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Zo andersom is alles, misschien.
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- Rutger Kopland



Introduction

The purpose of this thesis is to study certain singularities of theta divisors
of complex principally polarized abelian varieties using the degeneracy
loci of the Gauss map.

First, abelian varieties will be defined as certain schemes of finite
type over a field k, and we will state some basic results. Then, using the
techniques developed in [15], we will pass to an analytic setting, where
abelian varieties are defined as complex tori allowing an embedding in
projective space.

Continuing along the analytic route, we define theta functions and
theta divisors. At the end of chapter 1, the theta function η as defined
in [7] is introduced.

In chapter 2, we return to the algebro-geometric setting to develop
some of the general theory of vector bundles. In section 2.1, several well-
known exact sequences of locally free sheaves are used to derive some
useful identities involving the sheaf of differentials and the normal sheaf
of closed immersions Y → X of smooth algebraic varieties. After a short
section on determinants, we define the ramification locus of a morphism
of schemes as well as the rank q degeneracy loci of a morphism of vector
bundles and show that these can be related in special cases. Then we
define the Gauss map of suitable closed immersions in section 2.4, and in
the final section of chapter 2, we show that the theta function η from 1.5
and the Gauss map are closely related.

We use the relation between η and the Gauss map in the final chapter
to obtain information on the locus θnull ⊂ Ag consisting of principally
polarized abelian varieties (A,Θ) such that Θ has a singularity at a point
of order 2. In particular, we prove that Θ has an ordinary double point
for generic (A,Θ) ∈ θnull.

Acknowledgements

First and foremost, I would like to thank my thesis advisor Robin de
Jong for his help in writing this thesis over the past year. With endless
patience and enthusiasm, he aided me in understanding one of the most
challenging and beautiful geometric objects I have encountered so far. If
not for his guidance, I would have been adrift on the vast ocean between
algebraic and analytic geometry without ever seeing land.

I would also like to thank my wife, Joy, for the breakfasts and dinners
she prepared in my stead when I was busy, but most of all for always
believing in me.

Lastly, I thank my friends, family and teachers, without whose help
and support I wouldn’t be where I am now.

3



Contents

1 Complex abelian varieties 5
1.1 Abelian varieties . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 From algebraic varieties to manifolds . . . . . . . . . . . . 10
1.3 Complex tori . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Theta functions . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 The theta function η . . . . . . . . . . . . . . . . . . . . . 17

2 Vector bundles 18
2.1 Commonly occurring bundles . . . . . . . . . . . . . . . . 18
2.2 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Ramification and degeneration . . . . . . . . . . . . . . . 25
2.4 The Gauss map . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 On η and the Gauss map . . . . . . . . . . . . . . . . . . 34

3 Singularities of theta divisors 38
3.1 The moduli space Ag . . . . . . . . . . . . . . . . . . . . . 38
3.2 Partial toroidal compactification . . . . . . . . . . . . . . 41
3.3 Theorem (Grushevsky-Salvati Manni) . . . . . . . . . . . 44

4



1 Complex abelian varieties

This section gives a short introduction to the theory of complex abelian
varieties. There is also a very rich theory of abelian varieties over arbi-
trary fields k, but these are not the primary focus of this paper. After
giving the general definition of an abelian variety in section 1.1, we will
soon restrict ourselves to studying complex abelian varieties. These turn
out to be complex tori, allowing us to use the machinery of complex
analysis and linear algebra.

1.1 Abelian varieties

Abelian varieties are complete varieties whose points form a group. The
maps giving the group structure should be morphisms of varieties. In this
section, we will use the scheme-theoretic definition. Let S be a scheme.

Definition 1.1.1. A group scheme over S is an S-scheme π : G → S
equipped with S-scheme morphisms

eG : S → G
mG : G×S G→ G
iG : G→ G

such that the following diagrams commute:

(associativity)

G×S G×S G G×S G

G×S G G

idG×mG

mG×idG

mG

mG

(left identity)

S ×S G G×S G

G

∼

eG×idG

mG

(left inverse)

G S

G×S G G×S G G.

∆G/S

π

eG

iG×idG
mG

Given a group scheme G over S and any S-scheme T , the maps eG,
mG and iG turn the set G(T ) of T -valued points of G into a group.
It is also possible to view G as a representable contravariant functor
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G : SchS → Grp that sends an S-scheme T to the group G(T ). A group
scheme is called commutative if mG(p2×p1) = mG, where pi : G×SG→ G
is the i-th projection map, or equivalently if G(T ) is an abelian group for
all test schemes T .

For example, consider the affine Z-scheme G = Gm = SpecZ[x, x−1].
It can be endowed with a group scheme structure. Let eG : SpecZ →
Gm be the morphism corresponding to the map Z[x, x−1] → Z given by
x 7→ 1, let mG : Gm ×Z Gm → Gm be the morphism corresponding to
Z[x, x−1] → Z[x, x−1, y, y−1] given by x 7→ xy and let iG : Gm → Gm

be the morphisms corresponding to the map Z[x, x−1]→ Z[x, x−1] given
by x 7→ x−1. Then (G, eG,mG, iG) is a group scheme. For a scheme S,
the base change of Gm to S is denoted Gm,S . As a functor, Gm sends
a scheme T to the multiplicative group OT (T )∗; indeed, any morphism
T → Gm is given by a ring homomorphism SpecZ[x, x−1] → OT (T ),
which is uniquely determined by the image of x in OT (T )∗.

Definition 1.1.2. LetA→ S andB → S be group schemes. A morphism
of group schemes over S is a morphism of schemes f : A → B over S
such that f ◦ eA = eB, where eA : S → A and eB : S → B are the unit
sections, and such that the following diagram commutes:

A×S A B ×S B

A B.

mA

(f,f)

mB

f

Let k be a field. For the remainder of this paper, an algebraic variety
over k is a scheme of finite type over Spec k (see example 3.2.3. on page 88
of [10]). Often, we will simply write variety instead of algebraic variety.
An algebraic variety that is also a group scheme is called an algebraic
group variety.

Definition 1.1.3. An abelian variety A over k is an algebraic group
variety over k that is geometrically integral and proper over k.

Let A be an abelian variety over k. Note that the definition doesn’t
require A to be a commutative group scheme, which may inspire doubt
regarding the validity of the name abelian. Fortunately, given an abelian
variety A, we can derive that A has to be a commutative group scheme.
We need some preliminary results. The following lemma is exercise 3.2.9.
from [10].

Lemma 1.1.4. Let X and Y be schemes of finite type over k, with
X geometrically reduced. Let f, g : X → Y be morphisms such that
they induce the same map X(k̄) → Y (k̄). Then f = g as morphisms of
schemes.
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Proof. Note that the algebraic closure k̄ of k is a faithfully flat k-module,
so Spec k̄ → Spec k is a faithfully flat quasicompact morphism. Since
these are stable under pullback, we obtain the diagram

Xk̄ Yk̄

X Y

π1

f̃

g̃

π2

f

g

of two pullbacks packed together with vertical arrows that are faithfully
flat and quasicompact. Since π1 is faithfully flat and quasicompact, it is
an epimorphism in the category of schemes, so fπ1 = gπ1 implies f = g.
Hence it suffices to show that π2f̃ = π2g̃, which certainly holds if f̃ = g̃.
As X is geometrically reduced, Xk̄ is reduced. Therefore, we may assume
that k is algebraically closed.

The map f ′ on k-rational points induced by f is the mapX(k)→ Y (k)
given by α 7→ f ◦ α, where α : Spec k → X is a k-rational point. The
map g′ : X(k) → Y (k) induced by g is defined analogously. Let x ∈ X
be a closed point of X. As k is algebraically closed, x corresponds to the
unique k-rational point α : Spec k → X with α(∗) = x, where ∗ is the
point of Spec k. By assumption f ′(α) = g′(α), which yields f(x) = g(x).

Denote by X0 the set of closed points of X. As X is of finite type
over k, it holds that X0 is dense in X (see [10], remark 2.3.49.). For
each x ∈ X0, let Vf(x) ⊂ Y be an affine open containing f(x). Then
Ux = f−1Vf(x) ∩ g−1Vf(x) is non-empty for all x ∈ X0 and we will show
that U = {Ux : x ∈ X0} is an open cover of X. Let

U =
⋃
x∈X0

Ux

and suppose that Z = X \ U is non-empty. Note that Z is closed, so
that we may regard it as a closed subscheme of X by taking the reduced
scheme structure - it is of finite type over k, so the subset of closed points
Z0 is dense in Z. In particular, it is non-empty, and a closed point of Z is
also a closed point of X, which contradicts the fact that X0 ⊂ U . Thus
U is an open cover of X.

For x ∈ X0, let fx = f |Ux and gx = g|Ux . Let x ∈ X0 and consider
(fx, gx) : Ux → Vf(x) ×k Vf(x). Let ∆x be the image of the diagonal
morphism Vf(x) → Vf(x) ×k Vf(x). Since Vf(x) is affine, ∆x is closed,
so (fx, gx)−1(∆x) is closed. It also contains X0 ∩ Ux, so it follows that
(fx, gx)−1(∆x) is the closure of X0 ∩ Ux in Ux, which is just Ux. This
yields fx(y) = gx(y) for all y ∈ Ux. As this holds for all x ∈ X0, it follows
that f(x) = g(x) for all x ∈ X.

Let V ⊂ Y be an affine open. If we show that f |U = g|U for each
affine open U ⊂ f−1V = g−1V , it follows that f = g, as both Y and
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f−1V can be covered by open affines. Since X is reduced, each affine
open U ⊂ f−1V is reduced. Hence we may assume that X and Y are
affine, with X = SpecB for some reduced finitely generated k-algebra B
and Y = SpecA for A = k[T1, . . . , Tn]/I a finitely generated k-algebra.
Then there is a closed immersion i : Y → Ank , and to show that f = g it
is enough to show that if = ig. Thus we further assume that Y = Ank
and we set A = k[T1, . . . , Tn].

Now f and g are given by ring homomorphisms φ : A → B and
ψ : A → B, respectively. A point p ∈ X(k) corresponds uniquely to a
closed point of X and thus to a maximal ideal p of B (cf. remark 2.1.3,
[10]); in fact, p is the canonical morphism SpecB/p→ SpecB, since B/p
is a field extension of the algebraically closed field k and therefore itself
equal to k. Then f(p), g(p) ∈ Ank(k) are morphisms SpecB/p→ Ank given
by the compositions

A
φ−→ B −→ B/p and A

ψ−→ B −→ B/p,

respectively. They are completely determined by the images of the Ti,
and since f and g agree on closed points, it holds that φ(Ti) = ψ(Ti) in
B/p for all i. Hence φ(Ti) − ψ(Ti) ∈ p for all maximal ideals p of B, so
φ(Ti) − ψ(Ti) is in the nilradical of B by lemma 2.1.18 of [10], which is
the zero ideal by assumption. It follows that φ = ψ, and we are done.

Let X, Y and Z be algebraic varieties over a field k. Assume that X is
complete and geometrically integral, and assume that Y is geometrically
integral. Let f : X ×k Y → Z be a morphism. We have a commutative
diagram:

Z X ×k Y X

Y Spec k.

f

p2

p1

The following lemma will help in showing that abelian varieties are
indeed commutative group schemes. Moreover, it will give us a classifica-
tion of morphisms of schemes between abelian varieties, which turn out
to be morphisms of group schemes up to translation.

Lemma 1.1.5 (Rigidity lemma). If there exist y0 ∈ Y (k) and z0 ∈ Z(k)
such that

f(X ×k {y0}) = {z0}

then f factors through the projection map p2 : X ×k Y → Y .

8



Proof. We may assume that k is algebraically closed, using the same
descent technique as in the proof of lemma 1.1.4. Fix a point x0 ∈ X(k)
and define g : Y → Z by y 7→ f(x0, y). We have to show that f = gp2. Let
U ⊂ Z be an affine open such that z0 ∈ U . As X is universally closed over
k, it holds that p2 is a closed map. Hence V = p2

(
f−1(Z \ U)

)
is closed

in Y . Of course, y0 /∈ V . Let y /∈ V be a k-rational point. Then it holds
that f(X×k {y}) ⊂ U . As X×k {y} is complete and U is affine, it follows
that f must be constant on X ×k {y}. Hence f |X×k{y} = gp2|X×k{y}
for all k-rational points y /∈ V . As X ×k Y is the product of reduced
varieties, it is reduced. Hence it follows from lemma 1.1.4 that f = gp2

on the non-empty open set X ×k (Y \ V ). As X ×k Y is the product of
irreducible varieties and therefore irreducible, it follows that X×k (Y \V )
is dense in X ×k Y , so f = gp2 on the whole of X ×k Y , as was to be
shown.

Let A be an abelian variety over k. For every a ∈ A(k), there is a
morphism of schemes ta : A→ A given by the composition

A A×k Spec k A×k A A,∼ idA×a mA

called translation by a. Let B be another abelian variety over k.

Corollary 1.1.6. Every morphism f : A→ B of schemes over k is given
by t◦φ, where φ : A→ B is a morphism of group schemes and t : B → B
is a translation by b ∈ B(k). In particular, any morphism f : A → B of
schemes over k such that f(0) = 0 is also a morphism of group schemes
over k, where 0 ∈ A(k) is the unit section.

Proof. Let f : A → B be a morphism of schemes over k. As 0 ∈ A(k),
it holds that f(0) ∈ B(k). Let t : B → B be the translation given by
b 7→ mB(b, iB(f(0))), where mB is the addition map on B and iB is the
inversion map on B. This map is a morphism of schemes. Therefore, we
may replace f with t ◦ f and assume f(0) = 0. Consider the following
commutative diagram

A×k A B ×k B B

A B ×k B B

B B

(f,f)

hmA

mB

iB

f
p1

p2

mB

wheremA is the addition map on A, p1 and p2 are the projection maps and
h is the unique map such that p1◦h = f ◦mA and p2◦h = iB ◦mB ◦(f, f).
Let g = mB ◦ h : A ×k A → B. It holds that g(A ×k {0}) = {0}, so g
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factors through the second projection A × A → A by lemma 1.1.4. On
the other hand, g({0} ×k A) = {0}, so g also factors through the first
projection A× A→ A. It follows that g is constant with image {0}. By
uniqueness of inverse, it follows that mB(f, f) = fmA, which shows that
f is a morphism of group schemes.

Corollary 1.1.7. The abelian variety A over k is a commutative group
scheme.

Proof. By corollary 1.1.6, the map iA is a morphism of group schemes.
Hence A is commutative.

There is one last result that will be useful to us in the general set-
ting, which we state without proof. The interested reader may refer to
proposition 1.5 in the unpublished book [12].

Proposition 1.1.8. The abelian variety A is smooth over k and Ωk is
free.

1.2 From algebraic varieties to manifolds

The subject of this thesis balances between algebraic geometry and ana-
lytic geometry, so it is good to show how results from one area may be
transported to the other. The article [15] by Serre was instrumental in
the development of the interaction between the two different areas. We
exhibit the functor h : Coh(X) → Cohan(Xh) for a projective scheme
X over C as found in appendix B of [6], which was adapted to scheme
language from [15]. First, we will give a definition of a complex analytic
space.

Definition 1.2.1. A complex analytic space is a ringed topological space
(X,O) which admits an open cover U such that each U ∈ U is a locally
ringed topological space (U,OU ) that is isomorphic to a locally ringed
topological space (Y,OY ) of the following form: let D ⊂ Cn be the poly-
disc D = {(z1, . . . , zn) ∈ Cn : |zi| < 1 for all 1 ≤ i ≤ n}, equipped with
the standard topology. Let f1, . . . , fq be holomorphic functions on D and
let Y ⊂ D be the closed subset of D consisting of the common zeroes
of f1, . . . , fq. Define OY = OD/(f1, . . . , fq), where OD is the sheaf of
holomorphic functions on D.

This definition is quite cumbersome, but we get a lot of structure in
return. We can see that a complex analytic space is basically “a bunch of
zero loci in polydiscs glued together”. Since we can cover Cn by polydiscs
of radius 1, it holds that Cn is a complex analytic space. Any closed
subspace Y ⊂ Cn that is the zero locus of holomorphic functions f1, . . . , fq
on Cn therefore has a natural structure of a complex analytic subspace.
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Schemes of finite type over C can be used to give complex analytic
spaces. Let X be a scheme of finite type over C. Let X = {Xi : i ∈
I} be an affine open cover of X, where Xi = SpecAi for each i ∈ I.
Let i ∈ I. Then Ai is isomorphic to some finitely generated C-algebra
C[x1, . . . , xn]/(f1, . . . , fq), since X is of finite type over C. We can view
the polynomials f1, . . . , fq as holomorphic functions on Cn. The ideal
(f1, . . . , fq) defines a complex analytic subspace (Xi)h ⊂ Cn. Thus we
get a complex analytic space (Xi)h for each i ∈ I. We can use the gluing
data of the Xi to glue the (Xi)h and get a complex analytic space Xh.

Definition 1.2.2. The complex analytic space Xh is called the complex
analytic space associated to X, or the associated complex analytic space
of X.

Set-theoretically, it holds that Xh = X(C), but the topology on Xh

is usually much finer than the topology on X(C) induced by X.
Next we show that associating complex analytic spaces to schemes of

finite type over C is functorial. Let SchFTC be the category of schemes
of finite type over C and CAS that of complex analytic spaces. Define
F : SchFTC → CAS by X 7→ Xh. Let f : X → Y be an arrow in SchFTC.
Then there is an induced arrow F (f) : Xh → Yh in CAS, which is just
the map X(C)→ Y (C) induced by f . This map is an analytic function.
It clearly holds that F (idX) = idXh

and F (gf) = F (g)F (f), so F is a
functor as claimed.

We mentioned the functor h : Coh(X) → Cohan(Xh) from coherent
sheaves on X to coherent analytic sheaves on Xh, the latter of which we
haven’t defined yet.

Definition 1.2.3. Let Xh be a complex analytic space. A coherent an-
alytic sheaf on Xh is a coherent sheaf of OXh

-modules.

Given X in SchFTC and a coherent sheaf F on X, there is an associ-
ated coherent sheaf Fh on Xh. Locally, it holds that

OmU
φ−→ OnU −→ F −→ 0,

but since the topology on Xh is finer than the topology on X(C) induced
by the Zariski topology, Uh is open in Xh, and Fh is defined locally as

OmUh

φh−→ OnUh
−→ Fh −→ 0.

Thus we obtain the functor h : Coh(X) → Cohan(Xh). There are some
useful facts about the relationship between a scheme X of finite type
over C and the associated complex analytic space Xh. For example, X
is smooth over C if and only if Xh is a complex manifold. However,
the functor F is not an equivalence of categories and we cannot move
freely from complex analytic spaces to schemes of finite type over C. The
following results, therefore, are somewhat astounding.
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Theorem 1.2.4 (Serre). Let X be a projective scheme over C. Then
h : Coh(X) → Cohan(Xh) is an equivalence of categories and for every
coherent sheaf F on X it holds that H i(X,F) ∼= H i(Xh,Fh).

Serre proves this in his influential article [15] as early as 1956, although
in a slightly different form. At the time of writing, the theory of schemes
was still being developed and the language of category theory was not
widely used, so Serre needed three theorems to state this result in his
article. Nonetheless, it has been a fertile ground for many important
results in algebraic geometry. He proves the following theorem of Chow
as a corollary.

Theorem 1.2.5 (Chow). If X ′ is a compact analytic subspace of the
complex manifold PnC, then there is a subscheme X ⊂ Pn such that Xh =
X ′.

Exercise 6.6 of appendix B in [6] tells us that, given projective schemes
X and Y over C and an arrow f ′ : Xh → Yh, there is a unique arrow
f : X → Y such that F (f) = f ′. It follows that F restricted to pro-
jective schemes induces an equivalence of categories from the category of
projective schemes over C to the category of projective compact analytic
spaces.

Naturally, these results are useful to us as complex abelian varieties
are projective (see theorem 2.25 in [12]). Their analytic counterparts are
discussed in the next section.

1.3 Complex tori

Let V be a g-dimensional complex vector space.

Definition 1.3.1. A lattice in V is a co-compact discrete subgroup Λ ⊂
V .

This is not a very constructive definition. Alternatively, one may
define a lattice as the free Z-module generated by an R-basis (λ1, . . . , λ2g)
of V . These two definitions are equivalent.

Definition 1.3.2. A complex torus A is a quotient A = V/Λ, where V
is a finite dimensional complex vector space and Λ ⊂ V is a lattice.

If A is an abelian variety over C, then its associated complex analytic
space Ah is a complex torus, but the converse is not true in general and
depends on the existence of an ample line bundle on the complex torus.

1.4 Theta functions

Let V be a g-dimensional complex vector space, Λ ⊂ V a lattice and
A = V/Λ a complex torus. Let π : V → A be the quotient map. Let
f : L→ A be a line bundle on A. Consider the pullback diagram
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π∗L L

V A.

f

π

Then π∗L is a line bundle on V and therefore trivial by lemma 2.1 in [1].
Let φ : π∗L→ V × C be an isomorphism. The natural action of Λ on V
lifts to an action on the line bundle V ×C. For λ ∈ Λ and (v, z) ∈ V ×C,
it holds that

λ(v, z) = (λ+ v, eλ(v)z) , (1.1)

where eλ is a holomorphic invertible function on V . The above formula
defines a group action if and only if the functions eλ satisfy

eλ+µ(v) = eλ(v + µ)eµ(v), (1.2)

the so-called cocycle condition. It follows that L is the quotient of V ×C
by this action, which is defined completely by the family (eλ)λ∈Λ.

Definition 1.4.1. A system of multipliers for Λ is a family of invertible
holomorphic functions (eλ)λ∈Λ on V satisfying the cocycle condition.

As shown above, each system of multipliers defines a line bundle, and
each line bundle corresponds to such a system. In fact, if we let S be
the set of systems of multipliers for Λ, then we can equip it with a group
structure and there is a surjective group homomorphism S → Pic(A) (see
[1], page 105). Thus the product of two systems of multipliers maps to
the tensor product of the line bundles they each define.

Let (eλ)λ∈Λ be a system of multipliers.

Definition 1.4.2. A theta function θ for (eλ)λ∈Λ is a holomorphic func-
tion θ : V → C such that

θ(v + λ) = eλ(v)θ(v)

for all v ∈ V and λ ∈ Λ.

A classical result in the theory of complex abelian varieties is that
each line bundle on a complex torus corresponds to a so-called Appell-
Humbert datum, which is a pair (H,α). We need some linear algebra to
set this up.

Definition 1.4.3. A Hermitian form H on V is a function H : V ×V →
C that is linear on the first coordinate and anti-linear on the second
coordinate, such that H(v, w) = H(w, v) for all v, w ∈ V .
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Given a Hermitian form H on V , we set E to be the imaginary part
of H. Note that E is a real skew-symmetric bilinear form on V such
that E(iv, iw) = E(v, w) for all v, w ∈ V , where i is the imaginary unit.
In fact, such skew-symmetric forms correspond bijectively to Hermitian
forms. For all v, w ∈ V , it holds that

H(v, w) = E(iv, w) + iE(v, w).

Let X be the set of pairs (H,α) where H is a Hermitian form on V
such that E takes values in Z and α : Λ → U(1) is a map such that for
all λ, µ ∈ Λ,

α(λ+ µ) = α(λ)α(µ)(−1)E(λ,µ).

Here, U(1) is the circle group. The set X has a natural group structure,
defined by (H,α) · (H ′, α′) = (H +H ′, αα′). Let (H,α) ∈ X and define

eλ(v) = α(λ) exp
(
π
(
(H(λ, v) + 1

2H(λ, λ)
) )

for each λ ∈ Λ. It is easy to check that this is a system of multipliers,
and so (eλ)λ∈Λ defines a line bundle on A, which we denote by L(H,α).
Appell and Humbert proved the following theorem for two-dimensional
A as early as 1891, and it was generalized to arbitrary A by Lefschetz in
1921, albeit in a more archaic form.

Theorem 1.4.4 (Appell-Humbert). The map X → Pic(A) given by
(H,α) 7→ L(H,α) is a group isomorphism.

For a proof, see theorem 2.6 of [1]. Now we want to make things
more explicit, which can be done by choosing an appropriate basis of V .
Suppose that there is a Hermitian form H on V such that the real part S
of H is positive definite and such that the imaginary part E of H satisfies
E(λ, µ) ∈ Z for all λ, µ ∈ Λ. The following result is due to Frobenius and
extremely useful in this situation.

Proposition 1.4.5. Let M be a free finitely generated Z-module of rank
2g and B : M ×M → Z a non-degenerate skew-symmetric bilinear form.
Then there exist d1, . . . , dg ∈ Z>0 with di|di+1 for all i = 1, . . . , g − 1
and a basis (a1, . . . , ag, b1, . . . , bg) of M such that the matrix of B with
respect to this basis is (

0 D
−D 0

)
,

where D is the diagonal matrix with entries (d1, . . . , dg).

We refer to proposition 3.1 of [1] for a proof of this. Since Λ and E
satisfy the conditions of the proposition, it follows immediately that the

14



determinant of E is the square of an integer. In the special case that
det(E) = 1, we say that E is unimodular and any basis

(a1, . . . , ag, b1, . . . , bg)

satisfying the conditions of proposition 1.4.5 is called symplectic. We have
the following definition.

Definition 1.4.6. A polarization of A is a Hermitian form H on V such
that the real part S of H is positive definite and such that the imaginary
part E of H satisfies E(λ, µ) ∈ Z for all λ, µ ∈ Λ. If E is unimodular,
then we call the polarization principal.

Let H be a principal polarization of A. Then proposition 1.4.5 gives
us a symplectic basis (λ1, . . . , λg, µ1, . . . , µg) of Λ such that the matrix of
E = Im(H) with respect to this basis is

J =

(
0 1
−1 0

)
,

where 1 is the g × g identity matrix. By lemma 3.2 of [1], it holds that
(λ1, . . . , λg) is a basis of V over C. Thus, for j ∈ {1, . . . , g}, we can write

µj =

g∑
i=1

aijλi,

with aij ∈ C. We obtain a g×g-matrix τ = (aij), called the period matrix
of H. We have an identification Λ = Zg × τZg. The imaginary part of τ
is positive definite, and τ itself is symmetric, see proposition 3.3 of [1] for
details.

Definition 1.4.7. The Siegel upper-half space of degree g, denoted by
Hg, is the space of complex symmetric g × g-matrices τ with positive
definite imaginary part.

The Lefschetz theorem states that any complex torus A that admits a
polarization can be embedded in projective space (cf. section 3.7 in [1]).
By the results mentioned in section 1.2, it holds that such a complex torus
is the associated complex analytic space of a complex abelian variety. In
particular, any principally polarized complex torus is a complex abelian
variety, which we call a principally polarized abelian variety over C or
simply ppav over C.

In [1] it is explained that H0(A,L(H,α)) can be identified with the
space of theta functions for the system of multipliers corresponding to
L(H,α), and then it is shown that dimH0(A,L(H,α)) = 1 if H is a
principal polarization. Moreover, for any two α, α′, it holds that L(H,α′)
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is the pullback of L(H,α) along a translation ta : A → A. Thus there is
a divisor Θ of A defined up to translation by the vanishing of an element
of H0(A,L(H,α)). The corresponding theta function is one of the main
objects of interest in this paper.

Definition 1.4.8. The Riemann theta function of dimension g is the
map θ : Hg × Cg → C given by

(τ, z) 7→
∑
m∈Zg

eπi(
tmτm+2tmz).

A fixed τ ∈ Hg defines a ppav, for which the Riemann theta function
is actually a theta function in the sense of definition 1.4.2, for a system
of multipliers corresponding to the line bundle L(H,α) with α(p+ τq) =
(−1)

tpq. In fact, θ defines a nonzero section of that line bundle, and so
its zero locus defines a specific instance of the divisor Θ in A. It is not
hard to check that θ is symmetric in z, so Θ has the pleasant property
of being symmetric around the origin and will therefore be called “the”
theta divisor of the ppav A. Henceforth, we will define a ppav to be a
pair (A,Θ), with Θ the theta divisor of A, since such a pair carries the
same information as a pair (A,H) with H a principal polarization.

Let A = Cg/(τZg + Zg) be a ppav. Then its points of order 2 are
obviously given by

τε+ δ

2
,

where ε, δ ∈ Zg are column vectors containing ones and zeroes. Hence A
has 22g points of order 2. There is a specific theta function for each point
of order 2. Let [ε, δ] be a pair as above.

Definition 1.4.9. The theta function with characteristic [ε, δ] is the map
Hg × Cg → C defined by

θ [ εδ ] (τ, z) :=
∑
m∈Zg

expπi

(
t
(
m+

ε

2

)
τ
(
m+

ε

2

)
+ 2t

(
m+

ε

2

)(
z +

δ

2

))
The theta function θ [ εδ ] is called even if the inner product ε ·δ is even,

and odd otherwise. It holds that

θ

(
τ, z +

τε+ δ

2

)
= exp

(
πi

(
−
tε

2
τ
ε

2
− tε

(
z +

δ

2

)))
θ [ εδ ] (τ, z),

which shows that θ [ εδ ] is basically θ shifted by a point of order 2. An
even theta function is actually even as a function of z for fixed τ , and the
same goes for odd theta functions.
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1.5 The theta function η

Let θ(τ, z) be the Riemann theta function of dimension g, dθ the column
vector of its first order derivatives θi with respect to z1, . . . , zg and H its
Hessian, which consists of the second order derivatives θij with respect
to z1, . . . , zg.

Definition 1.5.1. Define η(τ, z) as the function

η(τ, z) = det

(
H(τ, z) dθ(τ, z)
tdθ(τ, z) 0

)
.

It is shown in theorem 1.3 of [7] that η is a global section of the line
bundle OΘ(Θ)⊗g+1 for fixed τ , and thus a theta function of order g + 1.
The definition given in [7] is slightly different from this one, namely

η(τ, z) = tdθHcdθ,

where Hc is the cofactor matrix of H, but it can easily be shown to be
equivalent by developing the determinant to the last line and column.

det

(
H dθ
tdθ 0

)
=

g∑
i=1

θi

g∑
j=1

θjH
c
ij

= tdθHcdθ.

Note that η is identically zero at singular points of Θ for fixed τ , since dθ
is zero at singular points and therefore the determinant becomes zero.
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2 Vector bundles

In this chapter, we go back to the general framework of schemes. We
develop the theory of vector bundles necessary to define the Gauss map
for a closed immersion Y → X of smooth varieties over some field k,
and we relate the theta function defined in section 1.5 to the Gauss map
associated to the embedding Θ ⊂ A of the theta divisor in its principally
polarized abelian variety.

2.1 Commonly occurring bundles

In algebraic geometry, it can be quite useful to associate a scheme to a
sheaf in a functorial manner. This section develops some of the theory
behind this. For a more extensive exposition, see section II.7 in [6] and
chapter 11 in [4].

Definition 2.1.1. A ring homomorphism φ : A→ B of polynomial rings
A = R[x1, . . . , xm] and B = R[y1, . . . , yn] over a ring R is called linear if
φ(r) = r for all r ∈ R and

φ(xj) =

n∑
i=1

aijyi

for all j = 1, . . . ,m, where aij ∈ R. The matrix of φ is the matrix (aij).

There is a canonical injective group homomorphism Mat(n×m,R)→
Hom(A,B) given by

(aij) 7→

(
xj 7→

n∑
i=1

aijyi

)
,

the image of which is the group of linear ring homomorphisms A→ B. If
n = m, then we may identify A and B and we get a ring homomorphism
Mat(n,R)→ End(A). Now let X be a scheme.

Definition 2.1.2. A geometric vector bundle of rank n overX is a scheme
f : E → X over X together with an open covering U = {Ui : i ∈ I} of
X and isomorphisms φi : f−1(Ui) → AnUi

such that for all i, j and V =

SpecA an affine open contained in Ui ∩ Uj , the automorphism φj ◦ φ−1
i :

AnV → AnV corresponds to a linear automorphism of A[x1, . . . , xn].

For a vector bundle f : E → X and an open U ⊂ X, the restriction
f−1(U) → U is sometimes denoted by f |U : E|U → U , or simply E|U if
there is no possibility of confusing it with the scheme E|U without the
morphism f |U .
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Now let f : E → X and f ′ : F → X be geometric vector bundles over
X of ranks n and m, respectively. Let x ∈ X and V ⊂ X affine open
such that x ∈ V and f−1(V ) ∼= AnV . Then it holds that

Ex = E ×X Specκ(x) ∼= AnV ×V Specκ(x) ∼= Anκ(x),

which shows that the fibers of f are the spectra of polynomial rings over
the residue fields κ(x) = OX,x/mx, which justifies the terminology of
vector bundles.

Let f : X → Y be a morphism of schemes, π : E → X a vector bundle
over X and π′ : F → X a vector bundle over Y .

Definition 2.1.3. A morphism of vector bundles g : E → F is a mor-
phism of schemes such that π′g = fπ and for some affine open cover U
of X and each U ∈ U , the map g|U : E|U → F |U corresponds to a linear
ring homomorphism.

Given a locally free sheaf E of rank n on X, we can construct an
associated vector bundle V(E). Let Sym(E) be the symmetric algebra on
E . It is the quotient of the tensor algebra

T (E) =
⊕
n≥0

E⊗n,

where the tensor product is taken over OX , by the ideal J generated by
elements of the form a⊗ b− b⊗ a. Let E = Spec(Sym(E)) be as in [17],
tag 01LL. It comes with a morphism of schemes f : E → X. If U ⊂ X is
an affine open, then f−1(U) = Spec Sym(E)(U) is affine.

Let U ⊂ X be an affine open such that E|U ∼= O⊕nU and let x1, . . . , xn ∈
E(U) be an OU -basis of E|U . It holds that Sym(E|U ) = Sym(E)|U by
exercise II.5.16(e) in [6]. The OU -module E|U is free of rank n, so also
quasi-coherent. Therefore it corresponds to the free OU (U)-module

OU (U)x1 ⊕ · · · ⊕ OU (U)xn

of rank n, since U is affine. By proposition II.5.2 in [6], it holds that
Sym(E|U ) is the OU -algebra corresponding to the OU (U)-algebra

Sym(E(U)) ∼= OU (U)[x1, . . . , xn].

In particular, its global sections are Sym(E|U )(U) = Sym(E(U)). Thus
there is a natural isomorphism g : OU (U)[x1, . . . , xn] → Sym(E(U)),
which corresponds to an isomorphism φ : f−1(U) → AnU . Of course,
this depends on our choice of x1, . . . , xn. If y1, . . . , yn is another OU -basis
of E|U , then

yi =

n∑
j=1

aijxj
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with aj ∈ OU (U) for all i = 1, . . . , n, so the isomorphism

g′ : OU (U)[y1, . . . , yn] −→ Sym(E(U))

is such that g′ = gh, where h : OU (U)[y1, . . . , yn]→ OU (U)[x1, . . . , xn] is
a linear automorphism given by (aij). Hence φ is determined up to linear
automorphism.

Let Ui, Uj ⊂ X be two affine opens on which E is free and let φi :
f−1(Ui)→ AnUi

and φj : f−1(Uj)→ AnUj
be isomorphisms as above, with

(x1, . . . , xn) a basis for E|Ui and (y1, . . . , yn) a basis for E|Uj . Both bases

restrict to a basis of E|Ui∩Uj . Hence the isomorphism φj ◦φ−1
i : AnUi∩Uj

→
AnUi∩Uj

corresponds to the linear automorphism

OUj (Ui ∩ Uj)[y1, . . . , yn] −→ OUi(Ui ∩ Uj)[x1, . . . , xn]

yk 7−→
n∑
l=1

aklxl

with akl ∈ OUi(Ui ∩ Uj) for all k = 1, . . . , n.
Let {Ui : i ∈ I} be an open cover of X such that E|Ui is free for all

i ∈ I. For i ∈ I, let {Vij : j ∈ Ji} be an affine open cover of Ui. Then
{Vij : i ∈ I, j ∈ Ji} is an affine open cover of X such that E|Vij is free for
all i ∈ I and j ∈ Ji.

It follows that f : E → X is a geometric vector bundle over X, which
is the geometric vector bundle associated to E . It is usually denoted by
V(E).

We continue with a little sidebar. Let f : X → Y be any morphism
of schemes and U ⊂ Y open.

Definition 2.1.4. A section of f over U is a morphism s : U → X such
that f ◦ s = idU .

By definition, it holds that a section s of f over U is also a morphism
s : U → f−1(U). Given another open V ⊂ U , we can restrict a section s
of f over U to a section over V just by restricting the map s : U → X to
V . If U and V are opens with sections s : U → X and s′ : V → X of f
such that s|U∩V = s′|U∩V , we can glue them to a section t : U ∪ V → X
by the gluing lemma. Hence we get a sheaf S(X/Y ) given by

U 7→ {sections of f over U},

called the sheaf of sections of f . It is a sheaf on Y .
Let f : E → X be a vector bundle of rank n over a scheme X, with

sheaf of sections S = S(E/X). For x ∈ X, it holds that Spec(Sy ⊗OX,x

κ(x)) is canonically isomorphic to the fiber Ex. Let U ⊂ X be open and
let s, t ∈ S(U) and ã ∈ OX(U). Let V = SpecA ⊂ U be an affine open
with an isomorphism φ : f−1(V ) → AnV , coming from the vector bundle
structure of f : E → X. Note that A = OU (V ). Then the composition
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V f−1(V ) AnV
s|V φ

is a morphism into the affine scheme SpecA[x1, . . . , xn], so it corresponds
to an A-algebra homomorphism σ : A[x1, . . . , xn] → A. Since the set of
A-algebra homomorphisms σ : A[x1, . . . , xn] → A has a natural OU (V )-
module structure for each affine open V ⊂ U such that E|V is trivial, it
holds that S(U) has a natural OX(U)-module structure. This turns S
into an OX -module.

Let U ⊂ X be an affine open with an isomorphism φ : f−1(U)→ AnU .
We show that S|U is free. A section of f over an open V ⊂ U is a map
g : V → E|V , so we also have φ|V ◦ g : V → AnV which corresponds to an
OU (V )-algebra homomorphism σ : OU (V )[x1, . . . , xn] → OU (V ). Such a
homomorphism is uniquely determined by the images σ(x1), . . . , σ(xn).
Let M(V ) be the OU (V )-module of OU (V )-algebra homomorphisms σ :
OU (V )[x1, . . . , xn]→ OU (V ). There is a natural isomorphism of OU (V )-
modules M(V ) → OU (V )⊕n given by σ 7→ (σ(x1), . . . , σ(xn). It follows
that S|U ∼= O⊕nU , so S|U is free. Hence S is a locally free sheaf.

Now let f : E → X with E = V(E) be the geometric vector bundle
over X associated to a locally free sheaf E of rank n, with sheaf of sections
S as above. Given a section s : U → E|U , there is morphism γ̃ : f∗OE|U →
OU of OU -algebras coming from s# : OE|U → OU . By lemma 24.4.6
from [17], (tag 01LQ), it holds that f∗OE|U ∼= Sym(E|U ). There is a
corresponding morphism γ : E|U → OU of OU -modules.

Conversely, let U ⊂ X open and let γ : E|U → OU be a morphism of
OU -modules. There is a corresponding morphism γ̃ : Sym(E|U )→ OU of
OU -algebras. If V ⊂ U is an affine open, we get γ̃(V ) : Sym(E|U )(V ) →
OU (V ) which corresponds to a section sV : V → E|V . Gluing these yields
a section s : U → E|U .

It follows that S ∼= HomOX
(E ,OX) = E∨. Note that E∨∨ is canoni-

cally isomorphic to E . For a morphism of vector bundles g : E → F , let
S(g) : S(E/X)→ S(F/X) be given by s 7→ g ◦ s.

Let γ : E → F be a morphism of locally free sheaves on X of ranks
m and n, respectively. Let E = V(E∨), F = V(F∨) and let f : E → X
be the usual projection map. Let U ⊂ X be an affine open such that E|U
and F|U are free. Suppose that

E|U =

m⊕
i=1

xi · OU and E|U =

n⊕
j=1

yj · OU .

Then γ|U : E|U → F|U is given by γ(x1), . . . , γ(xm). Hence we have a
ring homomorphism

γ̃|U : OU (U)[x1, . . . , xm] −→ OU (U)[y1, . . . , yn],
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which defines a morphism g|U : E|U → F |U . These morphisms glue to a
morphism V(g) : E → F .

Let Vect(X) be the category of geometric vector bundles of fixed finite
rank over X (every E in Vect(X) is of rank n over X for some n ∈ Z/geq0),
and let LocF(X) be that of locally free sheaves of fixed finite rank on X.
Then we have a functor S : Vect(X)→ LocF(X) given by E 7→ S(E/X)
and a functor V : LocF(X) → Vect(X) given by E 7→ V(E∨), where we
dualize to make sure that the functors S and V are both covariant. This
is the “right” choice, since the geometric tangent bundle of a scheme X
over k is defined as T (X) = V(ΩX/k) = V(TX/k), where TX/k, the tangent
sheaf, is the dual of ΩX/k. In fact, the functor V is an equivalence of
categories.

Proposition 2.1.5. The functor V : LocF(X) → Vect(X) is an equiva-
lence of categories with quasi-inverse S.

For the rest of the proof, see [4], section 11.4. All operations that exist
on locally free sheaves therefore also exist on geometric vector bundles,
so that we may form direct sums, tensor products, duals, exterior powers
and so forth, simply by applying these operations to sheaves of sections
and turning them into vector bundles using V.

These vector bundles have affine spaces as fibers. It seems natural
that we can also consider bundles with projective spaces as fibers, which
gives rise to the concept of projective bundles and projectivization.

Definition 2.1.6. A projective bundle of rank n over X is a scheme
f : E → X over X together with an open covering U = {Ui : i ∈ I} of X
and isomorphisms φi : f−1(Ui)→ PnUi

such that for all i, j and V = SpecA

an affine open contained in Ui∩Uj , the automorphism φj ◦φ−1
i : PnV → PnV

corresponds to a linear automorphism of A[x0, . . . , xn].

Note that a linear automorphism of A[x0, . . . , xn] is an isomorphism
of graded rings and therefore defines a map PnA → PnA by lemma 3.40
from [10]. Now let f : E → X be a geometric vector bundle of rank
n + 1 over X with an open cover {Ui : i ∈ I} and transition maps
ψij : An+1

Ui∩Uj
→ An+1

Ui∩Uj
.

Definition 2.1.7. The projectivization P(E) of E is the projective bundle
of rank n over X obtained by gluing PnUi

for all i ∈ I along the transition
maps ψ′ij , induced by the same linear automorphism as ψij for all i, j ∈ I.

For a locally free sheaf E , we also have the projective bundle P(E)
associated to E , which is constructed similarly to V(E) as Proj Sym E . It
holds that P(E ⊗ L) ∼= P(E) for all invertible sheaves L. A projective
bundle of rank n is also called a Pn-bundle or a projective space bundle
of rank n.
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It is important to note that every line bundle π : E → X over X can
be extended to a P1-bundle. Given a transition map ψ : A1

V → A1
V on

V = SpecA of the line bundle, the corresponding linear automorphism
of A[x] is given by x 7→ ax for some a ∈ A∗. Now we define a linear
automorphism of A[x0, x1] by x0 7→ ax0 and x1 7→ x1 (we could also
choose x1 7→ ax1). Then we get a P1-bundle π′ : F → X over X. For an
affine open U ⊂ X with φ : π′−1(U) ∼= P1

U , we have that φ−1(D+(x1)) =
π−1(U). Thus we have embedded the line bundle in the P1-bundle, such
that locally on X it is the standard affine open D+(x1) of P1

U for open
U ⊂ X. Naturally, we could have also chosen D+(x0). Similarly, we can
extend any An-bundle to a Pn-bundle.

There is also the notion of a Gm-bundle over X, see section 1.1 for
the definition of the affine scheme Gm. It is defined analogously to a line
bundle over X, and the transition maps correspond to maps A[x, x−1]→
A[x, x−1] given by x 7→ ax for some a ∈ A∗, where A is the ring of
some affine open V contained in the intersection of two trivializing opens
Ui, Uj ⊂ X of the bundle.

There is a one-to-one correspondence between line bundles and Gm-
bundles over X, since a linear automorphism of A[x] is given by x 7→
ax for some a ∈ A∗. Taking the Gm-bundle corresponding to a line
bundle can be thought of as “throwing away the origin of the line bundle”.
Indeed, if in the above A is a field, then the prime ideal in A[x] generated
by (x) is the “origin” of SpecA[x], which is not a prime ideal of A[x, x−1].
Hence we can associate to each invertible sheaf on X a Gm-bundle in a
functorial manner, and we get another equivalence of categories, this time
between the category of invertible sheaves on X and that of Gm-bundles
over X. In particular, the notions of “dual” and “tensor product” carry
to Gm-bundles.

We now turn our attention to closed immmersions of varieties. The
following results are proposition II.8.12 and II.8.17 from [6]. Let X be a
smooth variety over k.

Proposition 2.1.8. Let Y be a closed subscheme of X with ideal sheaf
I. Then there is an exact sequence

I/I2 −→ ΩX/k ⊗OY −→ ΩY/k −→ 0 (2.1)

of sheaves on Y .

Theorem 2.1.9. Let X be a smooth variety over k. Let Y ⊂ X be an
irreducible closed subscheme with sheaf of ideals I. Then Y is smooth if
and only if ΩY/k is locally free and the sequence 2.1 is exact on the left
as well:

0 −→ I/I2 −→ ΩX/k ⊗OY −→ ΩY/k −→ 0. (2.2)

If Y is smooth, I is locally generated by r = codim(Y,X) elements and
I/I2 is locally free of rank r.
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Let X be a smooth algebraic variety of dimension n+ 1 over a field k
and i : Y → X a smooth closed subvariety. We have an exact sequence

0→ I → OX → i∗OY → 0

of OX -modules. The sheaf I/I2 is a locally free sheaf on Y of rank
codim(Y,X), which is called the conormal sheaf of Y in X (see [6], p.
182). Its dual HomOY

(I/I2,OY ) is called the normal sheaf of Y in X
and denoted NY/X . Dualizing (2.2) gives the exact sequence

0 −→ TY −→ TX ⊗OX
OY −→ NY/X −→ 0, (2.3)

where TX = Ω∨X/k denotes the tangent sheaf of X, and TY that of Y . Let

E = TX ⊗OX
OY . From now on, assume that codim(Y,X) = 1. Then

NY/X is a line bundle. We state proposition II.7.12 from [6] for future
reference.

Proposition 2.1.10. Let X be a noetherian scheme and E a locally free
coherent sheaf on X. Let f : Y → X be a morphism of schemes. Then a
morphism g : Y → P(E) over X is defined uniquely by an invertible sheaf
L on Y and a surjective map f∗E → L. For g : Y → P(E) corresponding
to f∗E → L, it holds that L ∼= g∗OP(E)(1).

By this proposition, the surjective map E → NY/X defines a morphism
g : Y → P(E) of schemes over Y , as E is here the pullback of TX along i.
Denote the natural projection P(E)→ Y by π.

Let U = {Ui | i ∈ I} be an affine open cover of Y such that E|Ui is
free for all i ∈ I, with transition maps ψij . For i ∈ I with Ui = SpecA,
theorem II.8.13 in [6] gives us the exact sequence

0 −→ ΩPn
A/Ui

−→ OPn
A

(−1)⊕n+1 −→ OPn
A
−→ 0, (2.4)

and note that OPn
A

(−1)⊕n+1 ∼= (π∗E ⊗ OP(E)(−1))|π−1(Ui), ΩPn
A/Ui

∼=
ΩP(E)/Y |π−1(Ui) and OPn

A

∼= OP(E)|π−1(Ui). Moreover, ΩP(E)/Y is locally
free of rank n, since ΩPn

A/Ui
is locally free of rank n. The exact sequence

agrees on overlaps Ui ∩ Uj using the transition maps, so it follows from
[17] (tag 00AK) that we can glue the sequences (2.4) to an exact sequence

0 −→ ΩP(E)/Y −→ π∗E ⊗ OP(E)(−1) −→ OP(E) −→ 0,

which we then tensor with OP(E)(1) to obtain

0 −→ ΩP(E)/Y ⊗OP(E)(1) −→ π∗E −→ OP(E)(1) −→ 0.

By proposition II.7.11 in [6], there is a natural surjective morphism π∗E →
OP(E)(1), which is precisely the penultimate arrow in the latter exact
sequence. The surjective map g∗π∗E → g∗OP(E)(1) obtained by applying
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g∗ to π∗E → OP(E)(1) is the surjective map E → NY/X defining g, see
proposition 2.1.10. Hence applying g∗ to the last exact sequence yields

g∗ΩP(E)/Y ⊗NY/X −→ E −→ NY/X −→ 0,

an exact sequence of locally free OY -modules. By proposition 8.10 in
[4], the sequence must be exact on the left as well and using the exact
sequence (2.3) we see that g∗ΩP(E)/Y ⊗NY/X ∼= TY .

The locally free sheaves of this section correspond to geometric vector
bundles, so it’s a good idea to give these names. Let V be the functor from
proposition 2.1.5. Then we let T (X) = V(TX) = V(ΩX/k), T (X)|Y =
V(TX ⊗OY ) = V(ΩX/k⊗OY ) and N(Y ) = V(NY/X) = V(N∨Y/X) if there
is no possibility of ambiguity.

2.2 Determinants

Let X be a scheme. Let E and F be locally free OX -modules of rank n
and φ : E → F a morphism of OX -modules.

Definition 2.2.1. The m-th exterior power
∧m E of E is the sheafification

of the presheaf U 7→
∧m
OX(U)F(U).

It is easily checked that
∧m E is locally free of rank ( nm ). Hence

the n-th exterior powers
∧n E and

∧nF are locally free sheaves of rank
1 and there is an induced map detφ :

∧n E →
∧nF . For the map

V(φ) : V(E) → V(F) on vector bundles, we define detV(φ) = V(detφ).
By the equivalence of categories from proposition 2.1.5, every morphism
f : E → F of vector bundles over X with rk(E) = rk(F ) has a well-
defined determinant det f . There is a wealth of results on determinants,
see for example section 6.4 of [10].

2.3 Ramification and degeneration

We relate the concept of ramification for a morphism of schemes to de-
generacy loci, as the latter are much better suited for our purposes. We
also exhibit the Giambelli-Porteous formula, which will be fundamental
in showing that the theta function η from definition 1.5.1 can be identified
with the determinant of the tangent map of the Gauss map.

Definition 2.3.1. The ramification locus of a morphism of schemes X →
Y is the support of the sheaf of differentials ΩX/Y .

Let E and F be vector bundles of rank r and s on a scheme X,
respectively. Let f : E → F be a morphism of vector bundles on X. For
x ∈ X, the map fx : Ex → Fx is a linear map between finite dimensional
vector spaces and thus has finite rank, the rank of f at x. This allows
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us to consider the locus Rq(f) of points x of X such that f has rank at
most q at x for some q ∈ Z≥0. If q ≥ min(r, s), then Rq(f) is obviously
all of X.

We show that Rq(f) can be given a natural structure of a closed
subscheme of X for all q ∈ Z. Let q ∈ Z and consider the map

fq+1 :

q+1∧
E →

q+1∧
F

induced by f . For a point x ∈ X, it holds that fx has rank at most q if and
only if fq+1,x is the zero map; the wedge product fx(v1) ∧ · · · ∧ fx(vq+1)
is zero if and only if fx(v1), . . . , fx(vq+1) are linearly dependent. Thus
Rq(f) is precisely the locus of points x ∈ X such that fq+1,x is the zero
map. Rq(f) is empty if q < 0.

Now we show that Rq(f) has a natural closed subscheme structure.
Let SpecA = U ⊂ X be an affine open such that E|U and F |U are trivial
and choose bases. Then

∧q+1E|U and
∧q+1 F |U are trivial of rank rq+1

and sq+1 respectively, and fq+1|U corresponds to an rq+1×sq+1-matrix M
with entries in A. Let I ⊂ A be the ideal generated by the entries of M .
Then M is the zero matrix in A/I, so fq is zero everywhere on the closed
subscheme SpecA/I ⊂ U , and nowhere else on U . Let SpecB = V ⊂ X
be another affine open such that E|V and F |V are trivial, and define the
rq+1 × sq+1-matrix N with entries in B similarly to M . Denote by J the
ideal generated by the entries of M . The following easy lemma will help
us along.

Lemma 2.3.2. Let M be an l×m-matrix and M ′ an m×n-matrix with
entries in a commutative ring A. Let I, I ′ and J be the ideals generated
by the entries of M , M ′ and MM ′, respectively. Then it holds that
J ⊂ I · I ′.

Proof. Note that (MM ′)ij is given by

(MM ′)ij =
m∑
k=1

MikM
′
kj

and it follows that (MM ′)ij ∈ I ·I ′ for all 1 ≤ i ≤ l and 1 ≤ j ≤ n. Hence
J ⊂ I · I ′.

Let M and N be as before the lemma, restricted to an affine open
SpecC = W ⊂ U ∩ V . The transition maps ArW → ArW and AsW → AsW
are given by invertible matrices P and Q with entries in C, and it holds
that M = P−1NQ. By lemma 2.3.2, it holds that I ⊂ J , and writing
N = PMQ−1, we also see that J ⊂ I. Hence I = J on the overlap U ∩V
and it follows that Rq(f) is a closed subscheme given by the ideal sheaf
I locally generated by the entries of matrices defining f . We have the
following definition.
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Definition 2.3.3. The degeneracy locus of rank q of f is the closed sub-
scheme Rq(f) of points x ∈ X where fx has rank at most q.

Suppose that r = s. In this case, the degeneracy locus Rr−1(f) is
rather special. On affine opens, it corresponds to the vanishing locus of

det f :
r∧
E →

r∧
F,

the determinant of f .
Now let X be a smooth quasi-projective variety over k of dimension

n, 0 ≤ q < min(r, s) and f : E → F as before. The closed immersion
Rq(f) ⊂ X defines a group homomorphism Ai(Rq(f))→ Ai(X) on Chow
groups for all i (see [6], appendix A and [17], tag 02RV). Let d(q) =
(r − q)(s− q).

Theorem 2.3.4 (Giambelli-Thom-Porteous formula). There is a class
Rq(f) in An−d(q)(Rq(f)), such that the image of Rq(f) in An−d(q)(X) is

det (cs−q−i+j(F − E))1≤i,j≤r−q ∩ [X],

where c denotes the Chern class.

Fulton greatly elaborates on this theme in [3], which is the culmination
of much important work on determinants and degeneracy loci. In fact,
this theorem is one of the simplest cases of Fulton’s theorem 10.1. By
theorem 8.2 from [3], if Rq(f) is of codimension d(q) in X (which is the
case for suitably generic f), then Rq = [Rq]. We understand ci(F − E)
to be the Chern class

ci(F − E) = ci(F )− ci(E) = ci(F)− ci(E)

by taking sheaves of sections and using the equivalence of categories of
proposition 2.1.5.

Assume that r = s, q = r − 1 and Rq(f) = [Rq(f)], which will be an
interesting case for the tangent map of the Gauss map. According to the
theorem, the image of [Rq(f)] in Ar−1(X) is

(c1(F )− c1(E)) ∩ [X].

Let f : X → Y be a morphism of smooth varieties over k of dimension
n. By II.8.11 from [6], there is the exact sequence

f∗ΩY/k
φ−→ ΩX/k −→ ΩX/Y −→ 0.

Thus the ramification locus of f is the set of points x ∈ X where the
natural map f∗ΩY/k,x → ΩX/k,x fails to be surjective. Since f∗ΩY/k and
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ΩX/k are locally free of rank n, there is a morphism V(φ) : V(f∗ΩY/k)→
V(ΩX/k) of vector bundles over X of rank n. For x ∈ X, V(φ)x corre-
sponds to

f∗ΩY/k,x ⊗OX,x
κ(x)

φx−→ ΩX/k,x ⊗OX,x
κ(x),

which is surjective if and only if φx is surjective, as ΩX/k,x and f∗ΩY/k,x

are flat over OX,x. Hence V(φ)x has maximal rank if and only if x is
not in the ramification locus of f . Therefore, the ramification locus of f
is precisely the underlying closed set of the degeneracy locus Rn−1(φ) =
Rn−1(V(φ)).

2.4 The Gauss map

The Gauss map is a useful tool in algebraic geometry, because it gives
us an insight into the nature of certain embeddings; particularly so in
the case of projective varieties. In order to define the Gauss map, we
need Grassmannians. A Grassmannian is, loosely speaking, a scheme
representing d-dimensional subspaces of an n-dimensional vector space.
Define a functor GRd,n : Schop → Set by

S 7→
{
F ⊂ O⊕nS | O⊕nS /F is locally free of rank n− d

}
,

see [4], chapter 8.4 for a motivation and an elaboration on this definition.
At least note that GRd,n(Spec k) can be identified with the set {U ⊂
kn | kn/U is a k-vector space of dimension n − d}, which is the set of d-
dimensional subspaces of kn. Proposition 8.14 of [4] tells us that GRd,n

is representable for all d, n ∈ Z≥1, which justifies the following definition.

Definition 2.4.1. For d, n ∈ Z≥1, the Grassmannian GRd,n is the
scheme representing the functor GRd,n.

For more on representable functors, see [11], section III.2 on the
Yoneda lemma. Analogously to the definition of a classical projective
space P(V ) with V a vector space as being the one-dimensional subspaces
of V , one would hope that there is a canonical isomorphism GR1,n+1

∼=
PnZ, which turns out to be the case (cf. [4] section 8.5). Corollary 8.15
of [4] tells us that there is a finite open covering of GRd,n by schemes
isomorphic to Ad(n−d) and that GRd,n is smooth of relative dimension
d(n− d) over SpecZ.

It is a good thing to have these Grassmannians, because they give us
the notion of “linear subspaces” of the affine space AnS over an arbitrary
scheme S. Moreover, they allow us to define dual projective spaces in
a natural way. If we set PnZ = GR1,n+1, then (PnZ)∨ = GRn,n+1 is its
dual. For an arbitrary scheme S, we set GRd,n,S = GRd,n×ZS. In case
S = Spec k for some field k, we also write GRd,n,k.
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We can further generalize Grassmannians. Let S be a scheme, E a
quasi-coherent OS-module and m ∈ Z≥0. Define a functor GRm(E) :
Schop

S → Set by

(h : T → S) 7→ {F ⊂ h∗(E) | h∗E/F is locally free of rank m} .

By proposition 8.17 in [4], GRm(E) is representable by an S-scheme.

Definition 2.4.2. For m ∈ Z≥0, the Grassmannian GRm(E) of quotients
of E of rank m is the S-scheme representing the functor GRm(E).

Let P(E) be as in section 2.1. Then for each S-scheme h : T → S,
an S-morphism T → P(E) is given by an invertible sheaf L together
with a surjective map h∗E → L (proposition II.7.12 of [6]), the kernel of
which is an inclusion F ⊂ h∗E such that h∗E/F ∼= L. Thus we see that
GR1(E)(T ) ∼= P(E)(T ) for all S-schemes T , and it follows that GR1(E)
can be identified with P(E).

Now let f : Y → X be a closed immersion of smooth varieties over k,
with dimX = n and dimY = d. The idea of the Gauss map is to make a
morphism Y → GRd,n,k by sending a point x to the d-dimensional linear
subspace TxY of TxX and identifying all the tangent spaces TxX. We
have the sequence 2.3 from section 2.1

0 −→ TY −→ TX ⊗OX
OY −→ NY/X −→ 0,

yielding a morphism Y → GRn−d(TX ⊗OY ) of schemes over Y . Regret-
tably, there is no canonical way to define a morphism GRn−d(TX⊗OY )→
GRd,n,k involving TY , unless TX (or equivalently ΩX) is free of rank n so
that TX ⊗OY ∼= O⊕nY . It holds that

GRn−d(TX ⊗OY ) ∼= GRn−d(O⊕nY ) ∼= GRd,n,Y = GRd,n,k×kY,

which comes equipped with a natural projection map GRn−d(TX⊗OY )→
GRd,n,k (cf. [4], section 8.7) upon fixing an isomorphism TX⊗OY → O⊕nY .
We end up with the following definition.

Definition 2.4.3. Let f : Y → X be a closed immersion of smooth
varieties over k with dimX = n and dimY = d, such that ΩX/k is free of

rank n. Fix an isomorphism TX ⊗ OY → O⊕nY . Then the Gauss map of
f is the morphism Γ : Y → GRd,n,k which is the composition

Y −→ GRn−d(TX ⊗OY ) −→ GRd,n,k,

where the first map corresponds to the canonical inclusion TY → TX⊗OY
and the second map is the projection map.
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There are two special cases, the first being when d = n − 1 so that
Y is of codimension 1 in X and the Gauss map is a map into (Pnk)∨, and
the second being when d = 1 so that Y is a curve and the Gauss map
is a map into Pnk . The first case will be of most interest to us, since the
theta divisor of a principally polarized abelian variety is a subscheme of
codimension 1. Sadly, the theta divisor Θ of a ppav is not always smooth,
in which case we only get a morphism from the smooth locus Θs of Θ to
dual projective space.

Suppose that we are given a closed immersion f : Y → X of smooth
varieties over k with dimY = d, dimX = n and ΩX/k free, with a Gauss
map Γ : Y → GRd,n,k. It is good to check that Γ does what it is
supposed to do at k-valued points, namely embed a tangent space of Y
at x in the tangent space of X at x, which gives a point in GRd,n,Y (k)
and thus in GRd,n,k(k). Let x ∈ Y (k). Then TY,x ⊗OX,x

κ(x) = TxY and
(TX ⊗OX

OY )x ⊗OX,x
κ(x) = TX,x ⊗OX,x

κ(x) = TxX are k-vector spaces
of dimension d and n, respectively. Therefore the injective map TY →
TX ⊗OX

OY of locally free sheaves gives an injective map TxY → TxX
of k-vector spaces and we might just as well think of it as an embedding
TxY ⊂ TxX. This embedding defines a point (x, p) of GRd,n,Y (k), the
projection of which is just p, so Γ(x) = p.

The current definition of the Gauss map comes at a fairly steep price;
even most smooth varieties have sheaves of differentials that are not free,
projective space being a prime example. Luckily the above definition can
be fixed to include the case X = Pnk , such that the Gauss map exists for
all smooth projective varieties.

Set X = Proj k[T0, . . . , Tn] and let L = V(OX(1)) be the tautological
line bundle over X (cf. [10], example 1.19). Its trivializations are over
the standard opens Ui = D+(Ti) ⊂ X, for which we have

L|Ui = Spec k
[
T0
Ti
, . . . , TnTi

]
[Ti],

with obvious isomorphisms φi : L|Ui → A1
Ui

. For i, j ∈ {0, . . . , n} with
i 6= j, let Uij = Ui ∩ Uj and A1

Ui
= SpecOX(Ui)[T ]. The transition maps

φij : A1
Uij
→ A1

Uij
are given by the linear automorphism T → Tj

Ti
T .

Let M be the Gm,k-bundle associated to L, so that

M |Ui = Spec k
[
T0
Ti
, . . . , TnTi

]
[Ti, T

−1
i ].

It will now be shown that M is actually isomorphic to affine (n+1)-space
over k with the origin removed. Let

X ′ = An+1
k \ {0} =

n⋃
i=0

D(Ti)
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be this scheme, where the D(Ti) = Spec k[T0, . . . , Tn, T
−1
i ] ⊂ An+1

k are
basis opens. We get isomorphisms ψi : M |Ui → D(Ti), where

D(Ti) = Spec k[T0, . . . , Tn, T
−1
i ] ⊂ X ′,

given by Tl 7→ Tl
Ti

for l 6= i and Ti 7→ Ti. Restricting ψi to Uij , we see

that Tj 7→ Tj
Ti

becomes invertible, so ψi|Uij maps into D+(Ti)∩D+(Tj) =
D+(TiTj). Moreover, it is easy to see that ψi|Uij = ψj |Uijφij . By the
gluing lemma (cf. [6], exercise II.2.12), we get an isomorphism M →
X ′. This shows that the projection M → X can be identified with the
canonical surjection π : X ′ → X from remark 3.15 in [4]. This allows
us to think of points in Pnk as one-dimensional linear subspaces in An+1

k

with the origin removed, just as in the classical construction of projective
space. Let Y ′ = Y ×X X ′ so that we get a pullback diagram

Y ′ X ′

Y X.

i′

πY π

i

Since closed immersion are stable under pullback and the inclusion i :
Y → X is a closed immersion, i′ : Y ′ → X ′ is also a closed immersion.
Furthermore, X, X ′ and Y are smooth over k, so Y ′ is also smooth over
k by proposition 6.15 of [4]. Note that dimY ′ = d+ 1 and

TX′ = TAn+1
k

∣∣∣
X′
∼= O⊕n+1

X′ ,

since X ′ ⊂ An+1
k is an open subscheme and the tangent sheaf of An+1

k is
free of rank n+1. Hence the inclusion i′ : Y ′ → X ′ meets the requirements
of definition 2.4.3 and yields the Gauss map Γ′ : Y ′ → GRd+1,n+1,k. It
remains to show that Γ′ factors through πY . Let x, y ∈ Y ′ such that
πY (x) = πY (y). As Y ′ is a Gm,k-bundle over Y , we can choose an affine
open neighbourhood U ⊂ Y of πY (x) such that Y ′|U ∼= U ×k Gm,k, and
the map U → Gm,k given by u 7→ 1 defines a section s|U : U → Y ′|U . We
get a commutative diagram

Y ′|U GRd+1,n+1,k×k(U ×k Gm,k)

U GRd+1,n+1,k×kU

GRd+1,n+1,k,

πY |U

γ

ps|U
pγs|U
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where the square (without s|U ) is cartesian and any composition of arrows
Y ′|U → GRd+1,n+1,k is Γ′|U . Thus we have Γ′(x) = Γ′(y). Hence Γ′

factors through πY , yielding Γ : Y → GRd+1,n+1,k. Intuitively, Γ assigns
to each k-valued point x ∈ Y (k) the d-dimensional projective tangent
space of that point in Pnk(k).

Definition 2.4.4. The Gauss map of a smooth closed subvariety Y of
Pnk of dimension d is the map Γ : Y → GRd+1,n+1,k constructed above.

Let f : Y → X be another closed immersion of smooth varieties over
k with dimY = d, dimX = n and ΩX/k free. Then f has a Gauss map
Γ : Y → GRd,n,k. Let E = TX ⊗OX

OY . We get an exact sequence

Γ∗ΩGRd,n,k /k −→ ΩY/k −→ ΩY/X −→ 0,

where the first arrow defines a map dΓ : T (Y )→ Γ∗T (GRd,n,k) of vector
bundles over Y , which is subject to the Giambelli-Porteous formula. This
will be useful, provided that we can figure out more about Γ∗T (GRd,n,k).
The Gauss map Γ is the factorization

Y
g−→ P(E)

π−→ GRd,n,k,

where the first map is the morphism g : Y → P(E) given by the surjection
E → NY/X (see section 2.1), and the second map is the projection map
GRd,n,Y → GRd,n,k after identifying P(E) with GRd,n,Y , using the fact
that E is free. The diagram

P(E) GRd,n,k

Y Spec k

π

g

is a pullback diagram (not considering g), so in particular it holds that
π∗ΩGRd,n,k /k = ΩP(E)/Y . At the end of section 2.1, we showed that
g∗ΩP(E)/Y

∼= TY ⊗N∨Y/X , so it also holds that

Γ∗ΩGRd,n,k /k = g∗π∗ΩGRd,n,k /k = g∗ΩP(E)/Y
∼= TY/k ⊗N∨Y/X .

It follows that Γ∗T (GRd,n,k) ∼= V(TY/k ⊗N∨Y/X) = T (Y )∨ ⊗N(Y ).

Lemma 2.4.5. If dimY = n− 1, then dΓ determines a global section σ
of the invertible sheaf (OX(Y )|Y )⊗n+1.

Proof. Assume that dimY = n − 1. Then it holds that dΓ : T (Y ) →
T (Y )∨ ⊗ N(Y ) is a morphism of vector bundles of rank n − 1, corre-
sponding to the morphism

φ : TY/k ⊗N∨Y/X −→ ΩY/k
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of locally free sheaves of rank n − 1, so it has a determinant detφ. We
denote det ΩY/k = ωY/k. Then

det
(
TY/k ⊗N∨Y/X

)
= det TY/k ⊗

(
N∨Y/X

)⊗n−1
= ω∨Y/k ⊗

(
N∨Y/X

)⊗n−1
,

so, after tensoring with the appropriate invertible sheaves, detφ can be
seen to define a map

OX −→ ω⊗2
Y/k ⊗N

⊗n−1
Y/X ,

and we may identify detφ with the image of 1 in ω⊗2
Y/k ⊗ N

⊗n−1
Y/X , which

is a global section. Applying corollary 6.4.2 in [10] to the exact sequence
2.2

0 −→ I/I2 −→ ΩX/k ⊗OY −→ ΩY/k −→ 0

gives
det
(
I/I2

)
⊗ det ΩY/k

∼= det
(
ΩX/k ⊗OY

)
.

As ΩX/k is free, it follows that ΩX/k⊗OY is free and det
(
ΩX/k ⊗OY

)
=

OY . Furthermore, det
(
I/I2

)
= I/I2 = N∨Y/X . Hence

N∨Y/X ⊗ ωY/k ∼= OY .

It follows that ωY/k ∼= NY/X . Since f : Y → X defines a smooth divisor,
it holds that O(Y ) is an invertible sheaf on X and its dual I = O(−Y )
is the ideal sheaf that gives the exact sequence

0 −→ I −→ OX −→ f∗OY −→ 0.

It holds that N∨Y/X = I/I2 ∼= I ⊗OX
OY = O(−Y )⊗OX

OY , so NY/X ∼=
(OX(Y )|Y ). Hence

ω⊗2
Y/k ⊗N

⊗n−1
Y/X

∼= N⊗n+1
Y/X

∼= (OX(Y )|Y )⊗n+1

and thus detφ determines a global section σ of the invertible sheaf
(OX(Y )|Y )⊗n+1, the vanishing locus of which consists precisely of the
points y ∈ Y such that detφy is the zero map.

Corollary 2.4.6. The vanishing locus of σ is the ramification locus of
the Gauss map.

Proof. It follows from section 2.3 that the vanishing locus of σ is actually
the degeneracy locus Rn−2 of dΓ, which in turn is the ramification locus
of Γ.

33



The Giambelli-Thom-Porteous formula 2.3.4 gives that the image of
[Rn−2] in An−1(Y ) is(

c1(T (Y )∨ ⊗N(Y ))− c1(T (Y ))
)
∩ [Y ].

Using the properties listed in section 3 of appendix A in [6], it holds that
c1(T (Y )) = c1(T (X)|Y )− c1(N(Y )), so

c1(T (Y )∨ ⊗N(Y )) = c1(T (Y )∨) + (n− 1)c1(N(Y ))

= c1(N(Y ))− c1(T (X)|Y ) + (n− 1)c1(N(Y ))

= nc1(N(Y ))− c1(T (X)|Y ).

As T (X)|Y is a trivial bundle, it holds that c1(T (X)|Y ) = 0. It follows
that the image of [Rn−2] in An−1(Y ) is(

c1(T (Y )∨ ⊗N(Y ))− c1(T (Y ))
)

= nc1(N(Y ))− c1(T (Y ))

= (n+ 1)c1(N(Y )).

Returning to locally free sheaves, we have c1(N(Y )) = c1(NY/X). Hence
the image of [Rn−2] in An−1(Y ) is

(n+ 1)c1(NY/X) = c1

(
N⊗n+1
Y/X

)
= c1

(
(OX(Y )|Y )⊗n+1

)
.

If f : Y → X is a closed immersion such that ΩX/k is free but Y is
singular, not all is lost. The smooth locus Y s is open and dense in Y by
corollary II.8.16 of [6]. Let S = Y − Y s be the singular locus of Y and
X ′ = X − S. Note that X ′ is open and dense in X, so ΩX′/k = ΩX/k|X′
is free. Then

Y s Y

X ′ X

f ′ f

is a pullback diagram, so f ′ is a closed immersion and has a Gauss map
Γ : Y s → GRd,n,k, which defines a rational map Γ : Y → GRd,n,k. In this
case, lemma 2.4.5 gives a rational section σ of (OX(Y )|Y )⊗n+1, defined
at least at Y s.

2.5 On η and the Gauss map

Let (A,Θ) be a principally polarized abelian variety of dimension g over
C. The embedding i : Θ → A is a closed immersion, as Θ is an effective
Cartier divisor. The smooth locus Θs is open and dense in Θ and the
singular locus S = Θ \ Θs is closed in Θ and hence in A. Thus we have
that

i′ : Θs −→ A \ S,
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the pullback of i along A \ S → A, is a closed immersion. Moreover, the
tangent sheaf TA of A is trivial by proposition 1.1.8, so i has a Gauss
map Γ : Θs → (Pg−1

C )∨ on the smooth locus Θs of Θ. From the previous
section 2.4 we have Γ∗T (X) ∼= T (Θs)∨⊗N(Θs) and a global section σ of
the invertible sheaf (OA(Θs)|Θs)⊗g+1 coming from det dΓ.

The theta function η from definition 1.5.1 is only defined on the mani-
fold Ah of C-valued points. We will now show that it corresponds exactly
to the determinant of dΓ restricted to C-valued points, at least on the
smooth locus of Θ. From now on, we consider only the complex analytic
version of all geometric objects, and we will just write A and Θ instead
of Ah and Θh to ease the notation. Thus we have A = Cg/(Zg ⊕ τZg)
for some τ ∈ Hg, and Θ is the zero locus of the Riemann theta func-
tion θ(τ, z) for the fixed τ . Furthermore, we have natural isomorphisms
TxA ∼= Cg for all x ∈ A. For improved readability, we shall write θi
instead of ∂θ

∂zi
(τ). Choosing standard coordinates (z1, . . . , zg) for Ag, we

get an identification (Pg−1)∨ → Pg−1 sending a hyperplane in Ag with
equation

∑
aizi = 0 to the point (a1 : · · · : ag). We now think of Γ as

a map Θs → Pg−1 using this identification; we saw in section 2.4 that
Γ sends a point x ∈ Θs to the embedding TxΘs ⊂ TxA, which is the
hyperplane in Cg defined by the equation

g∑
i=1

θi(x)zi = 0,

hence Γ(x) = (θ1(x) : · · · : θg(x)). Note that we’ve chosen local coordi-
nates for A around x, so there is an open U ⊂ A and a map φ : U → Ag
that is just the identity on U , which follows from the fact that Ag is the
universal covering space of A. The normal bundle N(Θs) becomes trivial,
because we have chosen the local defining equation θ for Θ. Hence we now
have Γ∗T (X) ∼= T (Θs)∨. Let x ∈ Θs. Then dΓx : TxΘs → TΓ(x)(Pg−1)
is a map between (g − 1)-dimensional C-vector spaces. Define a map
Γ̃ : Ag → Ag by

y 7→ (θ1(y), . . . , θg(y)) ,

and let π : Ag \ {0} → Pg−1 be the usual canonical projection. Note that
Γ̃φ restricted to U ∩Θs is actually a map into Ag \ {0}. Hence Γ factors
as πΓ̃φ on U ∩ Θs. It holds that the tangent map of φ is the identity
on all tangent spaces. The following lemma is a well-known result from
differential geometry.

Lemma 2.5.1. Let f : Cg → Cg be given by y 7→ (f1(y), . . . , fn(y))
with the fi : Cg → C holomorphic for all i. Then the tangent map
dfy : Cg → Cg is given by the Jacobi-matrix(

∂fi
∂zj

)
i,j

,
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evaluated at y.

For y ∈ Ag, lemma 2.5.1 gives us that dΓ̃y : Cg → Cg is given by the
Jacobi-matrix of (θ1, . . . , θg) evaluated in y, which is actually the Hessian

H(y) =

(
∂2θ

∂zi∂zj
(τ, y)

)
i,j

of θ(τ, y). Now all that remains to understand dΓx is the tangent map
dπ. Let y ∈ Ag \{0}. Considering y as a point in Cg \{0}, we get a linear
subspace Cy ⊂ Cg, which defines the point π(y). The tangent space
Tπ(y)Pg−1 can then be identified with HomC(Cy,Cg/Cy) according to [4],
section (8.9). Hence dπy : Cg → HomC(Cy,Cg/Cy) is the canonical map
v 7→ (y 7→ v̄), or equivalently dπy : Cg → Cg/Cy given by v 7→ v̄.

Now let v ∈ TxA be a point that is contained in the subspace TxΘs ⊂
TxA. Then dφx(v) = v, dΓ̃x(v) = H(x)v and dπΓ̃(x)(H(x)v) = H(x)v,
which ultimately shows that

dΓx(v) = H(x)v ∈ Cg/CΓ̃(x).

There is an obvious isomorphism Cg/CΓ̃(x) → (TxΘs)∨ given by v̄ 7→
(w 7→ tvw), which is well-defined since t̃Γ(x)w = 0, viewing w as vector in
Cg. Hence we have not only a linear map dΓx : TxΘs → (TxΘs)∨, but even
a symmetric bilinear form TxΘs×TxΘs → C, given by (v, w) 7→ tvH(x)w.
Note that det dΓx = 0 if and only if this symmetric bilinear form is
degenerate. The following lemma gives a geometric interpretation of this
last statement. Let ·̂ : Cg \ {0} → Pg−1 denote the usual projection map.

Lemma 2.5.2. Let a ∈ Cg \ {0} and H ∈ Mat(g,C) a symmetric matrix
with associated quadratic form q on Cg and associated symmetric bilinear
form B : Cg × Cg → C. Let L = {x ∈ Cg | tax = 0}. Then L̂ is a
hyperplane in Pg−1. Let Q = {x̂ ∈ Pg−1 | q(x) = txHx = 0} be a quadric
in Pg−1. Then the following are equivalent:

1. The hyperplane L̂ is tangent to Q.

2. It holds that

det

(
H a
ta 0

)
= 0.

3. The quadric L̂ ∩Q in L̂ is singular.

4. The symmetric bilinear form B|L×L is degenerate.

Proof. Note that L and Q are tangent if and only if there exists a nonzero
p ∈ Cg such that p̂ ∈ Q and L = {q̂ ∈ Pg−1 | tqHp = 0}. This is equivalent
to p satisfying (i) Hp = λa for some λ ∈ C, (ii) tap = 0 and (iii) tpHp = 0,
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but (i) and (ii) together imply (iii), so we can drop (iii). Then (i) and (ii)
can be stated together as(

H a
ta 0

)
·
(

p
−λ

)
= 0,

which means that the matrix has a nontrivial kernel, or equivalenty zero
determinant. Hence 1. and 2. are equivalent.

Statements 3. and. 4. are equivalent by definition. The symmetric
bilinear form B|L×L is degenerate if and only if there exists a p̂ ∈ L
such that tqHp = 0 for all q̂ ∈ L, but this is equivalent to 1. The result
follows.

Even though there is no obvious extension of Γ to U , we do have the
map ψ = Γ̃φ given by x 7→ (θ1(x), . . . , θg(x)), with the corresponding
tangent map TxA → Tψ(x)Ag given by v 7→ H(x)v upon identifying TxA
and Tψ(x)Ag with Cg. For x ∈ U , we get a bilinear form Bx : Cg × Cg →
Cg, given by (v, w) 7→ tvHw.

Write dθ for the column vector with entries θi. We have the hyper-
plane L = {x ∈ Pg−1 | tdθx = 0} = P(TxΘ) and the quadric Q = {(x ∈
Pg−1 | txHx = 0} in P(TxA) = Pg−1. Lemma 2.5.2 yields that for x ∈ Θs,

η(x) = det

(
H(x) dθ(x)
tdθ(x) 0

)
= 0

if and only if Bx|TxΘs×TxΘs is degenerate, the latter being the case if and
only if det dΓx = 0. It follows that η(x) = 0 if and only if σ(x) = 0, where
σ is the section from lemma 2.4.5. It follows that there is an invertible
global section α of OΘs such that η = ασ. We can’t expect the global
sections of OΘs to be precisely those of OΘ, so it’s good to know that a
generic principally polarized abelian variety has a smooth theta divisor.
See section 3.1 for details. Henceforth, assume that Θs = Θ. Then
Θ → A → SpecC is a composition of proper morphisms and therefore
proper, so it follows that Γ(Θ,OΘ) = C by corollary 3.21 from [10]. Hence
α ∈ C∗ and η and σ differ by a nonzero scalar. Thus σ also defines a theta
function on Θ. This is pleasing, as σ is defined more intrinsically than η
as the determinant of the tangent map of the Gauss map, which exists
for all closed immersions Y → X over k with codim(Y,X) = 1 and ΩX/k

free.
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3 Singularities of theta divisors

In this chapter, we further develop the framework of complex abelian
varieties by defining and studying the moduli space Ag of principally
polarized abelian varieties. This moduli space is of great interest in many
different areas of mathematics, and it is worthwhile to learn more of its
geometry. We will turn our attention to the locus θnull ⊂ Ag of ppav’s
(A,Θ) such that Θ is singular at a point of order 2. We prove the main
results of this thesis in the final section.

3.1 The moduli space Ag
Principally polarized abelian varieties are essentially parametrized by the
Siegel upper-half space Hg, as observed in section 1.4. Given τ ∈ Hg, we
get a g-dimensional principally polarized abelian variety A = Cg/(Zg ⊕
τZg) together with a symplectic basis of the lattice Λτ = Zg⊕ τZg. Since
we would like to describe principally polarized abelian varieties without
being stuck with a choice of basis, we have to pass to an appropriate
quotient of Hg. Remember that J is the matrix

J =

(
0 1
−1 0

)
.

Let A = V/Λ be an abelian variety with principal polarization H. Sup-
pose that τ, τ ′ ∈ Hg are such that E is given by the matrix J with respect
to both associated symplectic bases. We have the following commutative
diagram

Λ× Λ

Λτ × Λτ Λτ ′ × Λτ ′

Z .

∼ ∼

E

J J

Suppose that we have an automorphism f : Cg → Cg that induces a
Z-linear isomorphism Λτ → Λτ ′ given by A ∈ Mat(2g,Z). Then the
isomorphism given by A commutes with the diagram if and only if

J(Av,Aw) = t(Av)J(Aw) = tvtAJAw = tvJw = J(v, w)

for all v, w ∈ Λτ , that is, J = tAJA. The 2g × 2g-matrices with this
property form a multiplicative group.

Definition 3.1.1. The symplectic group Sp(2g,Z) is the multiplicative
group consisting of 2g×2g-matrices A ∈ Mat(2g,Z) such that tAJA = J .
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Let f be an automorphism of Cg that induces an isomorphism Λτ →
Λτ ′ given by a matrix A ∈ Sp(2g,Z). For all p, q ∈ Zg, it holds that

f(p+ τq) = A

(
p
q

)
=

(
p′

q′

)
= p′ + τ ′q′,

where p′, q′ ∈ Zg. Thus it holds that(
1 τ ′

)
= f

(
1 τ

)
A−1.

Upon transposing, this becomes(
1
τ ′

)
= tA−1

(
1
τ

)
tf.

We have the identity −J = (tAJA)−1 = −A−1J tA−1. Letting A =
(
a b
c d

)
,

this yields

tA−1 = −JAJ =

(
d −c
−b a

)
,

and so we have(
1
τ ′

)
=

(
d −c
−b a

)(
1
τ

)
tf =

(
(d− cτ)tf

(−b+ aτ)tf

)
.

Hence tf = (d − bτ)−1 and τ ′ = (−b + aτ)(d − cτ)−1, which defines an
action (A, τ) 7→ (−b + aτ)(d − cτ)−1 of Sp(2g,Z) on Hg. Two matrices
τ, τ ′ define the same principally polarized abelian variety if and only if
they are conjugate under this action. To polish things up a bit, note that
the map A 7→ tAt with

t =

(
1 0
0 −1

)
defines an automorphism of Sp(2g,Z). Composing the action with this
automorphism yields (A, τ) 7→ (aτ + b)(cτ + d)−1, which is the action we
will use to define Ag (see proposition 7.1 in [2]).

Definition 3.1.2. The coarse moduli space of ppav’s is the quotient
Ag := Hg/ Sp(2g,Z) of the action of Sp(2g,Z) on Hg given by(

a b
c d

)
· τ = (aτ + b)(cτ + d)−1.

The described action of Sp(2g,Z) on Hg is properly discontinuous ac-
cording to proposition 7.3 in [2], which makes Ag into a complex analytic
space by theorem 7.2 from [2]. Unfortunately, it is not compact and
therefore the techniques of section 1.2 do not apply. There is, however,
an algebraic version of Ag that corresponds to the one just defined.
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Definition 3.1.3. Let F : Sch → Set be a contravariant functor. A
coarse moduli space for F is an object X of Sch together with a natural
transformation µ : F → hX , where hX is the functor of points, such that

1. for all schemes Y , any natural transformation ν : F → hY factors
through µ (the pair (X,µ) is initial among such pairs) and

2. if P is a one-point scheme, then the map

µ(P ) : F (P )→ hX(P ) = X(P )

is a bijection.

Usually, F assigns a set of geometric objects to a scheme S, as is
the case for the moduli space of ppav’s. The notion required is that of
principally polarized abelian schemes, which we will not define rigorously
here; a principally polarized abelian scheme over S may be thought of as
an S-scheme A such that the fibers are ppav’s. Let F : Sch → Set be
the functor sending a scheme S to the set of principally polarized abelian
schemes over S (without going into details, it holds that abelian schemes
are stable under pullback, so that F can be seen to be contravariant).
Then F has a coarse moduli space, denoted by Ag. It is, in some sense,
the best scheme to represent F , and Ag(C) is the analytic version of Ag
from definition 3.1.2.

For a generic ppav (A,Θ) ∈ Ag, the theta divisor Θ is smooth. The
locus N0 ⊂ Ag consisting of pairs (A,Θ) with a singular theta divisor
defines a divisor of Ag, which has two irreducible components θnull and
N ′0 (cf. [14], page 21). It is important to get a better understanding of N0

in order to fully understand the space Ag. We will do this by restricting
our attention to the component θnull.

Definition 3.1.4. A theta constant is a function Hg → C which is the
restriction of the theta function θ [ εδ ] : Hg × Cg → C to Hg × {0}.

An even (respectively odd) theta constant is the theta constant of an
even (respectively odd) theta function. Because an odd theta function is
odd as a function of z, it vanishes at all points (τ, 0). We now want to
consider the zero locus θnull of the product of all even theta constants,
which lives on Hg. For τ, τ ′ ∈ Hg that are conjugate under the action of
Sp(2g,Z), it turns out that τ ∈ θnull if and only if τ ′ ∈ θnull, so θnull is
well-defined on Ag (cf. [5], pages 5-6).

Definition 3.1.5. The theta-null divisor θnull is the image in Ag of the
zero locus of the product of all even theta constants.

For (A,Θ) ∈ θnull, it holds that Θ contains a point x of order two. It
is easy to check that x is singular in Θ, simply by showing that the partial

40



derivatives of θ are zero at x. Let H [ εδ ] (τ, z) be the Hessian of θ [ εδ ] (τ, z),
the g× g-matrix whose entries are the second order partial derivatives of
θ [ εδ ] with respect to zj , if we let z = (z1, . . . , zg). For 0 ≤ h ≤ g, define

θhnull = {τ ∈ Hg | ∃ [ εδ ] even : θ [ εδ ] (τ, 0) = 0, rk (H [ εδ ] (τ, 0)) ≤ h} .

Naturally, it holds that

θ0
null ⊂ θ1

null ⊂ · · · ⊂ θ
g−1
null ⊂ θ

g
null = θnull,

and it is shown in [5] that the θhnull are well-defined on Ag, which is where
they will live from now on.

3.2 Partial toroidal compactification

In the previous section we have defined the coarse moduli spaceAg of prin-
cipally polarized abelian varieties, but this space is not compact. Hence
whenever we study a “continuous” family of principally polarized abelian
varieties of dimension g (e.g. a curve in Ag), we are bound to approach
an object which is not a g-dimensional abelian variety, but rather a de-
formation of an abelian variety. Including these in the moduli space will
make life a lot easier, which is precisely what we will do in this section:
we give a partial compactification of Ag, which then allows us to study
θnull at the boundary ∂Ag of this compactification. This will lead to some
interesting conclusions in the next section.

A very important compactification of Ag is the Satake compactifica-
tion A∗g, which set-theoretically consists of

A∗g =

g∐
i=0

Ai.

The closure of each Ai ⊂ A∗g is homeomorphic to A∗i , and A∗g itself
is a projective variety, containing Ag as an open subset. However, we
will not be studying the Satake compactification, but merely the partial

toroidal compactification A1
g, which is not actually compact, but “com-

pact enough” for our purposes. It is a blow-up of Ag tAg−1 along Ag−1,
which set-theoretically amounts to

A1
g = Ag t ∂Ag,

and there is a natural surjective morphism p : A1
g → Ag t Ag−1 which

is the identity on Ag. The boundary ∂Ag consists of so-called rank 1
degenerations of g-dimensional ppav’s. Let’s make this precise, following
the steps on pages 3 and 4 of [14].

(1) Let (B,Ξ) ∈ Ag−1 be a ppav with theta divisor Ξ.
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(2) Let G be an algebraic group that fits in an exact sequence

0 −→ Gm −→ G −→ B −→ 0

of algebraic groups that splits locally.

(3) ConsiderG as a Gm-bundle over B and take its associated P1-bundle
π : G̃ → B as in section 2.1. Now there are two canonical sections
of π, one sends every point x ∈ B to 0 in π−1(x) ∼= P1

k and the other
sends x ∈ B to∞ ∈ π−1(x). Let G̃0 and G̃∞ be the images of these
sections, respectively. Then G = G̃ \ (G̃0 t G̃∞).

(4) We obtain a variety G by gluing G̃0 and G̃∞ with a translation
by a point b ∈ B. This variety G is then a rank 1 degeneration
of a g-dimensional ppav, and it comes equipped with a divisor D.
Hence we have defined what a pair (G,D) ∈ ∂Ag looks like, to some
extent. For the algebraic details of this, see [14].

The important thing to note in the above construction is that rank
1 degenerations (G,D) are defined by exact sequences as in step (2). It
holds that equivalence classes of such sequences yield the dual abelian va-
riety Bt of B by theorem 8.9 of [12]. However, two different sequences may
give rise to the same G̃; this turns out to be the case precisely when the
two sequences differ by an automorphism of (B,Ξ). Hence the projection
map p : ∂Ag → Ag−1 has B/Aut(B,Ξ) as fiber over (B,Ξ), since B is
principally polarized and therefore B ∼= Bt. The automorphism group of
a generic (B,Ξ) ∈ Ag−1 is {±1}, so its fiber π−1(B,Ξ) is B/{±1}, which
is called the Kummer variety of B. Moreover, proposition VII.8 from [9]
tells us that Aut(B,Ξ) is always finite, so each fiber has dimension g− 1.
It holds that dimAg−1 = (g − 1)g/2, so

dim ∂Ag =
(g − 1)g

2
+ g − 1 =

(g + 2)(g − 1)

2
= dimAg − 1,

as we would expect. Note that each fiber B/Aut(B,Ξ) also inherits a
divisor, Ξ/Aut(B,Ξ).

A pair (G,D) ∈ ∂Ag can also be described analytically as a degener-
ating family of abelian varieties (A(t),Θ(t)) with period matrix τ(t) such
that

τ(t) −→
(
τ ′ ω
tω i · ∞

)
as t→ 0, where τ ′ is the period matrix of p(G,D) = (B,Ξ) and ω ∈ Cg−1.
Hence G is given by the pair (τ ′, ω). The divisor D is given by the zeroes
of the function

θ̃((τ ′, ω), (z′, z)) = θ(τ ′, z′) + e2πizθ(τ ′, z′ + ω),
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where θ(τ ′, z′) is the Riemann theta function of genus g−1, z = zg defines
the algebraic coordinate e2πiz of Gm and z′ = (z1, . . . , zg−1) is the analytic
coordinate on B for a local trivialization G = U ×Gm (cf. [14]). On the
algebraic groupG, there is an involution ρ given by (z′, z) 7→ (−z′−ω,−z),
indeed

(−z′ − ω,−z) 7→ (−(−z′ − ω)− ω, z) = (z′, z).

Then D ∩G is symmetric with respect to ρ, since

θ̃((τ ′, ω), (−z′ − ω,−z)) = θ(τ ′,−z′ − ω) + e−2πizθ(τ ′,−z′)
= θ(τ, z′ + ω) + e−2πizθ(τ, z′)

and

θ(τ, z′ + ω) + e−2πizθ(τ, z′) = 0 ⇐⇒ θ(τ, z′) = −e2πizθ(τ ′, z′ + ω)

⇐⇒ θ̃(z′, z) = 0.

Note that ρ has a typical fixed point (−ω/2, 0). The partial derivatives
of θ̃ are

∂θ̃(z′, z)

∂zj
=
∂θ(τ ′, z′)

∂zj
+ e2πiz ∂θ(τ

′, z′ + ω)

∂zj
1 ≤ j ≤ g − 1

∂θ̃(z′, z)

∂e2πiz
= θ(τ ′, z′ + ω).

Let b be the image of ω in B. It follows that G ∩D is singular at (z′, a)
with a ∈ C and p = z′ in B if and only if p, p + b ∈ Ξ and either
TpΞ = Tp+bΞ or both p and p+ b are singular points of Ξ. Thus the fixed
point (−ω/2, 0) of ρ is a singular point of D if and only if

θ̃(−ω/2, 0) = θ(τ ′,−ω/2) + θ(τ ′, ω/2) = 2θ(τ ′, ω/2) = 0

and either T−b/2Ξ = Tb/2Ξ or Ξ is singular at −b/2 and b/2, but either
of the latter conditions always holds because Ξ is symmetric. Hence D is
singular at (−ω/2, 0) if and only if b/2 ∈ Ξ.

Therefore, it makes sense to define a locus 2B(Ξ) = {(τ ′, 2x) | x ∈ Ξ}
of rank 1 degenerations of abelian varieties in the fiber p−1(B,Ξ). In [14],
it is shown that

θnull ∩ ∂Ag =

 ⋃
(B,Ξ)∈Ag−1

2B(Ξ)

 ∪ p−1(θnull,g−1),

which describes the closure of θnull completely in terms of abelian varieties
of rank g − 1, the usefulness of which is immediately apparent. We will

use it to show the existence of a point in (θnull \ θ
g−1
null) ∩ ∂Ag. From this

it follows that θg−1
null ( θnull, since if θg−1

null = θnull in Ag, then surely their
closures in the partial toroidal compactification Ag∪∂Ag would coincide.
This is a clear example of the use of a good compactification.
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3.3 Theorem (Grushevsky-Salvati Manni)

In this final section, we combine the properties of the boundary ∂Ag from
section 3.2 and the theta function η from sections 1.5 and 2.5 in the form
of a proposition and a theorem, which is theorem 3 of [5].

Proposition 3.3.1. The codimension of the locus θhnull in θnull ∩ ∂Ag is
at most (g − h)2 if it is nonempty.

Proof. Let θ(τ ′, z) be the Riemann theta function of dimension g−1. Let

X =

 ⋃
(B,Ξ)∈Ag−1,

Ξ smooth

2B(Ξ)


and consider θhnull ∩ X. As 2B(Ξ) has codimension 1 in the fiber over
(B,Ξ), and the theta divisor of a generic abelian variety in Ag−1 is
smooth, it follows that dimX = dim ∂Ag − 1 = dim(θnull ∩ ∂Ag), so
it suffices to prove

codim
(
θhnull ∩X,X

)
≤ (g − h)2.

Let H(τ ′, z′) be the Hessian of θ(τ ′, z′) and dθ(τ ′, z′) the column vector
consisting of its first derivatives. Then the Hessian of θ̃((τ ′, ω), (z′, z)) is
given by

e2πiz

(
H(τ ′, z′ + ω) 0

0 0

)
+

(
H(τ ′, z′) dθ(τ ′, z′ + ω)

tdθ(τ ′, z′ + ω) 0

)
,

which evaluated in (−ω/2, 0) becomes(
2 0
0 1

)
·
(

H(τ ′, ω/2) dθ(τ ′, ω/2)
tdθ(τ ′, ω/2) 0

)
,

using the fact that the Hessians are equal at −ω/2 and ω/2 as Ξ is
symmetric. Since we are only interested in the rank of this matrix and
the first term of the product is obviously invertible, we define

M(τ ′, ω) =

(
H(τ ′, ω/2) dθ(τ ′, ω/2)
tdθ(τ ′, ω/2) 0

)
.

Hence (G,D) given by (τ ′, ω) ∈ 2B(Ξ) ⊂ X is in the closure of θhnull if
and only if the rank of M(τ ′, ω) is is at most h. Thus far, we did not use
the fact that Ξ is smooth. The Hessian H(τ ′, ω/2) defines the tangent
map dΓx : TxΞ→ (TxΞ)∨ of the Gauss map Γ : Ξ→ Pg−2, where x is the
image of ω/2 in Ξ. The ranks of M = M(τ ′, ω/2) and dΓx are related.
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Let H = H(τ ′, ω/2) and dθ = dθ(τ ′, ω/2). Furthermore, let (z′, z) ∈
Cg with z′ ∈ Cg−1 and z ∈ C. Then it holds that

(z, z′) ∈ kerM ⇐⇒ Hz′ = −dθz and tdθz′ = 0

⇐⇒ z′ ∈ TxΞ and Hz′ ∈ C · dθ
⇐⇒ z′ ∈ ker dΓx.

It follows that dim kerM = dim ker dΓx, and so rk(M) ≤ h if and only
if rk(dΓx) ≤ h − 1, or equivalently if and only if x is in the degeneracy
locus Rh−1(dΓ) as in definition 2.3.3. Thus we have

θhnull ∩ 2B(Ξ) = 2B(Rh−1(dΓ)),

seen as a subscheme of Ξ/Aut(B,Ξ) in the same way as 2B(Ξ). According
to theorem 8.2 of [3], each component of Rh−1(dΓ) has codimension at
most (g − h)2 in Ξ. Hence it follows that

codim
(
θhnull ∩ 2B(Ξ),Ξ/Aut(B,Ξ)

)
≤ (g − h)2.

This ultimately yields that θhnull ∩X has codimension at most (g−h)2 in
X, as claimed.

We have an easy corollary. Let X be as in the proof of proposition
3.3.1 and 2B(Sing(Ξ)) = {(τ ′, 2x) | x ∈ Sing(Ξ)}, where Sing(Ξ) is the
singular locus of the theta divisor Ξ of the ppav B with period matrix τ ′.
Note that codim(2B(Sing(Ξ)), 2B(Ξ)) = codim(Sing(Ξ),Ξ).

Corollary 3.3.2. Assume that g ≥ 2. Then

θ1
null ∩ ∂Ag ⊂

 ⋃
(B,Ξ)∈Ag−1,

Ξ singular

2B(Sing(Ξ))

 .

Proof. Let (τ ′, ω) ∈ 2B(Ξ), such that Ξ is smooth at the image b/2 of
ω/2. Then it holds that dθ(τ ′, ω/2) ∈ Cg−1 is a nonzero vector. It follows
from elementary linear algebra that rk(M(τ ′, ω)) ≥ 2. Hence

(τ ′, ω) /∈ θ1
null.

Thus, letting (τ ′, ω) ∈ θ1
null ∩ ∂Ag, it follows that Ξ is singular at the

image b/2 of ω/2. Hence (τ ′, ω) ∈ 2B(Sing(Ξ)), as was to be shown.

While not particularly thrilling for large g, this corollary might be
interesting for small g. The main result we want to prove is the following.
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Theorem 3.3.3 (Grushevsky-Salvati Manni).

θg−1
null ( θnull.

Proof. From the proof of proposition 3.3.1, we have

θhnull ∩ 2B(Ξ) = Rh−1(dΓ)

for generic (B,Ξ) ∈ Ag−1, where Rh−1(dΓ) is the rank h− 1 degeneracy
subscheme of dΓ, with Γ : Ξ → Pg−2 the Gauss map. For h = g − 1, we
get Rg−2(dΓ), which is the ramification locus of Γ. By corollary 9.11 in
[8], the Gauss map is generically finite and dominant, so in particular it
does not ramify everywhere. Hence

θg−1
null ∩X ( X and θg−1

null ( θnull.

The desired result follows from the observations at the end of section
3.2.
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