋅−∑ kfxkfp kj jkjkj φδ .  
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Furthermore, ASaiaxap ij jijij ×∈≥⋅−∑ ),(  ,0)()}({ φδ . 

Hence, 0)()}({
),(

>⋅−∑ ∑ axap iai j jijij φδ . 

On the other hand, this result is contradictory to the constraints of the dual program (1.37) from 
which follows that 
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This contradiction implies that 

  xj jijij Siifp ∈=−∑   ,0))}(({ φδ .         (1.40) 

From (1.39) and (1.40) it follows that 

  0))}(({ =−∑ j jijij ifp φδ .          (1.41) 

We now show that xS  is closed under )( fP , i.e. xxij SjSiifp ∉∈= ,  ,0))((  Suppose that 

0))(( >kfpkl  for some xx SlSk ∉∈   , . From the constraints of dual program (1.37) it follows 

that 
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implying a contradiction. 

Next, we show that the states of xSS \  are transient in the Markov chain induced by )( fP . 

Suppose that xSS \  has an ergodic state. Since xS  is closed, the set xSS \  contains an ergodic 

class, say },...,,{ 21 mjjjJ = . Since ),( yx  is an extreme solution and Jjjfy j ∈>   ,0))(( , 

the corresponding columns in (1.37) are linearly independent. Because these columns have zeroes in 
the first N  rows, the second parts of these vectors are also independent vectors. Since for 

components Jkjfp ikjkj ii
∈−   )),((δ , are also linear independent. 

However, 
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which contradicts the independency of mbbb ,...,, 21 . 

We finish the proof as follows. From (1.40) it follows that φφ )( fP= , and consequently we have 

φφ )(* fP= . Since that states of xSS \  are transient in the Markov chain induced by ),( fP  

the columns of )(* fP  corresponding to xSS \  are zero-vectors. Hence, by (1.38), 

  φφφφ ==−+==∞ )(})}({){()()()( *** fPufPIfPfrfPf , 
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i.e. ∞f  is an average optimal policy. 

 
Algorithm 1.3 Linear programming algorithm 

1. Take any vector β ,  where Sjj ∈>   ,0β . 

2. Use linear programming algorithm to compute solution ),( vu  and ),( yx  of the dual pair of 

linear programs: 
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4. Take )(DCf ∈∞  such that 0))(( >ifxi  if 0)( >∑a i ax  and 0))(( >ifyi  if 

0)( =∑a i ax . Then, ∞f  is an average optimal policy and φ  is the value vector. 

 
In the average reward case there is in general no one-to-one correspondence between the feasible 
solution of the dual program (1.37) and the set of stationary policies. The natural formula for 

mapping feasible solution ),( yx  to the set of stationary policies is: 
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Conversely, for a stationary policy ∞π , we define a feasible solution ),( ππ yx  of the dual 

program by 
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where jγ  is 0  on a transient class and constant on a recurrent class. 

If )(DCf ∈∞ , then the corresponding solution ))(),(( fyfx  is an extreme solution; the 

reverse statement is not true. 
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Chapter 2 Interior point method 

2.1 Self-concordant functions 

2.1.1 Introduction 

In this section, we introduce the notation of a self-concordant function and we derive some 

properties of such functions. We consider a strictly convex function RD →:φ , where the 

domain D  is an open convex subset of nR . Our first aim is to find the minimal value φ  on its 

domain D  (if it exists). 

The classical convergence analysis of Newton’s method for minimizing φ  has some major 

shortcomings. The first shortcoming is that the analysis uses quantities that are not a priori known,  

for example uniform lower and upper bounds for the eigenvalues of the Hessian matrix of φ  on 

D . The second shortcoming is that while Newton’s method is affine invariant, these quantities are 
not affine invariant. As a result, if we change coordinates by an affine transformation (i.e. replace 

x  by 0, ≠+ abax ) this has in essence no effect on the behavior of Newton’s method but these 

quantities all change, and as a result also the iteration bound changes. 
A simple and elegant way to avoid these shortcomings was proposed by Nesterov and Nemirovski 

[10]. They posed an affine invariant condition on the function φ , named self-concordance. The 

well known logarithmic barrier functions, that play an important role in interior-point methods for 
linear and convex optimization, are self-concordant (abbreviated below as SC). The analysis of 
Newton’s method for SC functions does not depend on any unknown constants. As a consequence, 
the iteration bound resulting from the analysis is invariant under (affine) changes of coordinates. 
The aim of this section to provide a brief introduction to the notion of self-concordance, and to 
recall some results on the behavior of Newton’s method when minimizing a SC function. 
Having dealt with this we will consider the problem of minimizing a linear function over the 
closure of D , while assuming that a self-concordant function on D  is given. 
 

2.1.2 Epigraphs and closed convex function 

In this section and further on, φ  always denotes a function whose domain D  is an open subset 
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of nR . 

Definition 2.1 

The epigraph of φ  is the set })(,:),{(: txDxtxapi ≤∈= φφ . 

 
Definition 2.2 

A function is called closed if its epigraph is closed. If, moreover, φ  is convex then φ  is called a 

closed convex function. 
 
Lemma 2.1 

Let RD →:φ  be closed convex function and let x  belong to the boundary of D . If a 

sequence ∞
=0}{ kkx  in the domain converges to x  then ∞→)( kxφ . 

Proof 

Consider the sequence ∞
=0)}({ kkxφ . Assume that it is bounded above. Then it has a limit point φ . 

Of course, we can think that this is the unique limit point of the sequence. Therefore, 

  ),())(,(: φφ xxxz kkk →= . 

Note that kz  belongs to the epigraph of φ . Since φ  is a closed function, then also ),( φx  

belongs to the epigraph. But this is a contradiction since x  does not belong to the domain of φ . 

 

We conclude that if the function φ  is closed convex, then it has the property that )(xφ  

approaches infinity when x  approaches the boundary of the domain D . This is also expressed 

by saying that φ  is a barrier function on D . 

2.1.3 Definition of the self-concordance property 

We want to minimize RD →:φ  by using Newton’s method. Recall that Newton’s method is 

exact if φ  is a quadratic function. As we will see the self-concordance property guarantees good 

behavior of Newton’s method. 

To start with, we consider the case where φ  is a univariate function. So we assume for the 

moment that 1=n , and that the domain D  of the function RD →:φ  is just an open interval 
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in R . The third order Taylor polynomial of φ  around Dx∈  is given by 
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The self-concordance property bounds the third order term in terms of the second order term, by 
requiring that  
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is bounded above by some uniform constant. 
 
Definition 2.3 

Let 0≥κ . The univariate function φ  is called concordant-self-κ  if 

  Dxxx ∈∀′′≤′′′ ,))((2|)(| 2
3

φκφ .          (2.1) 

 

Note that this definition assume that )(xφ ′′  is nonnegative, whence φ  is convex, and moreover 

that φ  is three times differentiable. 

It is easy to verify that the property (2.1) is affine invariant. Because, let φ  be 

concordant-self-κ  and let φ  be defined by )()( bayy +=φφ , where 0≠a . Then one 

has 

  )()( xay φφ ′=′ , )()( 2 xay φφ ′′=′′ , )()( 3 xay φφ ′′′=′′′ , 

where bayx += , hence if follows, due to the exponent 
2
3

 in the definition, that φ  is 

concordant-self-κ  as well. 

Now suppose that 1>n , so φ  is a multivariate function. Then φ  is called a 

concordant-self-κ  function if its restriction to an arbitrary line in its domain is 
concordant-self-κ . In other words, we have the following definition. 

 
Definition 2.4 

Let 0≥κ . The function φ  is called concordant-self-κ  if and only if 

)(:)( hx αφαϕ +=  is concordant-self-κ at 0=α  for all Dx∈  and for all nRh∈ , 

i.e.   nRhDx ∈∀∈∀′′≤′′′ ,,)0(2|)0(| 2
3

ϕκϕ .       (2.2) 
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Here the domain of )(αϕ  is defined in the natural way: given x  and h  it consists of all α  

such that Dhx ∈+α . Note that since D  is an open convex subset of nR , the domain of 

)(αϕ  is an open interval in R . 

 

2.1.4 Equivalent formulations of the self-concordance 

property 

We assume that RD →:φ , where D  is an open convex subset of nR . To verify if φ  is SC 

we need to compute the derivatives of )()( hx αφαϕ +=  at 0=α . We have 
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It will be convenient to use sort-hand notations for the above right-hand side expressions. We 

denote these expressions respectively as ],)[(],)[( 2 hhxhx φφ ∇∇  and ],,)[(3 hhhxφ∇  

respectively. Thus we may write 
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As consequence, we have the following lemma, which is immediate from Definition 2.4. 
 
Lemma 2.2 

Let φ  be three times continuously differentiable and 0≥κ . Then φ  is 

concordant-self-κ  if and only if 

  Dxhhxhhhx ∈∀∇≤∇ ,]),)[((2|],,)[(| 2
323 φκφ .      (2.3) 

 

Let φ  be any three times differentiable convex function with open domain. We will say that φ  
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is self-concordant, without specifying κ , if φ  is concordant-self-κ  for some 0≥κ . 

Obviously, this will be the case if and only if the quotient 
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            (2.4) 

is bounded above by 24κ  when x  runs through the domain of φ  and h  through all vectors 

in nR . Note that the condition for econcordanc-self-κ  is homogeneous in h : if it holds 

for some h  then it holds for any hλ , with R∈λ . 
The econcordanc-self-κ  condition bounds the third order term in terms of the second order 
term in the Taylor expansion. Hence, if it is satisfied, it makes that the second order Taylor 

expansion locally provides a good quadratic approximation of )(xφ . The latter property makes 

that Newton’s method behaves well on self-concordant functions. This will be shown later on. 
 
In the sequel we use the following notations: 

  Dxxxg ∈∀∇= ),(:)( φ  

and 

  DxxxH ∈∀∇= ),(:)( 2φ . 

As we will see in the next section, under a very weak assumption the matrix )(xH  is always 

positive definite. As a consequence it defines a norm, according to 

  nT RvvxHvv ∈= ,)(||:|| . 

Of course, this norm depends on Dx∈ . We call it the local Hessian norm of v  at Dx∈ , and 

it will be denoted as )(|||| xHv , or simply as xv |||| . Using this notation, the inequality (2.3) can 

be written as 

  33 ||||2|],,)[(| xhhhhx κφ ≤∇ . 

We conclude this section with the following characterization of the self-concordance property. 
 
Lemma 2.3 

A three time differentiable closed convex function φ  with open domain D  is 

econcordanc-self-κ  if and only if 

  xxx hhhhhhx ||||||||||||2|],,)[(| 321321
3 κφ ≤∇  

holds for any Dx∈  and all nRhhh ∈321 ,, . 
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Proof 
This statement is nothing but a general property of three-linear forms. For the proof we refer to 
Lemma A.2 in the appendix. 
 

2.1.5 Positive definiteness of the Hessian matrix 

In this section we deal with an interesting, and important, consequence of Lemma 2.1. Before 

dealing with it, we introduce a useful function. Let Dx∈  and nRd ∈≠0  be such that 

Ddx ∈+ . Fixing v , we define for 10 ≤≤α , 

  2||||)(:)( dx
T vvdxHvq ααα +=+= .       (2.5) 

The )(αq  is nonnegative and continuous differentiable. The derivative to α  is given by 

  ],,)[(]))[((:)( 33 vvddxvddxvq T αφαφα +∇=+∇=′ . 

Using Lemma 2.3 we obtain 

  )(||||2||||||||2|],,)[(||)(| 23 ακκαφα ααα qdvdvvddxq dxdxdx +++ =≤+∇=′ . 

If 0)( >αq  this implies 
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In the special case where dv =  we have 2
1

)(|||| αα qd dx =+ , and hence we then have 
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If 0)( >αq  this implies 
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Theorem 2.1 

Let the closed convex function φ  with open domain D  be concordant-self-κ . If D  

does not contain a straight line then the Henssian )(2 xφ∇  is positive definite at any Dx∈ . 

Proof 

Suppose that )(xH  is not positive definite for some Dx∈ . Then there exists a nonzero vector 
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nRd ∈  such that 0)( =dxHd T  or, equivalent, 0|||| =xd . Let 2||||:)( dxdq αα += , just as in 

(2.5) with dv = . Then 0)0( =q  and )(αq  is nonnegative and continuously differentiable. 

Now (2.7) gives 2
3

)(2)( ακα qq ≤′ . We claim that this implies 0)( =αq  for every 0≥α  

such that Ddx ∈+α . This is a consequence of the following claim. 
 
Claim 

Let ),0[ aI =  for some 0>a  and +→ RIq : . If 0)0( =q  and 2
3

)(2)( ακα qq ≤′  for 

every I∈α  then 0)( =αq  for every I∈α . 

Proof 

Assume 0)( 1 >αq  for some I∈1α , Let 

  ]},(,0)(:min{: 10 αξααξα ∈>= q . 

Since q  is continuous and 0)0( =q , we have 100 αα <≤  and 0)( 0 =αq . Now define 
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Then, since ],( 101 ααα ∈− t , the definition of 0α  implies that )(th  is well defined and 

positive. Note that )(th  goes to ∞  if t  approaches 01 αα − . On the other hand we have 
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and hence thth κ+≤ )0()(  for all ),0[ 01 αα −∈t . Since th κ+)0(  remains bounded when 

t approaches 01 αα −  we have a contradiction. Hence the claim is proved. 

 

Thus we have shown that 0)( =αq  for every 0≥α  such that Ddx ∈+α . This implies that 

)( dx αφ +  is linear in α , because we have for some αββ ≤≤0, , 

  )()()(
2
1)()()( 2 xgdxqxgdxdx TT αφβααφαφ +=++=+ . 

Since D  does not contain a straight line there exists an α  such that dx α+  belongs to the 
boundary of D . We may assume that 0≥α  (else replace d  by d− ). Since 

)()()(lim xgdxdx Tαφαφαα +=+↑ , which is finite, this gives conflict with the barrier 



 47

property of φ  on D . Thus the proof is completed. 

 
Corollary 2.1 

If φ  is closed and self-concordant, and D  does not contain a line, the )(xφ  has a unique 

minimizer. 
 
From now on it will be assumed that the hypothesis of Theorem 2.1 if satisfied. So the domain D  
does not contain a straight line. As a consequence we have 

  00||:||, =⇔=∈∀∈∀ hhRhDx x
n . 

 

2.1.6 Some basic inequalities 

From now on, we assume that φ  is strictly convex. By Theorem 2.1 this is the case if φ  is 

closed and self-concordant, and D  does not contain a line. The Newton step at x  is given by 

  )()( 1 xgxHx −−=Δ .            (2.9) 

Suppose that *x  is a minimizer of )(xφ  on D . A basic equation is how we can measure the 

‘distance’ from x  to *x ? One obvious measure for the distance in the Euclidean norm 

||*|| xx − . But *x  is unknown! So this measure cannot be computed without knowing the 

minimizer. Therefore we might use the Euclidean norm of ||||.., xeix ΔΔ , which vanishes only if 

*xx = . However, instead of the Euclidean norm we use the local Hessian norm and measure the 
‘distance’ from x  to *x  by the quantity 

  )()()()(||||:)( 1 xgxHxgxxHxxx TT
x

−=ΔΔ=Δ=λ  .    (2.10) 

 
Lemma 2.4 

Let Dx∈  and +∈Rα  and nRd ∈  such that Ddx ∈+α . Then 
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The left inequality holds for all α  such that 0||||1 >+ xdακ  and the right for all α  such 

that 0||||1 >− xdακ . 

Proof 
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Let 2||||:)( dxdq αα +=  just as in (2.5) with dv = . Then, from (2.8). 
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Consequently, if Ddx ∈+α  then 
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Hence, if 0||||1 >+ xdακ  we obtain 
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and if 0||||1 >− xdακ  we obtain 
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proving the lemma. 
 
Lemma 2.5 

Let x  and d  be such that DdxDx ∈+∈ ,  and 1|||| <xdκ . Then we have, for any 

nonzero nRv∈ , 
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Proof 

Let 2||||:)( dxdq αα += , just as in (2.5). Then 2||||)0( xvq =  and 2||||)1( dxvq += . Hence we may 

write 

  α
α
α d

d
qdqq

q
q

v
v

x

dx ))(log(
2
1))0(log)1((log

2
1

)0(
)1(log

2
1

||||
||||log

1 

0 ∫=−==+ . 



 49

By (2.6) we have dxd
d
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Since the log function is monotonically increasing, we obtain from the above inequalities that 
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This proves the lemma. 
 
Lemma 2.6 

Let Dx∈  and mRd ∈ . If 
κ
1|||| <xd  then Ddx ∈+ . 

Proof  

Since 
κ
1|||| <xd , we have from Lemma 2.5 that )( dxH α+  is bounded for all 10 ≤≤α , 

and thus )( dx αφ +  is bounded. On the other hand, φ  takes infinite values on the boundary of 

the feasible set, by Lemma 2.1. As a consequence we must have Ddx ∈+ . 
 

2.1.7 Quadratic convergence of Newton’s method 

Let xxx Δ+=+ :  denote the iterate after the Newton step at x . Recall that the Newton step at 

x  is given by  

    )()( 1 xgxHx −−=Δ  

where )(xH  and )(xg  are the Hessian matrix and the gradient of )(xφ , respectively. 

Recall from (2.10) that we measure the distance from x  to the minimizer *x  of )(xφ  by the 

quantity 

  )()()(||||)( 1 xgxHxgxx T
x

−=Δ=λ . 

Note that if *xx =  then 0)( =xg  and hence 0)( =xλ ; whereas in all other cases )(xλ  

will be positive. 
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After the Newton step we have 

  )()()(||)()(||||||)( 11 +−+++−+++ ==Δ= ++ xgxHxgxgxHxx T
xxλ . 

We are now ready to prove our first main result on Newton’s behavior on self-concordant 
functions. 
 
Theorem 2.2 

If 
κ

λ 1)( ≤x  then +x  is feasible. Moreover, if 
κ

λ 1)( <x  then 

    
2

)(1
)()( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

≤+

x
xx

κλ
λκλ . 

Proof 

The feasibility of +x  follows from Lemma 2.6, since 
κ

λ 1)(|||| ≤=Δ xx x . 

To prove the second statement in the theorem we denote the Newton step at +x  shortly as v . So  

  )()(: 1 +−+= xgxHv . 

For 10 ≤≤α  we consider the function 

  )()1()(:)( xgvxxgvk TT ααα −−Δ+= . 

Note that 0)0( =k  and 

  21 )()()()(:)1( ++−++ == xxgxHxgk T λ . 

Taking the derivative of k  to α  we get, also using )()( xgxxH −=Δ , 

  xxHxxHvxgvxxxHvk TTT Δ−Δ+=+ΔΔ+=′ ))()(()()(:)( ααα . 

By substituting xd Δ=α  in (2.11) and the definition of local Hessian norm, we can derive 

  )(1
)||||1(

1)()( 2 xH
x

xHxxH
x

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ−
−Δ+

ακ
α p . 

Now applying the generalized Cauchy inequality in the Appendix (Lemma A.1) we get 

  xx
x

T xv
x

xxHxxHv ||||||||1
)||||1(

1))()(( 2 Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ−
≤Δ−Δ+

ακ
α . 

Hence, combining the above results, and using )(|||| xx x λ=Δ , we may write 

  )(||||1
))(1(

1)( 2 xv
x

k x λακλ
α ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
≤′ . 

Therefore, since 0)0( =k  
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)(1

)(||||1
))(1(

1||||)()1(
21 

0 2 x
xvd

x
vxk xx κλ

κλα
ακλ

λ
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
≤ ∫ . 

Since )()( 1 +−+= xgxHv , we have, by Lemma 2.5, 

  
)(1

)(
||||1

||||
||||

x
x

x
v

v
x

x
x κλ

λ
κ −

=
Δ−

≤
+

+
. 

Since 2)()1( += xk λ , it follows by substitution, 

  
)(1

)(
)(1

)()1()(
2

2

x
x

x
xkx

κλ
κλ

κλ
λλ

−−
≤=

+
+ . 

Dividing both sides by )( +xλ  the lemma follows. 

 
Corollary 2.2 

If 3820.0)53(
2
1)( ≈−≤xκλ  then +x  is feasible and )()( xx λλ ≤+ . 

 
Corollary 2.3 

If 
κ

λ
3
1)( ≤x  then +x  is feasible and 22 ))(

2
3())(

2
3()( κλλκλ xxx =≤+ . 

 

2.1.8 Algorithm with full Newton steps 

Assuming that we have a point Dx∈  with 
κ

λ
3
1)( ≤x  we can easily obtain a point Dx∈  

such that ελ ≤)(x , for prescribed 0>ε , with the algorithm 2.1. We assume that φ  is not 

linear or quadratic. Then 0>κ . Actually, from the Definition 2.3, we can easily prove if λ  is 

some positive constant then λφ  is concordant-self-⎟
⎠

⎞
⎜
⎝

⎛
λ
κ

. So we may always assume that 

9
4

≥κ . We will assume this from now on. 

 
Algorithm 2.1  (Algorithm with full Newton steps) 

Input  

   An accuracy parameter )1,0(∈ε ; 

   Dx∈  such that 
κ

λ
3
1)( ≤x . 



 52

while ελ ≥)(x  do 

   xxx Δ+=:  
endwhile 

 
The following theorem gives an upper bound for the number of iterations required by the 
algorithm, 
 
Theorem 2.3 

Let Dx∈  and 
κ

λ
3
1)( ≤x . Then the algorithm with full Newton steps requires at most 

     ⎥
⎥

⎤
⎢
⎢

⎡
⎟
⎠
⎞

⎜
⎝
⎛

ε
1log4761.3(log2  

iterations. The output is a point Dx∈  such that ελ ≤)(x . 

Proof 

Let Dx ∈0  be such that 
κ

λ
3
1)( 0 ≤x . Starting at 0x  we repeatedly apply full Newton steps 

until the k -iterate, denoted as kx , satisfies ελ ≤)( kx , where 0>ε  is the prescribed 

accuracy parameter. We can estimate the required number of Newton steps by using Corollary 2.3. 

To simplify notation we define for the moment )( 00 xλλ =  and κγ
2
3

= . Note that 1≥γ . 

It then follows that 

  
kkkkk xxx 2024222221 )()))((())(()( λγγλγγλλ LL ++−− ≤≤≤≤ . 

This gives 

  
kkkkkx 20220222022 )()()()(

1

λγλγγλγλ ≤=≤ −−+

. 

Using the definition of γ  and 
κ

λ
3
1)( 0 ≤x  we obtain 

  
4
3

3
1

2
3 2

02 =⎟
⎠
⎞

⎜
⎝
⎛≤

κ
κλγ . 

Hence, we certainly have ελ ≤)( kx  if ε≤⎟
⎠
⎞

⎜
⎝
⎛

k2

4
3

. Taking logarithm at both sides this reduces 

to εlog
4
3log2 ≤k . 

Dividing by 
4
3log , we get 

4
3log

log2 ε
≥k , or, equivalently, 

4
32 log

loglog ε
≥k . Thus we find that 

after no more than 
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  ⎟
⎠
⎞

⎜
⎝
⎛=−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ε

εε 1log4761.3log)log4761.3(log
log
loglog 22

4
32  

iterations the process will stop and the output will be an Dx∈  such the ελ ≤)(x . 

 

2.1.9 Linear convergence of the damped Newton method 

In this section, we consider the case where Dx∈  lies outside the region where the Newton 

process is quadratically convergent. More precisely, we assume that 
κ

λ
3
1)( >x . In that case we 

perform a damped Newton step, with damping factor α , and the new iterate is given by 

  xxx Δ+=+ α . 

In the Algorithm 6.2 below, we use 
)(1

1
xκλ

α
+

=  as a default step size. 

 
Algorithm 2.2 

Input: 

   Dx∈  such that 
κ

λ
3
1)( >x  

while 
κ

λ
3
1)( >x  do 

   
)(1

1
xκλ

α
+

=  

   xxx Δ+=+ α  

endwhile 
 
In the next theorem we use the function 

  1),1log(:)( −>+−= ttttω .          (2.12) 

Note that this is a strictly convex nonnegative function, which is minimal at 0=t , and 

0)0( =ω . The next theorem shows that with an appropriate choice of α  we can guarantee a 

fixed decrease in φ  after the step. 

 
Theorem 2.4 

Let Dx∈  and )(: xλλ = . If 
κλ

α
+

=
1

1:  then 
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  2
)()()(

κ
κλωαφφ ≥Δ+− xxx . 

Proof 

Define )()(:)( xxx Δ+−=Δ αφφα . 

Then  xxxg T ΔΔ+−=Δ′ )(:)( αα  

  ],)[()(:)( 2 xxxxxxxHxT ΔΔΔ+−∇=ΔΔ+Δ−=Δ ′′ αφαα  

  ],,)[(:)( 3 xxxxx ΔΔΔΔ+−∇=Δ ′′′ αφα . 

Now using that φ  is concordant-self-κ , we deduce from the last expression that 

  3||||2)( xxx Δ+Δ−≥Δ ′′′ ακα . 

Hence, also using Lemma 2.4 

  3

3

3

3

)1(
2

)||||1(
||||2)(

ακλ
κλ

ακ
κα

−
−

=
Δ−

Δ
−≥Δ ′′′

x

x

x
x

. 

This information on the third derivative of )(αΔ  is used to prove the theorem, by integrating 

three times. By integrating once we obtain 

  2
2

2

02

2 

0 3

3

)1()1()1(
2)0()( λ

ακλ
λ

βκλ
λβ

βκλ
κλα α

β

α
+

−
−

=
−
−

=
−
−

≥Δ ′′−Δ ′′ =∫ d . 

Since 22 ],)[()0( λφ −=ΔΔ−∇=Δ ′′ xxx , we obtain 

  2

2

)1(
)(

ακλ
λα

−
−

≥Δ ′′ . 

By integrating once more we derive an estimate for )(αΔ′ : 

  
κ
λ

ακλκ
λ

βκλκ
λβ

βκλ
λα α

β

α
+

−
−

=
−
−

=
−
−

≥Δ′−Δ =∫ )1()1()1(
)0()(' 0

 

0 2

2

d . 

Since 2)()()0( λ=ΔΔ=Δ−=Δ′ xxHxxxg TT , we obtain 

  2

)1(
)(' λ

κ
λ

ακλκ
λα ++

−
−

≥Δ . 

Finally, in the same way we derive an estimate for )(αΔ . Using that 0)0( =Δ  we have 

  ))1(log(1
)1(

)( 22
2

 

0 

2 λακακλακλ
κ

βλ
κ
λ

βκλκ
λα

α
++−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

−
−

≥Δ ∫ d . 
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One may easily verify that the last expression is maximal for 
κλ

α
+

=
1

1
. Substitution of this 

value yields 

  )(1))1log((1
1

1log1)( 222 κλω
κ

κλκλ
κ

κλ
κλ

κλ
κ

α =+−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

+
−≥Δ , 

which is the desired inequality. 
 

Since )(tω  is monotonically increasing for positive t , and 
κ

λ
3
1

> , the following result is an 

immediate consequence of Theorem 2.4. 
 
Corollary 2.4 

If 
κ

λ
3
1)( >x  then +x  is feasible and 

  222 22
10457.0)

3
1(1)(

κκ
ω

κ
α >=≥Δ . 

 
The next result is an obvious consequence of this corollary. 
 
Theorem 2.5 

Let Dx∈  such that 
κ

λ
3
1)( >x . If *x  denotes the minimizer of )(xφ , then the algorithm 

with damped Newton steps requires at most 

    *))()((22 02 xx φφκ −  

iterations. The output is a point Dx∈  such that 
κ

λ
3
1)( ≤x . 

 

In order to obtain a solution such that ελ ≤)(x , after the algorithm with damped Newton steps 

we can proceed with full Newton steps. Due to Theorem 2.3 and Theorem 2.4 we can obtain such 
a solution after a total of at most 

  ⎡ ⎤ ⎥
⎥

⎤
⎢
⎢

⎡
⎟
⎠
⎞

⎜
⎝
⎛+−

ε
φφκ 1log4761.3(log*))()((22 202 xx       (2.13) 

iterations. Note the drawback of the above iteration bound: usually we have no prior knowledge of 

*)(xφ  and the bound cannot be calculated at the start of the algorithm. However, in many cases 

we can derive a good estimate for *)()( 0 xx φφ −  and we obtain an upper bound for the number 

of iterations before starting the optimization process. 
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2.1.10 Further estimates 

In the above analysis, we found an upper bound for the number of iterations that the algorithm 

needs to yield a feasible point x  such that ελ ≤)(x . But we can provide more information 

about *)()( xx φφ −  and *xx − . 

We start with the following lemma. 
 
Lemma 2.7 

Let Dx∈  and nRd ∈  such that Ddx ∈+ . Then 

    
x

xT

x

x

d

d
xgdxgd

d

d

κκ −
≤−+≤

+ 1
))()((

1

22

;    (2.14) 

   22

)(
)()()(

)(
κ
κω

φφ
κ
κω

xTx
d

xgdxdx
d −

≤−−+≤ .  (2.15) 

In the right-hand side inequalities it is assumed that 1<
x

dκ . 

Proof 
We have 

   ∫∫ +
=+=−+

1 

0 

2

dx

1 

0 
 d )())()(( ααα

α
ddddxHdxgdxgd TT . 

Using Lemma 2.4 we may write 

  

.
1)1(

                 

 d
)1(1

2
1 

0 2

2

1 

0 

2

dx

1 

0 2

22

x

x

x

x

x

x

x

x

d

d
d

d

d

dd
d

d

d

d

κ
α

ακ

αα
ακκ α

−
=

−
≤

≤
+

=
+

∫

∫∫ +

  

From this the inequalities in (2.14) immediately follow. To obtain the inequalities in (2.15) we 
write 

ααφφ dxgdxgdxgdxdx TT ))()(()()()(
1 

0 
−+=−−+ ∫ . 

Now using the inequalities in (2.14) we obtain 

 

2

2

1 

0 

2
1 

0 

)(
                                                                       

)1log(

1
))()((

κ
κω

κ
κκ

α
ακ

α
αα

x

xx

x

xT

d

dd
d

d

d
dxgdxgd

−
=

−−−
=

−
≤−+ ∫∫

 

and 
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.
)(

                                                                       

)1log(

1
))()((

2

2

1 

0 

2
1 

0 

κ
κω

κ
κκ

α
ακ

α
αα

x

xx

x

xT

d

dd
d

d

d
dxgdxgd

=

+−
=

+
≥−+ ∫∫

 

This completes the proof. 
 

As usual, for each Dx∈ , 
x

xx Δ=)(λ , with xΔ  denoting the Newton step at x . We now 

prove that if κλ 1)( <x  for some Dx∈  then φ  must have a minimizer. Note that this 

surprising result expresses that some local condition on φ  provides us with a global property, 

namely the existence of a minimizer. 
 
Theorem 2.6 

Let κλ 1)( <x  for some Dx∈ . Then φ  has a unique minimizer *x  in D . 

Proof 
The proof is based on the observation that the level set 

     { })()(:: xyDyL φφ ≤∈= , 

with x  as given in the theorem, is compact. This can be seen as follows. Let Dy∈ . Writing 

dxy += , with nRd ∈ , Lemma 2.7 implies the inequality 

  22

)(
)(

)(
)()()(

κ
κω

κ
κω

φφ xTxT d
xxHd

d
xgdxy +Δ−=+≥− , 

where we used that, by definition, the Newton step xΔ  at x  satisfies )()( xgxxH −=Δ . 

Since 

      )()( xdxdxxHd
xxx

T λ=Δ≤Δ , 

we thus have 

     2

)(
)()()(

κ
κω

λφφ x
x

d
xdxy +−≥− . 

Now let Ldxy ∈+= . Then )()( xy φφ ≤ , whence we obtain 

     0
)(

)( 2 ≤+−
κ
κω

λ x
x

d
xd , 
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which implies 

     1)(
)(

<≤ x
d

d

x

x κλ
κ

κω
.        (2.16) 

Putting 
x

dκξ =:  one may easily verify that ξ
ξω )(  is monotonically increasing for 0>ξ  

and goes to 1 if ∞→ξ . Therefore, since 1)( <xκλ , we may conclude from (2.16) that 
x

dκ  

cannot be arbitrary large. In other words, 
x

dκ  is bounded above. This means that the set of 

vectors d  such that Ldx ∈+  is bounded. This implies that the level set L  itself is bounded. 

Since this set is also closed, the set L  is compact. Hence φ  has a minimal value in L , and this 

value is attained at some Lx ∈* . Since φ  is convex, *x  is a global minimizer of φ , and by 

Corollary 2.1, this minimizer is unique. 
 
Lemma 2.8 
For 1<s  one has 

    )},({sup)(
1

tsts
t

ωω −=−
−>

 

whence 

    stts ≥+− )()( ωω , 1<s , 1−>t . 

Proof 

Let sttstsF −+−= )()(),( ωω . Hence  

).1log(
)1log()1log(

)1log()1log(),(

sttsstts
stttss

stttsstsF

−+−−−+−=
−+−+−−−=

−+−+−−−=
 

Let sttsx −+−= , then  

  1  ),(),( −>= xxtsF ω . 

It is easy to see that 0)( ≥xω , so 0),( ≥tsF . 

Hence we get  

  stts ≥+− )()( ωω . 

 
Theorem 2.7 

Let Dx∈  be such that κλ 1)( <x  and let *x  denote the unique minimizer of φ . Then, with 

)(: xλλ = , 
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   22
)(*)()()(

κ
κλωφφ

κ
κλω −

≤−≤ xx         (2.17) 

   
κ
κλω

κλ
λ

κλ
λ

κ
κλω )(

1
*

1
)( −′

−=
−

≤−≤
+

=
′

x
xx .    (2.18) 

Proof 

The left inequality in (2.17) follows from Theorem 2.4, because φ  is minimal at *x . 

Furthermore from (2.15) in Lemma 2.7, with xxd −= * , we get the right inequality in (2.17): 

   

( )

,)(                     

)(1                     

)(
                     

)(
)()(*)(

2

2

2

2

κ
κλω

κωκλκ
κ

κ
κω

λ

κ
κω

φφ

−
−≥

+−=

+−≥

+≥−

xx

x
x

xT

dd

d
d

d
xgdxx

 

where the second inequality holds since 

  λλ
xxxx

TT dxdxdxxHdxgd ==Δ≤Δ−= )()()(     (2.19) 

and the fourth inequality follows from Lemma 2.8. 
For the proof of (2.18) we first derive from (2.19) and the (2.14) in Lemma 2.7 that 

  λ
κ x

TT

x

x dxgdxgxgd
d

d
≤−=−≤

+
)())(*)((

1

2

, 

where we used that 0*)( =xg . Dividing by 
x

d  we get 

     λ
κ

≤
+

x

x

d

d

1
, 

which gives rise to the right inequality in (2.18), since it follows now that 

     
κ
κλω

κλ
λ )(

1
−′

−=
−

≤
x

d . 

Note that the left inequality in (2.18) is trivial if 1≥
x

dκ , because then κ
1≥

x
d , whereas 

κκλ
λ 1

1
<

+
. Thus we may assume that 01 >−

x
dκ . For 10 ≤≤α , consider 

   )()()*(:)( 1 xgxHdxgk T −−= αα . 

One has 0)0( =k  and 22)()1( λλ == xk . From (2.11) and the Cauchy inequality we get 

  2
1

)1(
)(

)*()()()*()(
x

xTT

d
xd

xdxHdxgxHdxHdk
κ
λ

ααα
−

≤Δ−=−−=′ − . 
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Hence we have 

  
x

x

x

x

d
d

d
d

d
k

κ
λ

α
κ

λ
λ

−
=

−
≤= ∫ 1)1(

)1(
1 

0 2
2 . 

After dividing both sides by λ  this implies 

     
κλ
λ
+

≥
1x

d . 

Thus the proof is complete. 
 
 

2.2 Minimization of a linear function over a closed 

convex domain 

2.2.1 Introduction 

In this section, we consider the problem of minimizing a linear function over a closed convex 

domain D : 

     }:min{        )( DxxcP T ∈ . 

We assume that we have a self-concordant function RD →:φ , where DD int= , and also 

that )()( 2 xxH φ∇=  is positive definite for every Dx∈ . 

For each 0>μ  we define 

     )(:)( xxcx
T

φ
μ

φμ += , Dx∈  

and we consider the problem 

     }:)({inf        )( DxxP ∈μμ φ . 

We denote the gradient and Hessian matrix of )(xμφ  as )(xgμ  and )(xH μ , respectively. 

Then we may write 

  )()()(:)( xgcxcxxg +=∇+=∇=
μ

φ
μ

φμμ        (2.20) 

and  

  )()()(:)( 22 xHxxxH =∇=∇= φφμμ .        (2.21) 

An immediate consequence of (2.21) is )()( 33 xx φφμ ∇=∇ . 
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So it becomes clear that the second and third derivative of )(xμφ  coincide with the second and 

third derivatives of )(xφ , and do not depend on μ . Assuming that )(xφ  is 

concordant-self-κ , if follows that )(xμφ  is concordant-self-κ  as well. 

The minimizer of )(xμφ , if it exists, is denoted as )(μx . When μ  runs through all positive 

numbers then )(μx  runs through the so-called central path of )(P . We expect that )(μx  

converges to an optimal solution of )(P  when μ  approaches 0 , since then the linear term in 

the objective function of )( μP  dominates the remaining part. Therefore, our aim is to use the 

central path as a guideline to the optimal solution of )(P . This approach is likely to be feasible, 

because since )(xμφ  is self-concordant its minimizer can be computed efficiently. 

The Newton step at Dx∈  with respect to )(xμφ  is given by )()( 1 xgxHx μ
−−=Δ . 

Just as in the previous section we measure the distance of Dx∈  to the μ -center )(μx  by 

the local norm of xΔ . So for this purpose we use the quantity )(xμλ  defined by 

  1||)(||)()()()(||||)( 1
−==ΔΔ=Δ= −

H
TT

x xgxgxHxgxxHxxx μμμμλ . 

Before presenting the algorithm we need to deal with two issues. First, when is μ  small enough? 
We want to have the guarantee that the algorithm generates a feasible point whose objective value 
deviates no more than ε  from the optimal value, where 0>ε  is some prescribed accuracy 
parameter. Second, we need to know what the effect is of an update of μ  on our proximity 

measure )(xμλ . We start with the second issue. 

 

2.2.2 Effect of μ -update 

Let )(: xμλλ =  and μθμ )1( −=+ . Our aim is to estimate )(x+μ
λ . We have  

  

( ).)()(
1

1)()(
1

1           

)(
)1(

)(
)1(

)()(

xgxgxgxgc

xgcxcxcxg

θ
θ

θ
μθ

μθ
φ

μθ
φ

μ

μ

μ

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−
=

+
−

=∇+
−

=∇+= ++
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Hence, denoting )(xH  shortly as H , we may write 

  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

−
≤−

−
= −−−+

4342143421
)()(

111 )()(
1

1)()(
1

1)(
x

H

x

HH
xgxgxgxgx
λλ

μμμ
θ

θ
θ

θ
λ

μ

 

  ))()((
1

1           xx θλλ
θ μ +

−
= .          (2.22) 

At present we have no means to obtain an upper bound for the quantity )(xλ . Therefore, we use 

the following definition. 
 
Definition 2.5 

Let 0≥v . The self-concordant function φ  is called a v -barrier if 

     vxgx
H

≤= −

22
1)()(λ ,  Dx∈∀ .      (2.23) 

 
An immediate consequence of this definition and (2.22) is the following lemma, which requires no 
further proof. 
 
Lemma 2.9 

If φ  is a self-concordant v -barrier then 

     
θ
θλ

λ μ
μ −

+
≤+ 1

)(
)(

vx
x . 

 

In the sequel we shall say that φ  is a v -barrier function if it satisfies (2.23). If φ  is also 

concordant-self-κ  then we say that φ  is a ),( vκ -barrier function. 

 
Here we present an obvious fact which is important for the MDP model: 
 
Corollary 2.5 

∑=
−=

n

i ixx
1
log)(φ  is a 1-self-concordant n -barrier function for )0:{ ≥∈=+ xRxR nn . 

Proof 

With e  denoting the all-one vector, for nRh∈∀ , 

x
exxg −

=∇= )()( φ ; 



 63

)()()( 2
2

x
ediagxxH =∇= φ ; 

)2(])[()( 3
3

x
hdiaghxxH −

=∇=∇ φ . 

Hence, we have for any nRh∈∀  

   ∑
=

−
=∇

n

i i

i

x
hhhhx

1
3

3
3 2],,)[(φ  

and 

   ∑
=

=⎟
⎠
⎞

⎜
⎝
⎛=∇

n

i i

iT

x
hh

x
ediaghhhx

1
2

2

2
2 ],)[(φ . 

For any nR∈ξ  one has 

   
2
3

1

2

1

3

1

3 ⎟
⎠

⎞
⎜
⎝

⎛
≤≤ ∑∑∑

===

n

i
i

n

i
i

n

i
i ξξξ . 

Hence, taking 
i

i
i x

h
=ξ  we get 

   ( )2
3

23 ],)[(2],,)[( hhxhhhx φφ ∇≤∇  

proving that )(xφ  is 1-self-concordant. 

Since )()()( 2
2

x
ediagxxH =∇= φ , we have  

)()( 21 xdiagxH =− . 

Then  

nxgxHxgxg T
H == −

− )()()(||)(|| 12
1 . 

So, we can conclude )(xφ  is a 1-self-concordant n-barrier for nR+ . 

 
Before proceeding to the next section, we introduce the so-called Dikin-ellipsoid at x , and using 

this we give a new characterization of our proximity measure )(xλ . 

 
Definition 2.6 
For any Dx∈  the Dikin-ellipsoid at x  is defined by 

     }1:{: ≤∈=
x

n
x dRdε . 
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Lemma 2.10 
For any Dx∈  one has 

     { } )(:)( max xdxgd x
T λε =∈ . 

Proof 
Due to Definition 2.6 the maximization problem in the lemma can be reformulated as 

     { }1)(:)( max ≤dxHdxgd TT . 

If 0)( =xg  then the lemma is obviously true, because then 0)( =xλ . So we may assume that 

0)( ≠xg  and 0)( ≠xλ . In that case any optimal solution d  will certainly satisfy 

1)( =dxHd T . Hence, if d  is optimal then 

     RdxHxg ∈= αα   ,)()(  

where α  is a Lagrange multiplier. This implies xxgxHd Δ−== − )()( 1α , where xΔ  

denotes the Newton step at x  with respect to φ . Now 1)( =dxHd T  implies 

2)( α=ΔΔ xxHxT . Since we also have 2)()( xxxHxT λ=ΔΔ , it follows that )(xλα ±= . So 

we get    
)(x

xd
λ
Δ

±= , 

whence, using )()( xgxxH −=Δ , 

  )(
)(
)(

)(
)(

)(
)(

)(
2

x
x
x

x
xxHx

x
xxg

xgd
TT

T λ
λ
λ

λλ
==

ΔΔ
=

Δ
=  

proving the lemma. 
 
For future use we also state the following result. 
 
Lemma 2.11 

If φ  is a self-concordant v -barrier then we have 

    ( ) DxdxHvdxgd TT ∈∀∈∀≤   ,Rd   ,)()( n2
. 

Proof 

The inequality in the lemma is homogeneous in d . Hence we may assume that 1)( =dxHd T . 

Now Lemma 2.10 implies that )()( xxgd T λ≤ . Hence we obtain ( ) 22 )()( xxgd T λ≤ . By 
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Definition 2.5 this implies the lemma. 
 

Assuming that )(P  has *x  as optimal solution, we proceed with estimating the objective 

value xcT  in terms of μ  and )(xμλ . This is the subject in the next section. 

 

2.2.3 Estimate of *xcxc TT −  

For the analysis of our algorithm we will need some more lemmas. 
 
Lemma 2.12 

Let φ  be a self-concordant v -barrier function and Dx∈  and Ddx ∈+ . Then  

     vxgd T ≤)( . 

Proof 
Consider the function 

    )1,0[   ),()( ∈+= ααα dxgdq T . 

Observe that )()0( xgdq T= . So we need to show that vq ≤)0( . If 0)0( ≤q  there is 

nothing to prove. Therefore, assume that 0)0( >q . Since )(xφ  is a v -barrier, we have by 

Lemma 2.11, for any )1,0[∈α , 

  ( ) ( )22 )(1)(1)()( αααα q
v

dxgd
v

ddxHdq TT =+≥+=′ . 

Therefore, )(αq  is increasing and hence positive for ]1,0[∈α . Therefore, we may write 

  
( ) )0(

1
)1(

1
)0(

1
)(

1
)(
)(1

1 

0 

1 

0 2 qqqq
d

q
q

v
<−=−=

′
≤ ∫ α

α
α
α

. 

This imples vq <)0( , completing the proof of the lemma. 

 
Before proceeding we recall the definition of a dual norm. 
 
Definition 2.7 

Given any norm ⋅  in nR , the corresponding dual norm 
*⋅  is defined by 

    { }1:max* ≤= xxss T . 
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For any Dx∈  we denote the dual norm of the local norm 
x

⋅  as 
*

x
⋅ . Apparently, 

*

x
⋅  is the 

local norm determined by 1)( −xH . So, 

    n1* Rd   ,)( ∈= − dxHdd T
x

. 

 
Lemma 2.13 

Let 
κ

λλ 1)(: <= xu  and let *x  be an optimal solution of )(P . Then 

    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

++≤
κλ

λλμ
1

)(* vvxcxc TT . 

Proof 

First we consider the case there )(μxx = . Since then 0)( =xgμ , we derive from (2.20) that 

)(xgc μ−= . Since Dx∈  and Dx ∈* , using Lemma 2.12 with xxd −= * , we get 

    ( ) vdxgxxcxcxc TTTT μμμμ ≤=−=− )(*)(*)( . 

Now let us turn to the general case. Then, using (2.20) once more and also the inequality:  

    n
xx

T Rbababa ∈≤ ,,*
, 

we may write 

  
( ) ( )

.)()()(                       

))(()()()()(
*

xx

TTTT

xxxgxg

xxxgxgxxcxcxc

μμ

μμμμ

μ

μ

−−≤

−−=−=−
 

where 
*

x
⋅  denotes the local norm determined by 1)( −xH . Since λλμμ == )()(

*
xxg

x
 and 

vxxg
x

≤= )()( * λ  we have 

  vxgxgxgxg
xxx

+≤+≤− λμμ
***

)()()()( . 

Moreover, by Theorem 2.7, 

     
κλ
λμ
−

≤−
1

)(
x

xx . 

Substitution gives 

    
κλ

λλμμ
−
+

≤−
1

)()( vxcxc TT . 

Hence we may write 
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  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

+≤−+−=−
κλ

λλμμμ
1

)())((*))((* vvxxcxxcxcxc TTTT , 

proving the lemma. 
 

2.2.4 Algorithm with full Newton steps 

We assume that we know a point Dx ∈0  and 00 >μ  such that 
κ

τλ
μ 4

1)( 0
0 =≤x . Then we 

decrease 0μμ =  with a factor θ−1 , where the barrier update parameter θ  is a suitable 

number in the interval )1,0( , and perform a full Newton step. This process is repeated until μ  

is small enough, i.e. until εμ ≤v  for some small number ε . The algorithm is described below. 

The number of iterations is completely determined by 0,μv  and θ , according to the lemma 

stated after the algorithm. 
 
Algorithm 2.3 Algorithm with full Newton steps 

Input 
   an accuracy parameter 0>ε ; 

   a proximity parameter ),0( 1
κτ ∈ ; 

   an update parameter 10, <<θθ ; 

   Dx ∈0  and 00 >μ  such that τλ
μ

≤)( 0
0 x ; 

begin 

   00 :;: μμ == xx ; 

   while εμ >v  do 

    
;:

;)1(:
xxx Δ+=

−= μθμ
 

   endwhile 
end 

 
Lemma 2.14 
The number of iterations of the algorithm does not exceed the number 

     
ε
μ

θ

0

log1 v
. 

Proof 
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The algorithm stops when εμ ≤v . After the k -th iteration we have 0)1( μθμ k−= , where 

0μ  denotes the initial value of μ . Hence the algorithm will stop if 

     εμθ ≤− vk 0)1( . 

Taking logarithms at both sides this gives 

     
v

k 0log)1log(
μ
εθ ≤− . 

Since θθ ≥−− )1log( , this certainly holds if 

     
ε
μθ

0

log vk ≥ , 

which implies the lemma. 
 
Theorem 2.8 

If 
κ

τ
9
1

=  and 
vκ

θ
369
5

+
= , then the algorithm with full Newton steps is well-defined and 

requires not more than 

     ⎥
⎥

⎤
⎢
⎢

⎡ +
ε
μκ 0

log
5

369 vv
 

iterations. The output is a point Dx∈  such that 

     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
++≤

v
vxcxc TT

272
911*
κ
κε , 

where *x  denotes an optimal solution of )(P . 

Proof 
We need to find values of τ  and θ  that makes the algorithm well-defined. At the start of the 

first iteration we have Dxx ∈= 0  and 0μμ =  such that τλμ ≤)(x . When the barrier 

parameter is updated to μθμ )1( −=+ , Lemma 2.9 gives 

     
θ
θτ

θ
θλ

λ μ
μ −

+
≤

−
+

≤+ 11
)(

)( vvx
x .      (2.24) 

Then after the Newton step, the new iteration is xxx Δ+=+  and 
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2

)(1
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)(
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⎜
⎜

⎝

⎛

−
≤

+

+

+
+

x

x
x

μ

μ
μ κλ

λ
κλ .       (2.25) 

The algorithm is well defined if we choose τ  and θ  such that τλ
μ

≤+
+ )(x . To get the lowest 

iteration bound, we need at the same time to maximize θ . From (2.25) we deduce that 

τλ
μ

≤+
+ )(x  certainly holds if 

     
κ
τ

κλ

λ

μ

μ ≤
− +

+

)(1

)(

x

x
, 

which is equivalent to 

     
κτκ

τλ
μ +

≤+ )(x .         (2.26) 

According to (2.24) –and hence τλ
μ

≤+
+ )(x  – this will hold if 

     
κτκ

τ
θ
θτ

+
≤

−
+
1

v
. 

This leads us to the following condition on θ : 

     
)1(

1
κκτ

κτκττθ
vv ++

−−
≤ . 

Substitution of κτ 9
1=  in the right-hand side expression yields the value 

vκ369
5

+
. Thus we 

have justified the choice of the value of τ  and θ  in the theorem 
Now that θ  is given, the iteration bound is immediate from Lemma 2.14. The last statement in 
the theorem is implied by Lemma 2.13. because at termination of the algorithm we have 

1)(9 <xμκλ  and εμ ≤v . Hence, denoting )(xμλλ = , Lemma 2.13 implies that 

    

.
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This completes the proof. 
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2.2.5 Algorithm with damped Newton steps 

The method that we considered in the previous sections is in practice rather slow. This is due to 
the fact that the barrier update parameter θ  is rather small. For example, in the case of linear 

optimization the set D  is the intersection of nR  and the affine space }:{ bAxx = , for some 

A  and b . From Corollary 2.5, we know that the logarithmic barrier function 

∑=
−=

n

i ixx
1
log)(φ  is a 1-self-concordant n -barrier function for nR+ . In that case we have 

1=κ  and n=ν , and hence the value of θ  is given by 
n369

5
+

=θ . Assuming 10 =μ  in 

Theorem 2.8, this leads to the iteration bound 

   ⎟
⎠
⎞

⎜
⎝
⎛Ο=+

εε
nnnn loglog)41(2 , 

which is up till now the best know bound for linear optimization. 
 
In practice one is tempted to accelerate the algorithm by taking larger values of θ . But this is not 
justified by the theory, and in fact may cause the algorithm to fail because the full Newton step 
may yield an infeasible point. However, by damping the Newton step we can keep these iterates 
feasible. In this section we investigate the resulting method, which is in practice much faster than 
the full-Newton step method. So we consider in this section the case where θ  is some small (but 

fixed) constant in the interval )1,0( , for example 5.0=θ  or 99.0=θ , and where the new 

iterate is obtained from 

     xxx Δ+=+ α , 

where xΔ  is the Newton step at x  and where α  is the so-called damping factor, which is 

also taken from the interval )1,0( , but which has to be carefully chosen. 

The algorithm is described below. We refer to the first while-loop in the algorithm as the outer 
loop and to the second while-loop as the inner loop. Each execution of the outer loop is called an 
outer iteration and each execution of the inner loop an inner iteration. The main task in the 
analysis of the algorithm is to derive an upper bound for the number of iterations in the inner loop, 
because the number of outer iterations follows from Lemma 2.14. 
 
Algorithm 2.4 Algorithm with damped Newton steps 

Input 
   an accuracy parameter 0>ε ; 

   a proximity parameter κτ 3
1= ; 

   an update parameter 10, <<θθ ; 
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   Dx ∈0  and 00 >μ  such that τλ
μ

≤)( 0
0 x  

begin 

   00 :;: μμ == xx ; 

   while εμ >v  do 

    μθμ )1(: −= ; 

    While τλμ >)(x  do 

    
)(1

1
xμκλ

α
+

= ; 

    xxx Δ+= α ; 
    endwhile 
   endwhile 

end 
 
As we will see, in the analysis of the algorithm many results can be used that we already obtained 
in the analysis of the algorithm for minimizing a self-concordant function with damped Newton 
steps, in section 2.1.9 
Due to the choice of the damping factor α  in the algorithm, Theorem 2.4 implies that in each 

inner iteration the decrease in the value of μφ  satisfies 

  2

))((
)()(

κ
κλω

αφφ μ
μμ

x
xxx ≥Δ+− . 

Since during each inner iteration τλμ ≥)(x  and κτ 3
1> , we obtain 

2222 22
10457.0)

3
1(1)()()(

κκ
ω

κκ
κτωαφφ μμ >=>≥Δ+− xxx . 

Thus we see that each inner iteration decreases the value of μφ  with at least 222
1
κ

. 

This implies that we can easily find an upper bound for the number of inner iterations during one 

outer iteration if we know the difference between the values of μφ  at the start and at the end of 

one outer iteration. Since )(x+μ
φ  is minimal at )( += μxx , this difference is not larger than 

     ))(()( +
++ − μφφ

μμ
xx , 

where x  denotes the iterate at the start of an outer iteration and μθμ )1( −=+  the value of 

the barrier parameter after the μ -update. 
The proofs of the next two lemmas follow similar argument as used in proof of Theorem 2.2 in 
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Hertog[7] 
 
Lemma 2.15 

Let μ<0 . Then we have 

    
μ

μμ
μ
μ

μ
μφμ )())(()())((

2
xxgxc

d
xd TT

=−= . 

Proof 

Denoting the derivative of )(μx  with respect to μ  as )(' μx , we may write 

 )('))(()(')())(()())((
2 μμ

μ
μ

μ
μμφ

μ
μ

μμ
μφμ xxgxcxcxxc

d
d

d
xd T

TTT

++−=⎟⎟
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⎞
⎜⎜
⎝

⎛
+= . 

The definition of )(μx , as minimizer of )(xμφ , implies 

    
μ

μ cxg −=))(( . 

Hence we write 

    0)('))(()('
=+ μμ

μ
μ xxgxc T

T

 

whence  

    2
)())((

μ
μ

μ
μφμ xc

d
xd T

−= , 

which implies the lemma. 
 
Lemma 2.16 

Let κμ τλ 3
1)(, =≤∈ xDx  and μθμ )1( −=+ . Then we have 

    
θ

θ
κ

μφφ
μμ −

+≤− +
++ 113

1))(()( 2
vxx . 

Proof 
Fixing Dx∈ , we define 

   ))(()()( μφφμϕ μμ xx −= . 

Then we need to find an upper bound for )( +μϕ . According to the Mean Value Theorem there 

exists a ),( μμμ +∈)  such that  

   ))(()()( μμμϕμϕμϕ −′+= ++ )
.        (2.27) 
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Let us consider first )(μϕ′ . We have 

  
μ
μφ

μμ
μφ

μ
φ

μϕ μμμ

d
xdxc

d
xd

d
xd T ))(())(()(

)( 2 −
−

=−=′ .     (2.28) 

Using Lemma 2.15 we get 

  
μ

μμ
μ
μ

μ
μ

μ
μϕ ))(())(())(()()( 222

xxxgxxcxcxc TTTT −
=

−
=+

−
=′ . 

Now applying Lemma 2.12 twice, with )(μxxd −=  and xxd −= )(μ  respectively, we 

obtain 

      
μ

μϕ v
≤′ )( . 

Hence, since ),( μμμ +∈) , we get 

      +≤′
μ

μϕ v)( ) . 

Substitution into (2.27) yields 

  
θ

θμϕμμ
μ

μϕμϕ
−

+=−+≤ +
+

+

1
)()()()( vv

. 

In other words, 

  
θ

θμφφμϕϕ μμμμ −
+−≤− +

++ 1
))(()())(()( vxxxx . 

Since κμ τλ 3
1)( =≤x , we derive from Theorem 2.7 that  

  222 13
10721318.0)

3
1(1))(()(

κκ
ω

κ
μφφ μμ <=−≤− xx . 

Hence the lemma follows. 
 
Theorem 2.9 
The algorithm with damped Newton steps requires not more than 

     ⎥
⎥

⎤
⎢
⎢

⎡
⎟
⎠
⎞

⎜
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iterations. The output is a point Dx∈  such that 
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⎠

⎞
⎜⎜
⎝
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v
vxcxc TT

26
311*
κ
κε , 

where *x  denotes an optimal solution of )(P . 
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Proof 

Since each inner iteration decreases the value of μφ  with at least 222
1
κ

, an immediate 

consequence of Lemma 2.16 that the number of inner iteration between two successive 
μ -updates does not exceed the number 

     ⎟
⎠
⎞

⎜
⎝
⎛

−
+

θ
θ

κ
κ

113
122 2

2 v
. 

Using Lemma 2.14, the iteration bound in the theorem follows. 
The last statement in the theorem follows from Lemma 2.13. At termination of the algorithm we 

have 1)(3 <xμκλ  and εμ ≤v . Hence, denoting )(xμλλ = , Lemma 2.13 implies 
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This completes the proof. 
 
It is interesting to compare the iteration bounds that we obtained for full-Newton and 

damped-Newton steps. When initialized with the same Dx ∈0  and 00 >μ  these bounds are 

given by 

     ⎥
⎥

⎤
⎢
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⎡ +
ε
μκ 0
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369 vv
 

and 
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⎥
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⎢
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respectively. Neglecting the factor 
ε
μ 0

log v
, we see that the first bound is )( vκΟ . On the 

other hand, when assuming )1(Θ=θ , the second bound is ))(( 2vκΟ . 

This shows that from a theoretical point of view the full-Newton step method is more efficient 
than the damped-Newton step method. In practice, however, the converse holds. This phenomenon 
has become known as the irony of interior-point methods (e.g. Renegar[12],page 51). 

Also note that in both cases the quantity vκ  is solely responsible for the iteration bound, or 
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complexity of the algorithm. Following Glineur[6] we call this the complexity value. 
 

2.2.6 Adding equality constraints 

In many cases the vector x  of variables in )(P  not only has to belong to D  but has also to 

satisfy a system of equality constraints. The problem then becomes 

    { }Dxb,Ax  :cmin      )( T ∈=xP . 

We assume that A  is a nm×  matrix and mArank =)( . This problem can be solved without 

much extra effort. The search direction has to be designed such that feasibility is maintained. 
Given a feasible x  we take as search direction xΔ  the direction that minimizes the second 
order Taylor polynomial at x  subject to the condition 0=ΔxA . Thus we consider the problem 

   
⎭
⎬
⎫

⎩
⎨
⎧ =ΔΔΔ+Δ+ 0:)(

2
1)()(min xAxxHxxgxx TT

μμφ . 

This gives rise to the system 

   0   ,)()( =Δ=+Δ xAyAxgxxH T
μ , 

whence, denoting )(xH  as H , 

   )()()( 11111 xgHxgAHAAHAHx TT
μμ

−−−−− −=Δ  

or, equivalently, 

( ) )()()( 2
1

2
1

2
1

2
1

2
1

2
1 11 xgHPxgHAHAAHAHIxH

AH

TT
μμ

−−−−−−
−

−=−−=Δ , 

where 
2
1−

AH
P  denotes the orthogonal projection onto the null space of 2

1−AH . Note that if the 

system bAx =  is void, i.e. 0=A  and 0=b , then xΔ  is just the ‘old’ direction. 

Denoting the feasible region of )(P  as P  and its interior as P , one easily understands that 

the restriction Pφ  of φ  to P  is a κ -self-concordant v -barrier for P . Moreover, xΔ  as 

above, is precisely the Newton direction for Pφ  at Px∈ . Hence, essentially the same 

full-Newton step method and damped-Newton step method as before can be used to solve the 
above problem in polynomial time. 
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Chpater 3 Heuristic approach to MDPs based on the IPM 

3.1 Introduction 

Now the model and the algorithm which can be used to solve the MDPs have already been 
described. In this chapter we present how to get an optimal policy of the MDP model with the IPM. 
The main idea is to use Algorithm 2.4 with xΔ  described in section 2.2.6 to solve linear 
programming problems under both discounted rewards and average rewards, and to get a series 
stationary policies which converge to an optimal deterministic policy. Next we will consider some 
tests which may accelerate this process. 
 
In this chapter, we will use the following example for a better description. 
 
Example 3.1 

;
2
1

=α  }3,2,1{=S , }3,2,1{)3()2()1( === AAA ; 3)3(,2)2(,1)1( 111 === rrr  

5)3(,4)2(,6)1( 222 === rrr ; 7)3(,9)2(,8)1( 333 === rrr . 

0)1()1(,1)1( 131211 === ppp ; 0)2(,1)2(,0)2( 131211 === ppp ; 

1)3(,0)3()3( 131211 === ppp ; 0)1()1(,1)1( 232221 === ppp ; 

0)2(,1)2(,0)2( 232221 === ppp ; 1)3(,0)3()3( 232221 === ppp ; 

0)1()1(,1)1( 333231 === ppp ; 0)2(,1)2(,0)2( 333231 === ppp ; 

1)3(,0)3()3( 333231 === ppp . 

 

3.2 Discounted rewards 

In this section we consider linear programming for MDP with discounted rewards, which is 
basically to compute optimal solutions *v  and *x  of the dual pair of linear programs: 

    }),(   ),()}({|min{ ASaiarvapv i
j

jijij
j

jj ×∈≥−∑∑ αδβ     (1.17) 

and 
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We will use Algorithm 2.4 to get a dual optimal solution *x ; the primal solution *v  is 
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generated as by-product. 
 

We notice from the linear constraints in (1.18) that for a fixed Sj∈  

   0)()()(
),(

>+=∑ ∑a j
ai

iijj axapax βα . 

We know there are only || S  linear constraints in (1.18). That means in the extreme optimal 

solution of (1.18), for every state Si∈  there must be one )(* iAa ∈  s.t. 0*)( >axi  and all 

other *\)( aiAa∈  satisfy 0)( =axi . Hence, using IPM, we will get a series of interior points 

convergent to an extreme optimal solution* of (1.18) which has the form described above. 
 

3.2.1 Initial point 

In order to start the Algorithm 2.4 we need an initial interior point which satisfies τλ
μ

≤)( 0
0 x , 

Dx ∈0 , 00 >μ , κτ 3
1= . The first thing we should notice is that we can use the inner loop of 

Algorithm 2.4 to get an interior point which satisfies τλ
μ

≤)( 0
0 x  starting from any interior 

feasible point. Then finding the initial interior point is reduced to finding an interior feasible point 

Dx ∈0 , in which 
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βαδ

.     (3.1) 

In general case, this can be a complicated problem. However, in MDP with discounted rewards, 
there is a property we can use to get an interior feasible point.  
 
According to Theorem 1.12, the mapping (1.19) is a one-to-one mapping from the set of stationary 
policies onto the set of feasible solution of the dual program (1.18) with (1.20) as the inverse 

mapping. Hence we can get the interior feasible point 0x  with (1.19) using a special policy, 

which brings us the next theorem. 
 
Theorem 3.1 

Let 0>β  and ∞π  the stationary policy with  

                                                        
* Or the middle point of extreme optimal solutions, if there are several extreme optimal solutions with the same 
optimal value. We will describe this later. 
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)(
1
iAia =π , )(iAa∈ , Si∈ .         (3.2) 

Then 

ASaiPIax iai
T

i ×∈⋅−= − ),(,})}({{)( 1 ππαβπ       (3.3) 

is an interior feasible point in the feasible set of(1.18). 
Proof 
Theorem 1.12 proved  

ASaiPIax iai
T

i ×∈⋅−= − ),(  ,})}({{)( 1 ππαβπ  

is a feasible point of (1.18). Then we only need to prove  

ASaiaxi ×∈> ),(   ,0)(π . 

In section 1.3.1, we proved  

IPPI
t

tt ≥=− ∑
∞

=

−−−

1

111 )()}({ παπα . 

Hence 

ASa)(i,   ,0)( ×∈>≥ ia
T

i ax πβπ , 

proving the theorem. 
 

3.2.2 Computational performance 

As we have mentioned in section 2.2.2: 

∑=
−=

n

i ixx
1
log)(φ  is a 1-self-concordant n -barrier function for )0:{ ≥∈=+ xRxR nn ; 

Furthermore, we can also notice from Corollary 2.5 that )(xφ  has neat second and third term 

derivatives. So we will use ∑=
−=

n

i ixx
1
log)(φ  as a barrier function in the IPM to solve the 

MDP with discounted rewards. 
 
The next result is a theorem about the complexity. 
 
Theorem 3.2 

Given ∑=
−=

n

i ixx
1
log)(φ , the algorithm with damped Newton steps requires not more than 
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122 nn
      (3.4) 

iterations. The output is a point Dx∈  such that 
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311* ε , 

where *x  denotes an optimal solution of (1.18). 
Proof 
Directly from Theorem 2.9 
 
Remark 
1. We can minimize the iteration bound  
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by letting  

2213
28622

−
+−

=
n

nθ , 

but it’s just a theoretical minimal bound, not very useful in practice. Although the damped Newton 
steps can make sure every step is feasible even if we use a very big θ , we should not let θ  be 

too close to 1, because the inner loop will take more iterations to get a x  such that τλμ ≤)(x . 

So in our code, we choose 9.0=θ . 
 
Summing up every row of the linear constraints in (1.18), we can get: 

   
α

β

−
=
∑

∑ =

1
)(

||

1

),(

S

j
j

ai
i ax . 

As we know, ∑
=

||

1

S

j
jβ  and α−1  are both fixed, so ∑

),(
)(

ai
i ax  is a fixed number.  

To make parameters simple, we choose 

Si   ,
||

1
∈=

Siβ . 

 
After the above preparation, we can start to solve MDP with discounted rewards (the MATLAB 
code is in Appendix I). We will try to solve Example 3.1. 
 

First we calculate the initial interior point using Theorem 3.1 with Si   ,
||

1
∈=

Siβ : 

=0x (0.2222    0.2222    0.2222    0.2222    0.2222    0.2222    0.2222    0.2222    0.2222) 
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Starting from this point, Algorithm 2.4 brings us the following result: 

k    ( )1(1x  )2(1x  )3(1x  )1(2x  )2(2x  )3(2x  )1(3x  )2(3x  )3(3x ) 

0  0.2222    0.2222    0.2222    0.2222    0.2222    0.2222    0.2222    0.2222    0.2222 

1  0.1499    0.2067    0.2636    0.2171    0.1964    0.2532    0.2067    0.2636    0.2429 

2(ε =2) 0.1333    0.1828    0.2853    0.2097    0.1778    0.2735    0.1933    0.2947    0.2495 

3  0.0622    0.1227    0.3495    0.1880    0.1245    0.3409    0.1521    0.3928    0.2673 

4  0.0420    0.0739    0.3675    0.1524    0.0830    0.4281    0.1058    0.5034    0.2438 

5  0.0313    0.0540    0.3566    0.1118    0.0597    0.5199    0.0741    0.6024    0.1902 

6  0.0254    0.0440    0.3473    0.0841    0.0471    0.5813    0.0570    0.6674    0.1464 

7(ε =1) 0.0226    0.0393    0.3439    0.0727    0.0415    0.6075    0.0498    0.6958    0.1269 

8  0.0134    0.0243    0.3396    0.0448    0.0251    0.6715    0.0298    0.7668    0.0847 

9  0.0084    0.0153    0.3368    0.0277    0.0156    0.7116    0.0184    0.8122    0.0539 

10  0.0054    0.0100    0.3354    0.0178    0.0101    0.7352    0.0118    0.8393    0.0349 

11  0.0037    0.0069    0.3347    0.0122    0.0069    0.7486    0.0081    0.8549    0.0239 

12  0.0028    0.0052    0.3344    0.0091    0.0052    0.7558    0.0061    0.8633    0.0180 

13(ε =0.1)0.0024    0.0044    0.3342    0.0078    0.0045    0.7590    0.0052    0.8670    0.0154 

 
We can transform these into stationary policies. Because of the one-to-one correspondence 
between the set of stationary policies and the set of feasible solutions of the dual program (1.18), 
we can use (1.20) to transfer this series of feasible solutions into policies: 
 
Table 3.1 

k    ( 11π   12π   13π   21π   22π   23π    31π   32π   33π ) 

0  0.3333    0.3333    0.3333    0.3333    0.3333    0.3333    0.3333    0.3333    0.3333 

1     0.2417    0.3333    0.4250    0.3256    0.2946    0.3799    0.2898    0.3696    0.3406 

2(ε =2) 0.2217    0.3040    0.4744    0.3172    0.2690    0.4138    0.2621    0.3996    0.3383 

3     0.1165    0.2296    0.6539    0.2877    0.1906    0.5217    0.1872    0.4837    0.3291 

4     0.0869    0.1529    0.7603    0.2297    0.1252    0.6452    0.1240    0.5901    0.2858 

5     0.0708    0.1221    0.8071    0.1616    0.0864    0.7520    0.0855    0.6951    0.2195 

6     0.0610    0.1055    0.8335    0.1181    0.0661    0.8158    0.0655    0.7664    0.1681 

7(ε =1) 0.0558    0.0969    0.8473    0.1007    0.0575    0.8418    0.0570    0.7975    0.1455 

8     0.0356    0.0643    0.9001    0.0604    0.0338    0.9058    0.0338    0.8701    0.0961 

9     0.0232    0.0425    0.9343    0.0366    0.0207    0.9427    0.0208    0.9182    0.0610 

10    0.0155    0.0284    0.9561    0.0233    0.0132    0.9635    0.0134    0.9472    0.0394 

11    0.0108    0.0199    0.9693    0.0158    0.0090    0.9752    0.0091    0.9639    0.0270 

12    0.0082    0.0151    0.9767    0.0119    0.0068    0.9814    0.0069    0.9728    0.0203 

13(ε =0.1) 0.0070    0.0130    0.9800    0.0101    0.0058    0.9841    0.0059    0.9767    0.0174 

 
It looks like we have a problem here. Because we only solve the dual linear program, there is no 
estimate about the value vector in the primal linear program, so we cannot give a statement as in 
the value iteration approach, saying “this policy is δ -optimal policy”. Of course, we have 

another way to compute the value vector using )()}({)( 1 ππαπα rPIv −∞ −=  with the policy 
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we get in the dual linear program. However, we will see from section 3.2.4 that we don’t really 
need this value vector. 
 

We can see from the 13th iteration 13π , 23π , 32π  are so close to 1. We can even drop all other 

actions and guess 2)3( ,3)2( ,3)1( === fff  is the optimal deterministic policy. Then, 

anther question comes up: how to choose ε ? Because, in the 7th iteration,  13π , 23π , 32π  are 

already close to 1. it seems not necessary to go to ε =0.1. So, we need a new test to identify an 
optimal deterministic policy. Fortunately, Theorem 1.13 brings us an efficient test which we will 
show below in the next section. 
 

3.2.3 Suboptimality test 

The suboptimality test is described as:  
If  

)}(minmax)(min{min)1()(min)( 1 ayayayay f
iai

f
iai

f
iai

f
i −−−> −αα ,  (3.5) 

then action )(iAai ∈  is suboptimal, where )(ay f
i  is the dual slack variable. 

Given an arbitrary stationary policy, we do the suboptimality test trying to find suboptimal actions. 

If only one action )(iAa∈  for each state is not suboptimal, then we can drop all other actions, 

and get the optimal deterministic policy.  
 
The following table shows the result of the Algorithm 2.4 on example 3.1 with suboptimality test. 
Signal “1” means this action is suboptimal; “0” means this action is not suboptimal. 
 
Example 3.1(continuous) 

k    ( )1(1x  )2(1x  )3(1x  )1(2x  )2(2x  )3(2x  )1(3x  )2(3x  )3(3x ) 

0    1      1      0      1      1      0      1      0      0 

1      1      1      0      1      1     0      1      0      0 

2(ε =2)   1      1      0      1      1     0      1      0      0 

3      1      1      0      1      1      0      1      0      1 

 
We get the optimal deterministic policy after 3 iterations. If we compare this result with Table 3.1, 
we get the following policy at the third iteration: 

:iaπ  ( 11π   12π   13π   21π   22π   23π   31π   32π   33π ) 

     0.1165    0.2296    0.6539    0.2877    0.1906    0.5217    0.1872    0.4837    0.3291 

Obviously, we cannot get any conclusion about the optimal deterministic policy here without 
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suboptimality test. 
 
The performance of suboptimality test depends on the value of α . We can see this from the test 
(3.5). A bigger α  will make fewer actions to be excluded with this inequality. But, when α  is 
small, this test works really well. 
 
The following is the result of the same example with 1.0=α  

k    ( 11π   12π   13π   21π   22π   23π   31π   32π   33π ) 

0  1      1      0      0      1      1      1      0      1 

 

We even get the optimal deterministic policy at the initial point. It works really good in this 
problem. However, if we try 9.0=α : 

k    ( 11π   12π   13π   21π   22π   23π   31π   32π   33π ) 

0  0      0      0      0      0      0      0      0      0 

1      0      0      0      0      0      0      0      0      0 

2     0      0      0      0      0      0      0      0      0 

3     0      0      0      0      0      0      0      0      0 

4     0      0      0      0      0      0      0      0      0 

5     0      0      0      0      0      0      0      0      0 

6     0      0      0      0      0      0      0      0      0 

7     0      0      0      0      0      0      0      0      0 

8  0      0      0      0      0      0      0      0      0 

9      1      0      0      0      0      0      0      0      0 

10     1      0      0      0      0      0      0      0      0 

11    1      0      0      0      0      0      0      0      0 

12    1      1      0      1      1      0      1      0      0 

13    1      1      0      1      1      0      1      0      0 

14    1      1      0      1      1      0      1      0      0 

15    1      1      0      1      1      0      1      0      0 

16    1      1      0      1      1      0      1      0      0 

17(ε =0.1) 1      1      0      1      1      0      1      0      0 

The suboptimality test cannot bring us a optimal deterministic policy even when 1.0=ε . If we 
look at the approximate policy we get from Algorithm 2.4: 

:iaπ  ( 11π   12π   13π   21π   22π   23π   31π   32π   33π ) 

0.0054    0.0106    0.9840    0.0008    0.0008    0.9984    0.0008    0.9793    0.0199 

It is very likely that 2)3( ,3)2( ,3)1( === fff  is the optimal deterministic policy.  

 
What’s more, there is another situation which can not be solved by suboptimality test: multiple 
optimal solutions (MOS). Another way to express this is: there exist several optimal deterministic 
policies with the same value vector. In this situation, suboptimality test can never end up with an 
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optimal deterministic policy, because there are two actions )(, 21 iAaa ∈  for some Si∈  and 

both generate an optimal policy. 
 
So we need another test which works well for all α , also in the multiple optimal solutions 
situation. 
 

3.2.4 Optimality equation test 

We first take a look at the behavior of Algorithm 2.4 in MDP with discounted rewards. According 
to the statement at the beginning of section 3.2, IPM has different behavior in MOS case and 
non-MOS cases. In non-MOS case, there is only one optimal deterministic policy. Therefore, for 

every state i , we have one )(* ,* iAaia ∈π  which is very close to 1 and all other 

*\)( , aiAaia ∈π  are close to 0. On the other hand, in MOS case, there are several optimal 

deterministic policies with the same optimal value vector. In this case, there are several 

)( , iAaia ∈π  which are close to 
in

1
, where in  is the number of optimal actions in state i , 

and all other iaπ  go to 0. Hence this gives us a new idea: once we get a policy from Algorithm 

2.4, we make a new policy: 

   Siiaaia
ia ∈

⎩
⎨
⎧ =

=    ,
otherwise                                    0

}{max                            1* ππ
π      (3.6) 

and check whether it is an optimal policy. We can do this by checking whether the value vector of 
this policy fulfills the optimality equation: 

   Sivaparv
j

jijiiAai ∈+= ∑∈   )},()()({max)( *
)(

* παπ αα .    (3.7) 

If the answer is no, we will go several steps further in IPM, until the heuristic policy changes. 
Then we do the optimality equation test again. 
 
Remark 

Of course, we can make the new policy in another way: set up a threshold )1,0(
A

d ∈ . Then, for 

every state Si∈ , we let every )(   ,: iAadiaia ∈<ππ  to be zero, and randomly pickup an 

action *a  from }:{ da ia ≥π . Then we choose *)( aif =  in the new policy. 

 
Here we treat the Example 3.1 with 9.0=α . It is non-MOS. 
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k   opt?  ( 11π   12π   13π   21π   22π   23π    31π    32π     33π ) 

0 No  0.33     0.33    0.33    0.33    0.33     0.33    0.33    0.33    0.33 

1 Yes   0     0     1       0        0     1         0     1     0 

It’s much better than the suboptimality test in this example. 
(For the initial point, the policy is not in a form of a deterministic policy, because we start from a 
policy which gives every possible action equal possibilities for every state. Then they are all 
maximum in the initial point. However, this situation will be changed in following iterations.) 
 
On the other hand, in a MOS case, we cannot get every possible optimal deterministic policy, but 
one optimal deterministic policy is enough in general. 
 
We consider the next example which was obtained by modifying Example 3.1 
 
Example 3.2 

;
2
1

=α  }3,2,1{=S , }3,2,1{)3()2()1( === AAA ; 3)3(,2)2(,1)1( 111 === rrr  

9)3(,4)2(,6)1( 222 === rrr ; 9)3(,9)2(,9)1( 333 === rrr . 

0)1()1(,1)1( 131211 === ppp ; 0)2(,1)2(,0)2( 131211 === ppp ; 

1)3(,0)3()3( 131211 === ppp ; 0)1()1(,1)1( 232221 === ppp ; 

0)2(,1)2(,0)2( 232221 === ppp ; 1)3(,0)3()3( 232221 === ppp ; 

0)1()1(,1)1( 333231 === ppp ; 0)2(,1)2(,0)2( 333231 === ppp ; 

0)3(,1)3(,0)3( 333231 === ppp . 

It is not hard to find out  

2)3(,3)2(,3)1(:1 === fffπ  and 3)3(,3)2(,3)1(:2 === fffπ   

are both optimal policies. The following table is the result we get. 

k   Opt? ( 11π   12π   13π   21π   22π   23π    31π    32π    33π ) 

0 No 0.33     0.33    0.33    0.33    0.33     0.33    0.33    0.33    0.33 

1 Yes  0     0     1       0        0     1         0     0     1 

We only get one of the optimal deterministic policies. 
 
In Appendix C, we list the performance measure for this heuristic method in bigger MDP models, 
which have more than 10 states and 4 actions. 
 
Because we start from a policy which gives every possible action equal possibility for every state, 
this heuristic approach can reveal the optimal set in the first several steps. As we can see from 



 85

Table 3.1, 13π , 23π , 32π  start to increase in the first iteration and other iaπ  start to decrease 

at the same time. So, at that time we can already see the moving trend of the IPM. Hence, 
Algorithm 2.4 with optimality equation test has advantage against suboptimality test when α  is 
close to 1, and also in the MOS case which we showed above. 
 

3.3 Average rewards 

As we can see from the section 1.4.6, the linear programming approach to MDP with average 

rewards is to compute the optimal solution *)*,( uv  and *)*,( yx  of the dual pair of linear 

programs: 
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The same as in section 3.2, we are going to use Algorithm 2.4 to get the dual optimal solution *x ; 
the primal solution *v  is generated as by-product. 
 
However, this linear programming problem is much more complicated than the one we treated in 
section 3.2. But we have a certain way to solve it, and we will describe the solution in the 
following two sections. 
 

3.3.1 Initial point 

We now discuss how to start Algorithm 2.4 in linear programming approach for MDP with 
average rewards. The original idea is to generate an initial point with (1.44) in the same way we 
did in section 3.2.1. However it doesn’t work in general. 
 

If there exists a state Si∈  which is transient under any policy Cf ∈∞ , then the 

corresponding part of x  will always be zero. That means there is no strictly feasible point in the 
feasible set. Hence we cannot apply IPM in this case. 
 
The following example shows this phenomenon: 
Example 3.3 
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}3,2,1{=S , }2,1{)3()2()1( === AAA ; 2)2(,1)1( 11 == rr ; 

4)2(,6)1( 22 == rr ; 9)2(,8)1( 33 == rr . 

0)1()1(,1)1( 131211 === ppp ; 0)2(,1)2(,0)2( 131211 === ppp ; 

0)1()1(,1)1( 232221 === ppp ; 0)2(,1)2(,0)2( 232221 === ppp ;  

0)1()1(,1)1( 333231 === ppp ; 
2
1)2(,

2
1)2(,0)2( 333231 === ppp . 

We can see state 3 is transient under any policy. The first part of the dual linear programming 
problem is: 

  0
10000
00110

010110

2
1

2
1 =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

−−
x . 

Because 0≥x , any feasible solution x  of the above equation must have 0)2()1( 33 == xx . 

So we don’t have a strictly feasible interior point here, but this problem is solvable.  
 
The problems (1.36) and (1.37) are of the following form 

 (P)  }:min{ cAyybT ≥ , 

and its dual: 

 (D)  }0  ,:max{ ≥= xbxAxc TT . 

Assuming that (P) and (D) are both feasible, the optimal sets of (P) and (D) are denoted by *P  
and *D . We define the index sets B  and N  by 

  *}  ,:{: PycyAiB ii ∈>= . 

*}  ,0:{: DxxiN i ∈>= . 

From the strong duality theorem, B  and N  form a partition of the full index set and the 
optimal values for both of these linear problems are the same. We denote the optimal-value 

function as ),( cbz . 

Then we start to investigate the effect of changes in b  and c  on the optimal value function 

),( cbz . We consider one-dimensional parameter perturbations of b  and c . We assume that b  

and c  are such that (P) and (D) are feasible. Then ),( cbz  is well defined and finite. It is 

convenient to introduce the following notations: 

  ),(:)( cbbzf Δ+= λλ ,  ),()( ccbzg Δ+= μμ . 
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It can be proved that the domains of f  and g  are closed intervals on the real line. 

 
Theorem 3.4 

)(λf  is continuous, concave and piecewise linear. 

Proof 
By definition, 

  }:)min{()( Pyybbf T ∈Δ+= λλ . 

For each λ  the minimum value is attained at a central solution *y  of (P). Now *y  is 

uniquely determined by the optimal partition of (P) and *)( ybb TΔ+ λ  is constant for all 

optimal *y . Associating one particular *y , we obtain that 

  }:)min{()( Syybbf T ∈Δ+= λλ , 

where S  is a finite subset of P , For each Sy∈ , we have 

   ybybybb TTT Δ+=Δ+ λλ )( , 

which is a linear function of λ . This makes clear that )(λf  is the minimum of a finite set of 

linear functions. It can be proved that the minimum of a finite set of linear functions is continuous, 
concave and piecewise linear. 

Therefore, )(λf  is continuous, concave and piecewise linear, proving the theorem. 

 
In the same way, we get: 
 
Theorem 3.5 

)(μg  is continuous, convex and piecewise linear. 

 

For any λ  in the domain of f  we denote the optimal set of )( λP  by *
λP  and the optimal set 

of )( λD  by *
λD . 

 
Theorem 3.6 

If )(λf  is linear on the interval ],[ 21 λλ , where 21 λλ < , then the primal optimal set *
λP  is 

constant (i.e. invariant) for ),( 21 λλλ ∈ . 
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Proof 

Let ),( 21 λλλ ∈  be arbitrary and let *
λPy∈ be arbitrary as well. Since y  is optimal for 

)( λP  we have 

   ybybybf TTT Δ+== λλλ )()( , 

and, since y  is feasible for allλ , 

 )()( 111 λλλ fybybyb TTT ≤Δ+= ,  )()( 222 λλλ fybybyb TTT ≤Δ+= . 

Hence we find 

 ybff TΔ−≥− )()()( 11 λλλλ ,  ybff TΔ−≥− )()()( 22 λλλλ . 

The linearity of f  on ],[ 21 λλ  implies 

   
λλ
λλ

λλ
λλ

−
−

=
−
−

2

2

1

1 )()()()( ffff
. 

Now using that 02 >−λλ  and 01 >−λλ  we obtain 

  ybffffyb TT Δ≤
−
−

=
−
−

≤Δ
1

1

2

2 )()()()(
λλ
λλ

λλ
λλ

. 

Hence, the last two inequalities are equalities, and the slope of f  on the closed interval 

],[ 21 λλ  is just ybTΔ . This means that the derivative of f  with respect to λ  on the open 

interval ),( 21 λλ  satisfies 

  ),(  ,)(' 21 λλλλ ∈∀Δ= ybf T , 

or equivalently, 

  ),(  ,)()( 21 λλλλλλ ∈∀=Δ+= ybybybf TTT . 

We conclude that y  is optimal for any )( λP  with ),( 21 λλλ ∈ . Since y  was arbitrary in 

*
λP , it follows that 

  ),(  , 21
** λλλλλ ∈∀⊆ PP . 

Since λ  was arbitrary in the open interval ),( 21 λλ , the above argument applies to any 

),(~  21 λλλ ∈ ; so we also have 
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  ),(  , 21
**

~ λλλλλ ∈∀⊆ PP . 

We may conclude that *
~

*
λλ PP ⊆  and **

~ λλ PP ⊆ , which gives *
~

*
λλ PP = . The theorem follows, 

 
In the same way we can also prove the following theorem. 
 
Theorem 3.7 

If )(μg  is linear on the interval ],[ 21 μμ , where 21 μμ < , then the dual optimal set *
μD  is 

constant (i.e. invariant) for ),( 21 μμμ ∈ . 

 
Theorem 3.6 gives us an idea to deal with the case that we don’t have strictly feasible interior 
point. We start from the same policy we used in section 3.2.1, and put this policy in (1.44): 

⎪⎩

⎪
⎨
⎧

⋅+=

⋅=

∑∑
∑

iaj jijj jiji

iaj jiji

PDay
Pax

ππγπβ
ππβ

π

π

})}({)}({{)(
})}({{)(

*

*

 

to get a feasible point of (1.37). Of course, this point may not be an interior point of the feasible 
set. Then we modify the original problem by adding  

xAb TΔ=Δ     in which 0xx >Δ+  

to b , and make sure xΔ  is small enough compared to x , so that the primal optimal set will not 
be changed. Hence, from the modified problem we can get an optimal policy which is also optimal 
for the original problem. 
 
Remark 
1) About the choice of xΔ . If we sum every row of the linear constraints of (1.37), we can see 

∑∑ =
j jai i ax β

),(
)( . 

Hence, normally, we can take a xΔ  related to ∑ j jβ . In our code, we just choose  

   
⎪⎩

⎪
⎨

⎧

=
×

≠
=Δ ∑

0)(              
||

0)(                          0
)(

3 ax
AS

ax
ax

i
j j

i

i
β .       (3.8) 

2) About the y  part of the initial point. For i  belongs to a communicating set, we can always 

choose γ  to make sure 0)( >ayi . On the other hand, if i  belongs to a transient set, 

iaj jij P ππγ ⋅∑ })}({ *  is always zero. However, the corresponding part of the transient set in 

)(πD  is 1)( −−QI , and it is bigger than I . Hence we can conclude that the y  part of the 

initial point is strictly positive. 
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3.3.2 Computational performance 

Basically, we have the same approach as in section 3.2.2. We try to use Algorithm 2.4 to solve the 
LP problem (1.37) and to get an optimal solution, but the problem is not that easy. 

We can see from (1.37) that there is no y  in the objective function ∑
),(

)()(
ai

ii axar . That means 

if we have an optimal solution *)*,( yx  for (1.37) and a yΔ , s.t. 

0)()}({
),(

=Δ−∑ ai jijij ayapδ , 

then we can get unbounded optimal solutions in the feasible set with the form  

)**,( yMyx Δ+   

in which 0*  , ≥Δ+∈ yMyRM . 

This may not be a problem in the simplex method, because the simplex method moves from one 
extreme feasible point to another, but it may cause the IPM to fail. Even if IPM can end up with an 
optimal solution, it can be an interior point in the middle of the feasible set, not close to any 
extreme optimal solution. Then we cannot apply Theorem 1.26 to get an optimal policy. 
 
Fortunately, Theorem 3.7 offers us a good way to overcome this disadvantage. What we do is 
adding a proper penalty on y  to the objective function and transforms it to: 

   ∑∑ −
),(),(

)()()(
ai

i
ai

ii ayaxar δ .         (3.9) 

Here the “proper” means δ  is small enough to make sure the new LP problem has the same 
optimal set as the original problem, but not too small that the penalty doesn’t really work. Because 

if δ  is almost zero, y  can still be very big and the optimal solution we get is not close to the 

extreme optimal solutions enough. In our code, we just let 1=δ , and it works fine. 
 
Now, we are fully prepared, and we can start to solve MDP problem with average rewards. The 
following is the result of Example 3.1 (because of the limit of space, we just list only a few 
iterations here). Here we choose 1=δ . 

  ( )1(1x  )2(1x  )3(1x  )1(2x  )2(2x  )3(2x  )1(3x  )2(3x  )3(3x  

  )1(1y  )2(1y  )3(1y  )1(2y  )2(2y  )3(2y  )1(3y  )2(3y  )3(3y ) 

Initial (0.1111  0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 
0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333) 
M  

iteration 14  
2=ε   (0.0176 0.0250 0.0778 0.0527 0.0325 0.2544 0.0500 0.2822 0.2079 

0.1048 0.1446 0.2186 0.0819 0.1048 0.1401 0.0684 0.0837 0.1048) 
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M  
iteration 23 

1=ε  (0.0020 0.0028 0.0129 0.0079 0.0035 0.3994 0.0077 0.4046 0.1592 
0.0105 0.0847 0.2418 0.0056 0.0105 0.0113 0.0053 0.0097 0.0105) 
M  

iteration 32 
1.0=ε  (0.0002 0.0003 0.0014 0.0008 0.0004 0.4172 0.0008 0.4178 0.1611 

0.0011 0.0856 0.2469 0.0005 0.0011 0.0011 0.0005 0.0010 0.0011) 
  M  
 
We can see in 32nd iterations, we are very close the extreme solution: 

  (0  0  0  0  0  12
5   0  12

5   6
1  

  0  12
1   4

1   0  0  0  0  0  0). 

From this, we can get the corresponding deterministic policy using (1.43): 

3)1( =f (or 2)1( =f ), 3)2( =f , 2)3( =f (or 3)3( =f ). 

It is obviously that every combination of the above is an optimal deterministic policy.. 
 
Also we try to solve Example 3.3 which has no strictly feasible interior point. We start from point  

(0.2500 0.2500 0.2500 0.2500 0  0 
0.6667 0.6667 0.6111 0.6111 0.2222   0.2222). 

Then we add 0]  0  0  0  0  0  0.0046  0.0046  0  0  0  0[=Δx  to it, so the initial point will be 

(0.2500 0.2500 0.2500 0.2500 0.0046 0.0046 
0.6667 0.6667 0.6111 0.6111 0.2222   0.2222). 

The linear constraints will be 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
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⎢
⎢
⎢

⎣

⎡
−
−

=⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
−−

3426.0
3333.0
3333.0
0069.0
0023.0
0046.0

1000011
0011011

01011011
10000
00110

010110

2
1

2
1

2
1

2
1

y
x

. 

We also put a penalty in the objective function, and it becomes 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−−−−−−

y
x

111111984621 . 

Then we solve the modified linear programming problem: 

  ( )1(1x  )2(1x  )1(2x  )2(2x  )1(3x  )2(3x   

)1(1y  )2(1y  )1(2y  )2(2y  )1(3y  )2(3y ) 
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Initial  (0.2500 0.2500 0.2500 0.2500 0.0046 0.0046 
0.6667 0.6667 0.6111 0.6111 0.2222   0.2222) 
M  

iteration 7 
2=ε  (0.0353 0.3769 0.3784 0.2078 0.0031 0.0077 

0.1060 0.2133 0.0703 0.1060 0.2220 0.2197) 
  M  
iteration 13 

1=ε  (0.0041 0.4832 0.4868 0.0222 0.0010 0.0119 
0.0105 0.1060 0.0055 0.0105 0.2544 0.1505) 

  M  
iteration 19 

1.0=ε  (0.0004 0.4942 0.4987 0.0021 0.0001 0.0137 
0.0011 0.0973 0.0005 0.0011 0.2581 0.1415) 

  M  
The same as last example, in 19th iterations, we are very close to an extreme solution: 

  (0  2
1   2

1   0  0  0 

  0  12
1   0  0  4

1   6
1 ) 

Then, we can get two corresponding deterministic policies using (1.43): 

2)1( =f , 1)2( =f , 1)3( =f  or 2)1( =f , 1)2( =f , 2)3( =f . 

Both of them are optimal policies. 
 

3.3.3 Optimality equation test 

Here we follow the same idea in section 3.2.4: based on the policy we get from the IPM, we make 
a new deterministic policy and check whether it is optimal. If it is not, we go several steps further 
in the IPM until the heuristic policy changes. However, in MDP with average rewards, the 
situation is more complicated. 
 

There is no property like: for every Si∈ , there exists an action )(iAa∈  such that in the 

extreme optimal solution 0)( >axi . Therefore we cannot use the same trick in this section. In 

(1.43) we have to find the set }0)(|{ >∈= ∑a ix axSiS  first, but in the IPM, we move inside 

the feasible set. That means every point we get from IPM is strictly bigger than zero. Hence, the 

first thing we shall do is to set up a threshold d , and set any )(axi  which are lower than this 

threshold to zero.  
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ASai
dax
daxax

ax
i

ii
i ×∈

⎩
⎨
⎧

<
≥

= ),(   ,
)(                                     0
)(                               )(

)(* .   (3.10) 

Now, it is possible for us to use (1.43) to get a policy. 
 
Remark 
About the choice of d . Because of the same reason as xΔ , normally, we can take a d  related 

to ∑ j jβ . We should also take xΔ  into account. The amount 3|| AS
j j

×
∑ β

 should always be 

smaller than d  so that the optimal set of the original linear programming problem stay the same. 
In our code, we just choose  

   2|| AS
d j j

×
=
∑ β

.            (3.11) 

 
Then, we face another problem often: there are much more possible optimal deterministic policies 
in average rewards case than in the discounted rewards case. We can see this from the stationary 

matrix )(* fP of an optimal policy f . Different policies can lead to the same stationary matrix 

)(* fP , so they all have the same value vector. That means they are all optimal policies. We only 

consider deterministic policies here. The simplest way to get a deterministic policy is: 

ASaiayayaxji

axaxaxji

iaia j

iaia j

ia ×∈
⎪
⎩

⎪
⎨

⎧

==∈

=>∈

= ∑
∑

),(   ,
otherwise                                                                      0

)(max)(  },0)(|{ if                  1

)(max)(  },0)(|{ if                  1 **

π . (3.12) 

 
In this heuristic way, we need a test to check whether it is an optimal policy. The next theorem 
introduces us a test. 

For every Si∈  and )(DCf ∈∞ , the action set ),( fiB  is defined by  

.
)()()()()(r  and  )()()(

or  )()()(
)(),( 00

i ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+>+=

>
∈= ∞∞∞∞

∞∞

∑∑
∑

fuffuapaffap
ffap

iAafiB
iij jijij jij

ij jij

φφφ
φφ

                  (3.13)
                   
Theorem 3.8 

If ofiB /=),(  for every Si∈ , then ∞f  is an average optimal policy. 

Proof 

Since ofiB /=),(  for every Si∈ , for any )(DCh ∈∞ , we have  

 )()()( ∞∞ ≤∑ ffhp ij jij φφ  
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and 

 )()()()()(r 00
i

∞∞∞ +≤+∑ fuffuapa jij jij φ  if  )()()( ∞∞ =∑ ffhp ij jij φφ . 

Let ,...),,( ffhR = . Then, )()()()( ∞+= fvhPhrRv αα α  and, by Theorem 1.22, 

.)()()(
1

)(              

)()(
1

)()}1(1{)()()(
1

)(

1
0

1
0

1
0

effuf

efuffuffv
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−−=++
−

=

∞
∞

∞
∞∞

αεφ
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(in this proof )(αε k  satisfies 0)(lim 1 =↑ αεα k ) implying 

.)()()()()()(
1

)()(          

})()()(
1

)(){()()(

1
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1
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efhPfuhPhrfhP
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Since efuffv ⋅++
−

=
∞

∞ )()(
1

)()( 2
0 αε

α
φα , we have 

.)()}()()()()()({                                             

)}()()({
1

1)()(

3
00 efhPfuhPhrfu

fhPfRvfv

⋅++−−+

−
−

=−

∞

∞∞∞

αεφ

φφ
α

αα

 

Since 0)()()( ≥− ∞∞ fhPf φφ  and, if 0)}()()({ =− ∞∞
ifhPf φφ , 

0)}()()()()({)}()()()()()({ 0000 ≥+−−=+−− ∞∞
ii ffuhPhrfufhPfuhPhrfu φφ , 

we obtain 

  eRvfv ⋅≥−∞ )()()( 3 αεαα  for α  sufficiently close to 1, i.e. 

  efvhPhreRvfv ⋅++=⋅+≥ ∞∞ )()()()()()()( 33 αεααε ααα . 

Hence, 

  efvhPhrfvhPI ⋅++≥− ∞∞ )()()()()()}({ 3 αεαα αα . 

Therefore, 

  ehvehrhPIfv ⋅
−

+=⋅+−≥ ∞−∞

α
αεαεα αα

1
)()(})()({)}({)( 3

3
1 . 

From the Laurent expansion follows )()( ∞∞ ≥ hf φφ , i.e. ∞f  is an average optimal policy. 

 
From the above theorem, we get a way to judge whether a deterministic policy is average optimal. 
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And we try to use this test in Algorithm 2.4 to solve Example 3.1: 
 

k  opt? ( 11π   12π   13π   21π   22π   23π    31π    32π    33π ) 

0 no (0.333 0.333  0.333  0.333  0.333  0.333  0.333  0.333  0.333) 

1 yes (0  0  1  0  0  1  0  1  0 ) 

 
This test turned out to be extremely good in this example. We also try Example 3.3 
 

k   opt?   ( 11π   12π   21π   22π   31π    32π ) 

0 no   0.5  0.5  0.5  0.5  0.5  0.5 
1 yes   0  1  1  0  0  1 
 
It seems as the optimality equation test is unbelievably efficient, but it is reasonable. By the choice 
of initial point, we get a point which fulfills  

)()( 21 axax ii =  and )()( 21 ayay ii =  

for SiiAaa ∈∈∀   ),(, 21 . One the other hand, the optimal solution of (1.37) must have  

 one 0)( >axi  or 0)( >ayi  for every state Si∈ . 

Take into account  

  ∑∑ =
j jai i ax β

),(
)(  

which is a constant, we can see why the first move of the IPM can show the clue of the optimal 
policy. 
 
For performance measure of this heuristic method in big MDP models with averages rewards, we 
refer to Appendix C. 
 

3.3.4 Blackwell optimal policy 

There is another algorithm for the MDP with average rewards. As we see from the section 1.4.3, if 
α  is close enough to 1, the optimal policy for discounted rewards is also optimal for average 
rewards.  
 
We can compare the optimal policy for MDP with discounted rewards in the case 9.0=α  with 
the optimal policy for MDP with average rewards, we can see they are actually the same. 
 
Another question comes up: when is α  is close enough to 1?  
This is a parametric analysis problem of linear programming problem 
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}0  ,:max{ ≥= xbxAxc TT  

like we did at the beginning of section 3.3.1. Here, we don’t consider how the optimal set changes 
with the change of b  and c , but under the change of matrix A , which is a much harder 
problem. 
 
However, in practice, if we choose 99.0=α , we will nearly always get an optimal policy for 
MDP with average rewards from solving the MDP problem with discounted rewards. 
 
In Appendix C, we list the performance measure for this heuristic method in discounted rewards 
with 99.0=α . We can compare the result with average rewards. 
 

Conclusion  

Because of the special way to choose the starting point and construct the heuristic policy, in nearly 
all cases, we don’t need to go very close to the optimal solution of the linear programming 
problem to get the optimal deterministic policy. As we can see from Appendix C, this heuristic 
approach to MDPs based on the IPM is very efficient. Even for a Linear programming problem 
with 160 variables (20 state, 8 actions), we are able to get the optimal deterministic policy for 
discounted rewards case in less than 30 iterations (on average out of 1000 random MDPs). Hence, 
in MDPs, this method apparently has an advantage against simplex method.  
 
There is still something we need to do to complete our research in this method. We don’t have a 
theoretical complexity bound for this method. It’s not that easy to get complexity bound. However, 
simplex method doesn’t have an exact complexity bound neither, and it’s still a well accepted 
method. 
 
What’s more, we can also use this heuristic approach in value iteration. In value iteration, we need 
to calculate: 

  })()({max)()(1 ∑∑ +=+=+
j

n
ijiaj

n
nijni

n vaparvfpfrv αα  . 

We also have a guess of the policy nf  for the optimal policy. 
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Appendix A 
Some technical lemmas 
 
We start with a slightly generalized version of the well-known Cauchy-Schwarz inequality. The 
classical Cauchy-Schwarz inequality follows by taking IMA ==  in the next lemma (where 
I  is the identity matrix). 
 
Lemma A.1 (generalized Cauchy-Schwarz inequality).  

If MA  ,  are symmetric matrices with AxxMxx TT ≤|| , nRx∈∀ , then 

   ))(()( 2 AbbAaaMba TTT ≤ , nRba ∈∀ , . 

Proof 

Note that 0≥AxxT , nRx∈∀ , so A  is positive semi-definite. Without loss of generality, we 

assume that A  is positive definite. Otherwise IA ε+  is positive definite for all 0>ε , and 
we take the limit as 0→ε , with a  and b  are nonzero. It follows from 

   ( ) ( ) ( ) ( )( )baMbabaMbaMba TTT −−−++=
4
1

 

that 
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=μ . 

When replacing a  by 
μ
a

 and b  by bμ  this implies 

 ( ) ( )( ).1
4
1)(

2
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2

2

2 AbbAaaAbbAaabMaMba TTTT
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⎠
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⎜

⎝

⎛
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⎠
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⎝

⎛
= μ
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μ

μ
, 

which was to be shown. 
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The following lemma gives an estimate for the spectral radius of a symmetric homogeneous 
trilinear form. The proof is due to Jarre [8]. 
 
Lemma A.2 (Spectral Radius for Symmetric Trilinear Forms). 

Let a symmetric homogeneous trilinear form RM →×× nnn RRR :  be given by its 

coefficient matrix nnnR ××∈M . Let RA →× nn RR :  be a symmetric bilinear form, with 

matrix nnR ×∈A , and 0>μ  a scalar such that 

   n
A

RxxxxAxxxM ∈∀=≤   ,],[],,[ 632 μμ . 

Then  

   n
AAA

RzyxzyxzyxM ∈∀≤ ,,  ,],,[ μ . 

Proof 

Without loss of generality we assume that 1=μ . Otherwise we replace A  by A3 μ . As in the 

proof of Lemma A.1 we assume that A  is positive definite. Then, using the substitution 

   ],,[:],,[ 2
1

2
1

2
1

zAyAxAMzyxM −−−=  

we can further assume that IA =  is the identity matrix and we need to show that 

   nRzyxzyxzyxM ∈∀≤ ,,  ,],,[
222

μ . 

under the hypothesis 

   nRxxxxxM ∈∀≤   ,],,[ 3

2
μ . 

For nRx∈  denote by xM  the (symmetric) matrix defined by 

  [ ] [ ] n
xx

T RzyzyxMzyMzMy ∈∀== ,  ,,,:,: . 

It is sufficient to show that 

   nRyxyxyyxM ∈∀≤ ,  ,],,[ 2

22
μ , 

because the remaining part follows by applying Lemma A.1, with xMM = , for fixed x . 

Define  

   [ ]{ }1 : ,,max:
22
=== yxyyxMσ  

and let x  and y  represent a solution of this maximization problem. The necessary optimality 
condition for x  and y  imply that 
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where α  and β  are the Lagrange multipliers. From this we deduce that 
2
σα =  and σβ = , 

by multiplying from the left with ( )0,Tx  and ( )Ty,0 , and thus we find 

   xyM y σ= ,  yxM y σ=2 , 

which implies that yyM y
22 σ= . Since yM  is symmetric, it follows that y  is an eigenvector 

of yM  with the eigenvalue σ± , which gives that 

   [ ]yyyMyMy y
T ,,==σ . 

This completes the proof. 
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Appendix B 

Code I 

This code is for MDPs with discounted rewards. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% main %%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function Damped_Newton_steps 
 
[A, P, Q, alpha, beta, r, c, x, n, m, v, taw, epsilon, thet, mu] = initiation; 
s=0; 
 
[deltx, lambd] = calculate_lambd(A, x, c, v, mu); 
 
[A,x,c]=analyse_x(A, P, Q, alpha, beta, r, c, x, n, m, v, taw, epsilon, thet, mu); 
     
while (lambd > taw) 
    s=s+1; 
    x = x+deltx/(1+lambd); 

[A,x,c]=analyse_x(A, P, Q, alpha, beta, r, c, x, n, m, v, taw, epsilon, thet, mu); 
    [deltx, lambd] = calculate_lambd(A, x, c, v, mu); 
end; 
 
disp('---------------------------------'); 
 
while (v*mu > epsilon) 
    mu = (1-thet)*mu; 
     
    [deltx, lambd] = calculate_lambd(A, x, c, v, mu); 
     
    while (lambd>taw) 
        s=s+1; 
        x = x+deltx/(1+lambd); 

[A,x,c]=analyse_x(A, P, Q, alpha, beta, r, c, x, n, m, v, taw, epsilon, thet, mu); 
        [deltx, lambd] = calculate_lambd(A, x, c, v, mu); 
    end; 
disp('---------------------------------'); 
end; 
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disp(sprintf('total number of iterations: %.6f', s)); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% subfunctions %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%% initiation %%%%%%%%%%%%%%%%%%%%%%% 
function [A, P, Q, alpha, beta, r, c, x, n, m, v, taw, epsilon, thet, mu] = initiation; 
 
alpha=0.5; 
r=[1; 2; 3; 6; 4; 5; 8; 9; 7]; 
c=(-1)*r; 
n=3;                                % # of states % 
m=3;                                % # of actions % 
v=n*m; 
beta=ones(n,1)/n; 
 
taw=1/3; 
epsilon=0.1; 
thet=0.9; 
mu=1; 
 
policy=[];                          % initial policy 
for i=1:n 
    temp=r((i-1)*m+1:i*m)>0; 
    policy=[policy; temp/sum(temp)]; 
end; 
 
P{1} = [1, 0, 0; 1, 0, 0; 1, 0, 0]; % Pij(a=1) % 
P{2} = [0, 1, 0; 0, 1, 0; 0, 1, 0]; 
P{3} = [0, 0, 1; 0, 0, 1; 0, 0, 1]; 
 
 
for i=1:n                           % Pij(a=1,2,3)=>Qi=1,2,3 j(a) 
    Q{i}=[]; 
    for j=1:m 
        Q{i}=[Q{i};P{j}(i,:)]; 
    end; 
end; 
 
Ppolicy=[]; 
for i=1:n 
    Ppolicy=[Ppolicy; (policy((i-1)*m+1:i*m))'*Q{i}]; 
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end; 
 
for i=1:m                           % matrix A 
    temp=eye(n,n)-alpha*P{i}; 
    for j=1:n 
        A(:,i+(j-1)*m)=temp(j,:)'; 
    end; 
end; 
 
temp=beta'*(eye(n,n)-alpha*Ppolicy)^(-1);      % initial point % 
x=[]; 
for i=1:n 
    x=[x;temp(i)*policy((i-1)*m+1:i*m)]; 
end; 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%% calculate deltx & lambd %%%%%%%%%%%%%%%%% 
function [deltx, lambd] = calculate_lambd(A, x, c, v, mu); 
 
y = x; 
B = A; 
d = c; 
position = (x~=0); 
u = sum(position); 
 
for i=v:-1:1 
    if (position(i)~=1) 
        y(i)=[]; 
        d(i)=[]; 
        B(:,i)=[]; 
    end; 
end; 
 
h = diag(y); 
H = diag( y.*y); 
delty = (H*B'*(B*H*B')^(-1)*B-eye(u)) * (H*(d/mu) - y); 
hdelty = -(eye(u)-h*B'*(B*H*B')^(-1)*B*h)*(h*(d/mu) - ones(u,1)); 
lambd = (hdelty'*hdelty)^(0.5); 
 
deltx=[]; 
for i=1:v 
    if position(i)==1 
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        deltx = [deltx; delty(1)]; delty(1)=[]; 
    else 
        deltx = [deltx; 0]; 
    end; 
end; 
         
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% analyse x %%%%%%%%%%%%%%%%%%%%%%% 
function [A,x,c]=analyse_x(A, P, Q, alpha, beta, r, c, x, n, m, v, taw, epsilon, thet, mu); 
 
%%%%%%%%%%%% suboptimal test %%%%%%%%%%%%%% 
policy=[]; 
for i=1:n 
    temp=x(1+(i-1)*m:i*m); 
    policy=[policy; temp/sum(temp)]; 
end; 
 
Ppolicy=[];                     % P(pi) 
for i=1:n 
    Ppolicy=[Ppolicy; (policy((i-1)*m+1:i*m))'*Q{i}]; 
end; 
 
rpolicy=[];                     % r(pi) 
for i=1:n 
    rpolicy=[rpolicy; r((i-1)*m+1:i*m)'*policy((i-1)*m+1:i*m)]; 
end; 
 
vpolicy=(eye(n)-alpha*Ppolicy)^(-1)*rpolicy;            % v(pi) 
 
spolicy=[];                     % s(pi) 
for i=1:m 
    spolicy(i:m:v)=r(i:m:v)+alpha*P{i}*vpolicy-vpolicy; 
end; 
spolicy=spolicy'; 
 
Ux_x=[];                        % Ux-x 
for i=1:n 
    Ux_x=[Ux_x; max(spolicy((i-1)*m+1:i*m))]; 
end; 
 
subopt=[]; 
for i=1:n 
    subopt=[subopt; spolicy((i-1)*m+1:i*m)<(Ux_x(i)-alpha/(1-alpha)*range(Ux_x))]; 



 104

end; 
 
 
%%%%%%%%%%%% guess a deterministic policy %%%%%%%%%%%%%% 
Dpolicy=[];                     % guess the deterministic policy: the action with the maxim 
probability 
for i=1:n 
    temp=policy((i-1)*m+1:i*m)==max(policy((i-1)*m+1:i*m)); 
    Dpolicy=[Dpolicy; temp/sum(temp)]; 
end; 
 
PDpolicy=[]; 
for i=1:n 
    PDpolicy=[PDpolicy; (Dpolicy((i-1)*m+1:i*m))'*Q{i}]; 
end; 
 
rDpolicy=[];                     % r(pi) 
for i=1:n 
    rDpolicy=[rDpolicy; r((i-1)*m+1:i*m)'*Dpolicy((i-1)*m+1:i*m)]; 
end; 
 
vDpolicy=(eye(n)-alpha*PDpolicy)^(-1)*rDpolicy; 
 
Dtest=[]; 
for i=1:n 
    temp=r((i-1)*m+1:i*m)+alpha*Q{i}*vDpolicy; 
    Dtest=[Dtest; max(temp)]; 
end; 
 
disp(x'); 
disp(policy'); 
disp(subopt'); 
disp(Dpolicy'); 
disp(sprintf('------ %.6f', sum(vDpolicy==Dtest)==n)); 
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Code II 

The code for MDPs with average rewards is: 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% main %%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function Damped_Newton_steps 
 
[A, P, Q, beta, r, c, x, n, m, w, taw, epsilon, thet, mu] = initiation; 
s=0; 
 
[deltx, lambd] = calculate_lambd(A, x, c, w, mu); 
 
analyse_x(A, P, Q, beta, r, c, x, n, m, w, taw, epsilon, thet, mu); 
 
 
while (lambd > taw) 
    s=s+1; disp(s); 
    x = x+deltx/(1+lambd); 

analyse_x(A, P, Q, beta, r, c, x, n, m, w, taw, epsilon, thet, mu); 
 
    [deltx, lambd] = calculate_lambd(A, x, c, w, mu); 
end; 
 
disp('---------------------------------'); 
 
while (w*mu > epsilon) 
    mu = (1-thet)*mu; 
     
    [deltx, lambd] = calculate_lambd(A, x, c, w, mu); 
     
    while (lambd>taw) 
        s=s+1; disp(s); 
        x = x+deltx/(1+lambd); 

analyse_x(A, P, Q, beta, r, c, x, n, m, w, taw, epsilon, thet, mu); 
 
        [deltx, lambd] = calculate_lambd(A, x, c, w, mu); 
    end; 
disp('---------------------------------'); 
end; 
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disp(sprintf('total number of iterations: %.6f', s)); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% subfunctions %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%% initiation %%%%%%%%%%%%%%%%%%%%%%% 
function [A, P, Q, beta, r, c, x, n, m, v, taw, epsilon, thet, mu] = initiation; 
 
r1=[1;2;3;6;4;5;8;9;7]; 
r=[r1;-1*ones(size(r1))]; 
c=(-1)*r; 
n=3;                                % # of states % 
m=3;                                % # of actions % 
v=2*n*m;                            % # of variables in linear programming 
d=1/m; 
beta=[zeros(n,1);ones(n,1)/n]; 
 
taw=1/3; 
epsilon=1; 
thet=0.9; 
mu=1; 
 
policy=[];                          % initial policy 
for i=1:n 
    temp=r((i-1)*m+1:i*m)>0; 
    policy=[policy; temp/sum(temp)]; 
end; 
 
P{1} = [1 0 0; 1 0 0; 1 0 0]; % Pij(a=1) % 
P{2} = [0 1 0; 0 1 0; 0 1 0]; 
P{3} = [0 0 1; 0 0 1; 0 0 1]; 
 
for i=1:n                           % Pij(a=1,2,3)=>Qi=1,2,3 j(a) 
    Q{i}=[]; 
    for j=1:m 
        Q{i}=[Q{i};P{j}(i,:)]; 
    end; 
end; 
 
Ppolicy=[];                         % P(pi) 
for i=1:n 
    Ppolicy=[Ppolicy; (policy((i-1)*m+1:i*m))'*Q{i}]; 
end; 
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for i=1:m                           % matrix A 
    temp1=eye(n,n)-P{i}; 
    temp2=eye(n,n); 
    for j=1:n 
        tempA(:,i+(j-1)*m)=temp1(j,:)'; 
        tempB(:,i+(j-1)*m)=temp2(j,:)'; 
    end; 
end; 
A=[tempA, zeros(size(tempA));tempB, tempA]; 
 
sum=0;                              % the stationary matrix of P(pi) 
for i=1:10000 
    sum=sum+Ppolicy^i; 
end; 
Pstar=sum/10000; 
 
Z=(eye(n,n)-Ppolicy+Pstar)^(-1);    % the fundamental matrix 
 
D=Z-Pstar;                          % the deviation matrix 
 
temp=beta(n+1:2*n)'*Pstar;      % initial point % 
t1=[]; 
for i=1:n 
    t1=[t1;temp(i)*policy((i-1)*m+1:i*m)]; 
end; 
temp=beta(n+1:2*n)'*D+ones(1,n)*Pstar; 
while sum(temp>0)<n 
    temp=temp+ones(1,n)*Pstar; 
end; 
t2=[]; 
for i=1:n 
    t2=[t2;temp(i)*policy((i-1)*m+1:i*m)]; 
end; 
x=[t1;t2]; 
 
x=x+0.01*(x==0); 
beta=A*x; 
 
A(1:(2*n-rank(A)),:)=[];            % make sure matrix A is full rank 
beta(1:(2*n-rank(A)))=[]; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%% calculate deltx & lambd %%%%%%%%%%%%%%%%% 
function [deltx, lambd] = calculate_lambd(A, x, c, v, mu); 
 
y = x; 
B = A; 
d = c; 
position = (x~=0); 
u = sum(position); 
 
for i=v:-1:1 
    if (position(i)~=1) 
        y(i)=[]; 
        d(i)=[]; 
        B(:,i)=[]; 
    end; 
end; 
 
h = diag(y); 
H = diag( y.*y); 
delty = (H*B'*(B*H*B')^(-1)*B-eye(u)) * (H*(d/mu) - y); 
hdelty = -(eye(u)-h*B'*(B*H*B')^(-1)*B*h)*(h*(d/mu) - ones(u,1)); 
lambd = (hdelty'*hdelty)^(0.5); 
 
deltx=[]; 
for i=1:v 
    if position(i)==1 
        deltx = [deltx; delty(1)]; delty(1)=[]; 
    else 
        deltx = [deltx; 0]; 
    end; 
end; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% analyse x %%%%%%%%%%%%%%%%%%%%%%% 
function [A,x,c]=analyse_x(A, P, Q, beta, r, c, x, n, m, v, taw, epsilon, thet, mu); 
 
 
%%%%%%%%%%%% guess a deterministic policy %%%%%%%%%%%%%% 
policy=[];                     % guess the deterministic policy 
for i=1:n 
    temp1=x((i-1)*m+1:i*m)>=(sum(beta)/(m*n)/10); 
    if sum(temp1)~=0 
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        policy=[policy; x((i-1)*m+1:i*m)==max(x((i-1)*m+1:i*m))]; 
    else 
        policy=[policy; 
x((m*n+(i-1)*m+1):(m*n+i*m))==max(x((m*n+(i-1)*m+1):(m*n+i*m)))]; 
    end; 
end; 
 
Ppolicy=[]; 
for i=1:n 
    Ppolicy=[Ppolicy; (policy((i-1)*m+1:i*m))'*Q{i}]; 
end; 
 
rpolicy=[];                     % r(pi) 
for i=1:n 
    rpolicy=[rpolicy; r((i-1)*m+1:i*m)'*policy((i-1)*m+1:i*m)]; 
end; 
 
temp=eye(n,n);                              % the stationary matrix of P(pi) 
for i=1:10000-1 
    temp=temp+Ppolicy^i; 
end; 
PpolicyStar=temp/10000; 
 
Z=(eye(n,n)-Ppolicy+PpolicyStar)^(-1);    % the fundamental matrix 
 
D=Z-PpolicyStar;                          % the deviation matrix 
 
v=PpolicyStar*rpolicy; 
u=D*rpolicy; 
 
vtest=[]; utest=[]; 
for i=1:n 
    temp1=Q{i}*v; 
    vtest=[vtest; max(temp1)]; 
    temp2=(r((i-1)*m+1:i*m)+Q{i}*u); 
    utest=[utest; max(temp2)]; 
end; 
 
disp(x'); 
disp(policy'); 
disp(sprintf('------ %.6f', sum([abs(v-vtest);abs(v+u-utest)]<1/10^2)==2*n)); 
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Appendix C 

In this section, we report our numerical results based on 1000 random MDPs, and list the average 
performance in discounted rewards (DR) with 5.0=α  and 99.0=α  (mostly the Blackwell 
policy), and also in average rewards (AR). 
 
We generate MDPs in the following way: 
1) Fix the size of the state space and the action space.  

Let || Sn =  and || Am = . 

2) Let every item of reward r  be a random integer from ]100 ,1[ . 

3) For every Aa∈ , we randomly choose k  percent items from every row of the transition 

matrix and put a random number from ]1,0[  in these positions. Then normalize every row 

of the transition matrix to make it a stochastic matrix. 
 
The following table is the average number of iterations for the heuristic approach to get an optimal 
policy. 
  

20=k  
n m DR with 5.0=α DR with 99.0=α AR

10 2 2.483 7.915 17.587
10 4 5.360 16.770 36.648
20 4 8.829 16.939 45.589
20 8 16.242 29.048 94.180

 
40=k  

n m DR with 5.0=α DR with 99.0=α AR
10 2 1.944 3.565 6.894
10 4 3.894 7.370 18.446
20 4 6.017 9.660 31.294
20 8 12.340 18.245 72.021

 
60=k  

n m DR with 5.0=α DR with 99.0=α AR
10 2 1.577 2.450 3.930
10 4 3.258 4.930 11.965
20 4 5.202 7.459 24.133
20 8 9.516 13.743 59.490
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As we can see, to get a Blackwell optimal policy from letting 99.0=α  in the discounted 
rewards case, costs much less time than to get an average optimal policy directly. In practice, if we 
want to get an average optimal policy, we just let 99.0=α  in the discounted rewards case. 
However, there is no theory to guarantee what we get from this way is an average optimal policy. 
What’s more, standard techniques of Policy iteration and Value iteration have numerical problem 
for 1≈α , but this approach works very well. 
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