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Abstract

This thesis studies the ligand-receptor interactions from a mathematical viewpoint and
shows the change of ligand concentration due to the reciprocal actions between the ligand
and the receptors. Adding the diffusion term to the existing model, we come up with
our own general model. The dissertation studies the model in one-dimensional and two-
dimensional spaces, respectively. We solve four one-dimensional cases with analytical
and numerical methods. Those four cases are obtained on the possible permutation of
two locations for the receptor compartment and two initial conditions. Three special
cases in the two-dimensional space are provided—the first two are radially symmetric and
the third one without symmetry. Numerical solutions for all the cases are provided and
all the numerical methods are implemented in MATLAB. The numerical simulations,
supplemented by the approximation of the real solution, are used to show how the
ligand and the receptors interact with each other. All the findings in this thesis describe
a quantitative interrelationship between the ligand and the receptors.
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Chapter 1

Introduction

In our brain, there are large quantities of receptors, or proteins, which can trigger a
series of physiological reactions when they receive stimuli. These stimuli come from spe-
cial molecules which have an effect when they form certain compounds with receptors.
These small molecules, or ligand, attach to the receptors and send out certain signals,
which lead the receptors into triggering a series of biochemical processes. Ligand comes
from inside the body or outside. No matter where the ligand comes from, their inter-
actions with the receptors are similar. The receptor-ligand interrelations are critical to
numerous biological processes, such as neurotransmission, hormone synthesis and regu-
lation of blood circulation. A clear understanding of those mutual actions can also help
us figure out an efficient way to trigger or block specific physiological reactions. Hence,
studying these ligand-receptor interactions can be very meaningful.

A number of quantitative methods have been developed to describe the ligand-receptor
interaction in the past decade. And a lot of relating researches have been done, such as
kinetic and thermodynamic analysis of ligand-receptor mutual actions [8] and protein-
ligand complex [9]. A drug is also a kind of ligand and most therapeutic drugs have their
effect by interacting with receptors, see [7]. The studying of reciprocal actions between
small molecules and proteins has become the basis for an efficient drug-design scheme.
Therefore, by having a clear view about these ligand-receptor binding processes, we can
discover the most effective way to activate receptors or block them from ligand and
consequently improve the efficiency of the medicine.

1.1 Background

The receptors have the potential to trigger physiological processes, but they need to bind
with certain ligand to have this effect. The responses of the receptors can be distinct
when they are bound to different ligand. To describe this mechanism in a metaphorical
manner, imagine a jigsaw puzzle with a piece missing, but that missing piece is so crucial
that we could not understand the whole puzzle without it. When the piece with the right
shape and size (certain ligand) arrives, the puzzle is solved. A lot of related researches
have been done to find the suitable piece, such as Pharmacokinetic-Pharmacodynamic
(PK-PD) modeling [6] and receptor-based methods [9]. There are also many protein-
based molecular designs focusing on the existing ligand [5]. Furthermore, Pilar et al
[1] have shown that receptors binding to specific ligand is the key factor to control and
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trigger the signaling transmission.

However, more and more evidence [1, 3, 8] is found which supports the idea that find-
ing the certain ligand for the receptors is not adequate anymore. In addition, there is
increasing awareness that the amount of drugs reside at their target also affects their
clinical performance [4]. As a result, the importance of ligand-receptor interaction af-
fected by ligand density comes to our attention, and we believe it will guide the search for
new pharmaceuticals. This thesis aims to understand the mechanism of receptor-ligand
interaction when ligand binding to receptor and forming a compound. Mathematical
models of how the ligand concentration has effect on the ligand-receptor response have
been thoroughly studied in two papers [3, 4]. These models have revealed interesting
features involved in these processes, including the properties of ligand-receptor recipro-
cal actions and how receptor density affects the ligand concentration when the binding
happens. They were only focused on the mechanism between the ligand and the recep-
tors but the diffusion of ligand hadn’t been taken into consideration. And these models
were based on solving a system of ordinary differential equations (ODEs).

1.2 Model
This dissertation will analyze the ligand-receptor interactions from a quantitative view,
and focus on the changes of the ligand and the receptor concentrations due to their
reciprocal actions. To begin the study, it is better to have a clear idea about the ligand,
the receptor, and how they interact with one another. Ligand is the small molecule
which can attach to the receptor and give a certain signal, for example a drug. The
receptor can receive the stimuli in the brain and trigger a series of biochemical processes,
for instance, being in a good mood, getting rid of exhaustion, or relieving headaches.
Based on the physiological experiments [2, 7], several biological behaviors of the ligand
and the receptor are known, such as the diffusion of the ligand and the basic binding
mechanism between the ligand and the receptor. In our model, we will not only consider
the basic mechanism but also the dissemination of the ligand. Therefore, this thesis uses
a system of partial differential equations (PDEs) to describe the interaction between the
ligand and the receptor, because the ligand concentration depends on time as well as
the corresponding distance to the receptor compartment. The general model that will
be analysed throughout this thesis is

∂L

∂t
=− kcL+ d∆L− konfL+ (koff + konL)B

∂B

∂t
=konfL− (koff + konL)B.

(1.1)

Here L denotes the concentration of the ligand and B is the bound product of L and
R, where R is the concentration of free receptors. The dissemination of the ligand is
described as d∆L and d is the diffusion coefficient. When d is zero the model is the
general model without diffusion, otherwise it is a model with dissemination term. kc is
the rate of the ligand being washed out of the brain. The interaction between the ligand
and the receptor consists of two parts: binding and unbinding. kon and koff are the rates
of binding and unbinding, respectively. And f is defined as f = R+B, which describes
the total concentration of the receptors. Based on some extra assumptions, we will
solve several special cases. This paper will start from the simplest case, one-dimensional
model, and then go to two-dimensional cases.
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1.3 Methods
Inner region is defined as the receptor compartment, where receptors are located, and
outer region is used to denote the region without a receptor. The two regions will be
considered separately. For the inner region, we will only provide approximate solution
and the method of matched asymptotic expansions [13, 14] is going to be used. To study
the two-dimensional cases with radial symmetry, we will focus on their cross sections.
In this way, we transfer two two-dimensional case into one in one-dimensional space,
and consequently it simplifies the analysis of 2-d model. To implement the numerical
simulations, forward-difference schemes [15] are used to approximate the derivatives and
all the codes are based on MATLAB.

1.4 Structure
In Chapter 2 we will provide two general models. Chapter 3 focuses on solving the model
in one-dimensional space, and four special cases will be shown in this chapter. We use
the matched asymptotic expansions and numerical method to solve the first case. The
numerical solutions of the other three cases will be provided. Chapter 4 considers the
general model in two-dimensional space. Three cases will be presented in this chapter,
first two are radially symmetric and the last one is nonsymmetric. All the results and
summary will be presented in Chapter 5.
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Chapter 2

General Models

In this chapter, we concentrate on giving a description of ligand-receptor interaction
from a qualitative and quantitative view. Mathematical models will be used to simulate
the biological activities of the ligand and the receptor, which have been monitored by
a series physiological experiments [2, 7]. This part first presents the general model we
already know. Then adding the diffusion term, we come up with our own model, which
is the basis for the upcoming models. The general assumptions, the steps how to build
our models, and the definitions of all the variables will be given. The values of all the
constants used in the numerical simulations will be provided at the end of this chapter.

2.1 Assumptions
To build a consistent model, we need to begin with a few assumptions. Let L(x, t) be
the concentration of the ligand, where t ≥ 0 is time and x defines the position in the
region we are studying (in high-dimensional spaces x can be a vector). Usually x ∈ Rk
and k can be 1, 2 or 3 for the models in different spaces. We usually rescale x so that
its size becomes 1. To further simplify our model, the receptors are only located in
a tiny region. Based on the physiological effects, there are three factors affecting the
concentration of ligand, which are: 1) a few of ligand are washed out of the brain; 2)
the diffusion of the initial ligand in the region; 3) the binding and unbinding with the
receptors.

1) Define kc as the elimination rate, at which rate the ligand is being washed out of
the brain.

2) We assume the diffusion coefficient is a constant, define it as d. Then, the diffusion
can be described as d∆L.

3) Define B as the bound product of L and R when the ligand binds to the receptors,
where R(x, t) is the concentration of the free receptors.

2.2 General Models
According to binding model [8], the interaction among the ligand and the receptor
consists of two parts:

i) Binding: the ligand binds to the receptors. Define kon as the binding rate, which
is the rate at which ligand binds to receptors.
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ii) Unbinding: we assume the rate of unbinding is koff.

The changing rate of B is just the difference between the binding and unbinding.

According to [8, 9] and the assumptions in the last section, when only considering the
ligand being washed out of the brain and the basic mechanism with receptors we find a
general model , that is 

∂L

∂t
=− kcL− konLR+ koffB

∂B

∂t
=konLR− koffB,

(2.1)

with no-flux boundary conditions. Here, we use these boundary conditions, because we
assume there is no ligand leaving from the boundary. These boundary conditions will
be used throughout this thesis.

The previous system only considers two factors affecting the concentration of the ligand,
which are 1) being washed out of brain and 2) attaching to the receptor. As the diffusion
also has an important role affecting the concentration of ligand and we want to study
its influence, so we take the diffusion of the ligand into consideration as well. Adding
the diffusion term, the model (2.1) becomes

∂L

∂t
=− kcL+ d∆L− konLR+ koffB

∂B

∂t
=konLR− koffB,

(2.2)

with no-flux boundary conditions. Moreover, we know B is the bound product of the
ligand and the receptor. Let f(x, t) describe the total concentration of the receptors,
free and bound, at position x at time t. So we have following relations among R, B and
f :

f = R+B or R = f −B. (2.3)

Then, using (2.3), we can substitute R with f −B and get the general model,
∂L

∂t
=− kcL+ d∆L− konfL+ (koff + konL)B

∂B

∂t
=konfL− (koff + konL)B.

(2.4)

This system also uses the no-flux boundary conditions, which make sure that no ligand
leaving at the boundary. When trying to solve the system, the initial conditions should
also be taken into account. The initial condition of B is always zero everywhere. For
different cases, we have different initial conditions for L. We suppose the initial concen-
tration of the ligand is not higher than LC , and the initial concentration of ligand can
be a function relating to LC . The models in the following chapters usually assume f is
a step function and that function doesn’t depend on time. It means f is assumed to be
a constant, defined as fC , in the receptor compartment, while outside the compartment
it is equal to zero. We have this assumption because it simplifies the system and makes
it solvable.
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2.3 Assumptions for Numerical Method
Numerical technique will be used to solve the problem. Using numerical method, we
need to determine several constants, which will be given in this section. We suppose the
volume of the brain is 1 liter (= 1000 cm3). The radius of a sphere with 1 liter volume
is r ≈ 6.2 cm. Assume the volume of the receptor compartment is 10 nanoliter (=
10−8 liter = 10−5 cm3). So compared with the whole brain, the receptor compartment
is really tiny, and the radius of this tiny sphere is approximately 1.337 × 10−2 cm ≈
2.16 × 10−3 × r. All the constants and their selected values are listed in the following
table:

Variables Selected Values
kon 109 /(molar·h)
koff 0.003 ∼ 3.0 /h
kc 1/h
d 10−6 cm2/s
LC 0.1 nanomolar
fC 286.43 nanomolar

Here "molar" is a measure of the concentration of a solute in a solution. and it is denoted
as "mol/L", i.e. 1 molar = 1 mol/L. The term "nanomolar" refers to 1 nanomolar =
10−9 molar = 10−9 mol/L.

2.3.1 One-dimensional Model

In one-dimensional space, we assume the whole region is a line segment and the receptor
compartment is a small part of the segment, which is located at one end of the whole
region. Comparing the size of the brain and that of the receptor compartment, we sup-
pose the length of the line segment is 1, and the size of the tiny interval is ε ∼ O(10−3).
Thus, for the model in one-dimensional space, the region under study is [0, 1], while the
receptor compartment is [0, ε) or (1− ε, 1].

Using those experimental values for the constants, both sides of our equation have
the same measurement scale. With the requirement to preserve dimensional equality,
the manipulation of complete equations is limited to certain operational rules when we
try to get the solutions. This has already been discussed thoroughly by both Bridg-
man [10] and by Gibbings [11]. Addition and multiplication are permissible but other
advanced mathematical operations, such as taking exponents and forming binomial ex-
pansions, are only acceptable when all the variables are non-dimensional. Thus, we need
to non-dimensionalize our system of equations. Non-dimensionalization or scaling is the
procedure to remove units or dimensions from a system of equations. We follow the
steps shown in Chapter 1.5 of [13] to scale the variables. To scale the variables t and x,
we assume there are two intrinsic units of measurement tc and xc with the same units
as t and x respectively, such that

t = tct̃ and x = xcx̃. (2.5)

tc and xc are called characteristic scales, which are constants with certain dimensions and
represent characteristic values of the variables. As most of the variables are measured
within one hour, so we choose tc = 1h = 3600s. As we want the length of our studying
region to be 1, we choose xc = 6.2cm. We then make the change of variables t̃ = t

tc
and
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x̃ = x
xc

to achieve dimensionless time and length. The change of the variables is based
on the chain rule, for example,

∂

∂t
=
∂t̃

∂t

∂

∂t̃
=

1

tc

∂

∂t̃
.

Following the same steps to non-dimensionalize L, B and R, that is

L = LcL̃, B = BcB̃ and R = RcR̃, (2.6)

where Lc, Bc and Rc are the characteristic scales. As a result, L̃, B̃ and R̃ are the non-
dimensionalized terms. The one-dimensional model uses ∂2L

∂x2 as the diffusion term and
we substitute the variables with (2.5) and (2.6), then the general model (2.2) becomes

Lc
tc

∂L̃

∂t̃
=− kcLcL̃+

dLc
x2
c

∂2L̃

∂x̃2
− konLcRcL̃R̃+ koffBcB̃

Bc
tc

∂B̃

∂t̃
=konLcRcL̃R̃− koffBcB̃.

(2.7)

Multiplying tc
Lc

on both sides of the first equation and tc
Bc

on both sides of the second
one, we obtain 

∂L̃

∂t̃
=− kctcL̃+

dtc
x2
c

∂2L̃

∂x̃2
− konRctcL̃R̃+

koffBctc
Lc

B̃

∂B̃

∂t̃
=
konLcRctc

Bc
L̃R̃− kofftcB̃.

(2.8)

Changing the variables has resulted in six new parameters appearing in the transformed
system. They are

kctc,
dtc
x2
c

, konRctc,
koffBctc
Lc

,
konLcRctc

Bc
and kofftc.

If we let
Lc = Rc = Bc,

then there are only four parameters left. Define them as

k̃c = kctc, d̃ =
dtc
x2
c

, k̃on = konRctc and k̃off = kofftc.

So we get a new dimensionless system, which is
∂L̃

∂t̃
=− k̃cL̃+ d̃

∂2L̃

∂x̃2
− k̃onL̃R̃+ k̃offB̃

∂B̃

∂t̃
=k̃onL̃R̃− k̃offB̃.

(2.9)

To determine the values of all the new parameters, we choose

Lc = Rc = Bc = 1 nanomolar = 10−9 molar.
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Together with tc = 1h = 3600s and xc = 6.2cm, the values of new constants are

k̃on =konRctc =
109

molar · h
· 10−9 molar · 1 h = 1,

k̃off =kofftc =
0.003 ∼ 3.0

h
· 1 h = 0.003 ∼ 3.0,

k̃c =kctc =
1

h
· 1 h = 1,

and

d̃ =
dtc
x2
c

=
10−6cm2

s · 1 h
(6.2 cm)2

=10−6 · 3600/6.22 ≈ 0.9365 · 10−4 ≈ 10−4.

Similarly, we also have to non-dimensionalize the terms of initial conditions. Assuming
L̃C and f̃C are non-dimensionalized terms of LC and fC , respectively, so we have

LC = L̃CLc and fC = f̃Cfc.

By the definition of f , we know
f = R+B.

Hence, we can calculate the non-dimensionalized term L̃C and f̃C , which are

L̃C =
LC
Lc

= 0.1 nanomolar/(1 nanomolar) = 0.1

and f̃C =
fC
fc

= 286.43 nanomolar/(1 nanomolar) = 286.43.

Different notations will not affect the whole system and we also want a simpler notation,
so substituting all the variables in (2.9) with the original variables without tilde and using
the property (2.3), we obtain

∂L

∂t
=− kcL+ d

∂2L

∂x2
− konfL+ (koff + konL)B

∂B

∂t
=konfL− (koff + konL)B.

(2.10)

This rescaled dimensionless system will be used throughout this thesis. Although this
system is exactly the same as general model (2.4), it’s important to notice that all the
parameters and variables here are dimensionless, and the values of new parameters are
listed in the following table:

Variables Dimensionless Values
kon 1
koff 0.003 ∼ 3.0
kc 1
d 10−4

LC 0.1
fC 286.43
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2.3.2 Two-dimensional Model
In two-dimensional space, the area under study is assumed to be a round disk with
radius 1 and the receptor compartment has a relatively tiny size. For the model in
two-dimensional space, we use the following

∆L =
∂2L

∂r2
+

1

r2

∂2L

∂θ2
+

1

r

∂L

∂r

as the diffusion term. Following the steps to get the 1-d dimensionless system, we obtain
the dimensionless system in two-dimensional space, which is

∂L

∂t
=− kcL+ d

(
∂2L

∂r2
+

1

r2

∂2L

∂θ2
+

1

r

∂L

∂r

)
− konfL

+ (koff + konL)B

∂B

∂t
=konfL− (koff + konL)B.

(2.11)

The values of new dimensionless parameters are given in the following table, and we
note that the new constants for two-dimensional model are the same as those for 1-d
model.

Variables Dimensionless Values
kon 1
koff 0.003 ∼ 3.0
kc 1
d 10−4

LC 0.1
fC 286.43
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Chapter 3

One-dimensional Model

This chapter focuses on one-dimensional model, which is the general model in one-
dimensional space. Analysing the one-dimensional cases gives the intuition to solve the
general model and it is also the basis for the analysis of the model in two-dimensional
space. Some extra assumptions are given at the beginning, then we solve several cases
with certain initial conditions. We will solve the system in inner and outer regions
separately. Inner region is defined as the receptor compartment, where the receptors
are located, and outer region is used to denote the region without receptor. Solving the
system, we use matched asymptotic analysis [13] and Duhamel’s principle [16] to get
the inner and outer solutions. The numerical solution is also given. At the end of this
chapter, the numerical simulations for three other cases are provided as well, which is
followed by the comparison of those results.

3.1 Modeling

According to the discussion in Chapter 2, the whole region in this model is a line segment
with length 1. The position on the line segment is defined by x, so it has the range from
0 to 1.

∆L =
∂2L

∂x2

is used as the diffusion term in system (2.4). And we assume, at time t = 0, L(x, 0) =
Lini(x) and B(x, 0) ≡ 0, which are the initial conditions. We use the no-flux boundary
conditions. To further simplify the question, we need some extra assumptions. There
are two situations will be taken into consideration: 1) the receptors lie at one end of
the line segment and 2) the receptors lie in the middle of the line segment. Within
each scenario, there are two cases with different initial conditions. We assume at the
beginning no ligand is bound to receptors, so B(x, 0) ≡ 0 for any 0 ≤ x ≤ 1 is used
as the initial condition for all four cases. But the initial conditions of L are slightly
different:

1. Lini(x) is constant for all 0 ≤ x ≤ 1, see Figure 3.1(a), which means at the
beginning the ligand is evenly distributed in the brain;

2. Lini(x) is constant for x1 < x < x2 and otherwise zero, with 0 < x1 < x2 < 1
where x1 are x2 are some constants, see Figure 3.1(b). In this case, at time t = 0,
the ligand only exists in part of the region.
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We only provide the detailed procedure to solve the first case, in which the receptors
lie on the boundary, Lini(x) is a constant for all 0 ≤ x ≤ 1, and B(x, 0) ≡ 0 for any
0 ≤ x ≤ 1. For this case, both analytical solution and numerical solution will be
provided, and we only give the numerical results for the other three cases.

(a) Lini(x) is a constant for all 0 ≤ x ≤ 1 (b) Lini(x) is a constant for x1 < x < x2

Figure 3.1: Two Different Initial Conditions: (a) Lini(x) is constant on (0, 1); (b)
Lini(x) is a nonzero constant on (x1, x2) and otherwise zero.

3.2 Receptors on the Boundary

We assume the receptors are located at the right end of the segment, i.e. near x = 1.
The size of the receptor region is ε � 1, and the function f(x, t), the concentration of
receptors, is a step function and doesn’t change with respect to t, that is

f(x, t) ≡
{

0 for x ∈ [0, 1− ε]
fC for x ∈ (1− ε, 1]

where fC is a constant. (3.1)

3.2.1 Lini(x) is constant and B(x, 0) ≡ 0 for 0 ≤ x ≤ 1

First, we consider the initial conditions that the concentration of ligand is constant in
the region at time t = 0.

Approximate Solution

Outer Region The outer region is defined as [0, 1 − ε]. In this region there is no
receptor, which means f(x, t) ≡ 0 for x ∈ [0, 1 − ε] and B ≡ 0, hence the general
one-dimensional model becomes

∂L

∂t
= −kcL+ d

∂2L

∂x2
for x ∈ [0, 1− ε], (3.2)

with boundary condition ∂L
∂x |x=0 = 0 and initial condition L(x, 0) = LC .

Setting L(x, t) = e−kctL̃(ξ, t) where ξ = x/
√
d, system (3.2) becomes

∂L̃

∂t
=
∂2L̃

∂ξ2
for ξ ∈

[
0,

1− ε√
d

]
, (3.3)

with boundary condition ∂L̃
∂ξ |ξ=0 = 0 and initial condition L̃(ξ, 0) = LC .
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According to Duhamel’s principle [16], the solution to the previous equation is

L̃(ξ, t) =
LC

2
√
πt

∫ 1−ε√
d

0

[
exp

(
− (ξ − s)2

4t

)
+ exp

(
− (ξ + s)2

4t

)]
ds.

Since ξ = x/
√
d, we can switch back to the original variable x, that is,

L(x, t) =e−kct
LC

2
√
πt

∫ 1−ε√
d

0

[
exp

(
−

( x√
d
− s)2

4t

)
+ exp

(
−

( x√
d

+ s)2

4t

)]
ds

=e−kct
LC

2
√
πt

∫ 1−ε√
d

0

[
exp

(
− (x−

√
ds)2

4dt

)
+ exp

(
− (x+

√
ds)2

4dt

)]
ds.

We change the integration variable by letting r =
√
ds, so we get the outer solution

L(x, t) = e−kct
LC

2
√
dπt

∫ 1−ε

0

[
exp

(
− (x− r)2

4dt

)
+ exp

(
− (x+ r)2

4dt

)]
dr,

which can be written as (for detailed procedure, see Appendix A.1.1)

L(x, t) =e−kct
LC
2

(
erf

(
x+ 1− ε

2
√
dt

)
− erf

(
x− 1 + ε

2
√
dt

))
, (3.4)

where

erf(x) =
2√
π

∫ x

0

e−w
2

dw.

Hence we have

L(x, t) =e−kct
LC
2

(
erf

(
x+ 1− ε

2
√
dt

)
− erf

(
x− 1 + ε

2
√
dt

))
. (3.5)

By Taylor expansions, we have

erf

(
x+ 1− ε

2
√
dt

)
= erf

(
x+ 1

2
√
dt

)
+
−ε

2d
√
πt
e−

(x+1)2

4dt + · · ·

and

erf

(
x− 1 + ε

2
√
dt

)
= erf

(
x− 1

2
√
dt

)
+

ε

2d
√
πt
e−

(x−1)2

4dt + · · · .

Thus, the approximation of the outer solution (3.4) can be written as

Louter(x, t) ∼e−kct
LC
2

(
erf

(
x+ 1

2
√
dt

)
− erf

(
x− 1

2
√
dt

)

− ε

2d
√
πt
e−

(x+1)2

4dt − ε

2d
√
πt
e−

(x−1)2

4dt

)
+ · · ·

(3.6)
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Inner Region Now, we study the receptor compartment, where x ∈ (1 − ε, 1]. Ac-
cording to assumption (3.1), f(x) is a constant fC in this region, hence the system
becomes 

∂L

∂t
=− kcL+ d

∂2L

∂x2
− konfCL+ (koff + konL)B

∂B

∂t
=konfCL− (koff + konL)B,

(3.7)

along with boundary condition ∂L
∂x |x=1 = 0 and initial conditions:

L(x, 0) ≡ LC and B(x, 0) ≡ 0 for x ∈ (1− ε, 1].

It’s better to zoom in on the tiny interval (1− ε, 1], so we introduce

x̄ =
x− 1

εδ
where δ > 0, (3.8)

and how to choose δ will be given later. We can write system (3.7) with variable x̄
instead of x, that is

∂L

∂t
=− kcL+

d

ε2δ

∂2L

∂x̄2
− konfCL+ (koff + konL)B

∂B

∂t
=konfCL− (koff + konL)B.

This system can be rewritten as
∂2L

∂x̄2
=
ε2δ

d

(
∂L

∂t
+ kcL+ konfCL− (koff + konL)B

)
∂B

∂t
=konfCL− (koff + konL)B.

(3.9)

We assume
L(x̄, t) = L0(x̄, t) + εαL1(x̄, t) + · · ·

and
B(x̄, t) = B0(x̄, t) + εβB1(x̄, t) + · · · ,

where α, β > 0 and they will be determined by the balancing technique. Then, the
system (3.9) becomes

∂2L0

∂x̄2
+ εα

∂2L1

∂x̄2
+ · · ·

¬ ­

=
ε2δ

d

(
∂L0

∂t
+ kcL0 + konfCL0 − (koff + konL0)B0

)
®

+
ε2δ+α

d

(
∂L1

∂t
+ kcL1 + konfCL1 − konL1B0

)
+ · · ·

¯

(3.10)

and
∂B0

∂t
+ εβ

∂B1

∂t
+ · · · =konfCL0 − (koff + konL0)B0

− εβkonL0B1 + εα (fCL1 − konL1B0) .
(3.11)
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As α > 0 and δ > 0, the leading-order term of equation (3.10) is ∂2L0

∂x̄2 and the rest are
higher-order terms, so we have {

∂2L0(x̄,t)
∂x̄2 = 0

L0(x̄, 0) ≡ LC .
(3.12)

Integrating equation (3.12) twice, we obtain

L0(x̄, t) = L00(t) + x̄L01(t), (3.13)

where L00(t) and L01(t) are two functions only depending on t. Because L0(x̄, 0) ≡ LC ,
so we have L00(0) = LC and L01(0) = 0. As the leading term of outer solution doesn’t
depend on x, so we let L01(t) = 0. Thus, the leading-order term of the solution L(x̄, t)
is

L0(x̄, t) = L00(t), (3.14)

where L00(0) = LC .

Then we try to get the expression of B0. From the leading term of equation (3.11),
we get

∂B0

∂t
= konfCL0 − (koff + konL0)B0. (3.15)

To simplify the equation, letting A1(t) = konfCL0 and A2(t) = −(koff + konL0), we get
a nicer equation for B0, which is

∂B0(x̄, t)

∂t
= A1(t) +A2(t)B0(x̄, t). (3.16)

The general solution to equation (3.16) is

B0(x̄, t) = e
∫ t
0
A2(ξ)dξ

∫ t

0

A1(η)e−
∫ η
0
A2(ξ)dξdη + C1(x̄)e

∫ t
0
A2(ξ)dξ, (3.17)

where C1(x̄) is a function only depending on x̄. Thus, the general solution to equation
(3.15) is

B0(x̄, t) =e
∫ t
0
−(koff+konL0(x̄,ξ))dξ

∫ t

0

konfCL0(x̄, η)e
∫ η
0
koff+konL0(x̄,ξ)dξdη

+ C1(x̄)e
∫ t
0
−(koff+konL0(x̄,ξ))dξ.

(3.18)

Because of the initial condition B(x̄, 0) ≡ 0, we can get

C1(x̄) = 0.

Hence, the expression of B0(x̄, t) is

B0(x̄, t) =e
∫ t
0
−(koff+konL0(x̄,ξ))dξ

∫ t

0

konfCL0(x̄, η)e
∫ η
0
koff+konL0(x̄,ξ)dξdη.

Using the result (3.14), we can rewrite the expression of B0(x̄, t), i.e.,

B0(x̄, t) =e
∫ t
0
−(koff+konL00(ξ))dξ

∫ t

0

konfCL00(η)e
∫ η
0
koff+konL00(ξ)dξdη. (3.19)
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Based on this expression, B0 doesn’t depend on x̄ anymore, although we still use the
notation B0(x̄, t).

Now, we already got the expressions of L0(x̄, t) and B0(x̄, t). As it is only the first
term of inner solution and we want to get a more precise solution, so we are still inter-
ested in the expression of L1(x̄, t). To get the solution of L1(x̄, t), we need to balance
both sides of equation (3.10). Based on α > 0 and δ > 0, we know the leading-order term
is ¬, while ¯ has the highest order among the four terms in the equation. It remains
to determine the balance between ­ and ®. We choose ­ as the second leading-order
term and assume ® has higher order, the reason is given in Appendix A.1.2. With this
balancing, we have the following problem to solve:{

∂2L1(x̄,t)
∂x̄2 = 0

L1(x̄, 0) ≡ 0.
(3.20)

Integrating equation (3.20) twice, we obtain

L1(x̄, t) = L10(t) + x̄L11(t),

with L10(0) = L11(0) ≡ 0. While the second term of outer solution only depends on t,
so L11(t) should be zero. Then we can conclude that the approximate inner solution is

Linner(x̄, t) = L00(t) + εαL10(t) + · · · . (3.21)

Matching There are two undetermined functions in the inner solution, which are
L00(t) and L10(t). This paragraph uses the matching technique [14] to determine those
unknowns.

In previous parts we already got the inner and outer solutions, but we don’t want
our solutions to have a dramatic change in the transition area between the inner and
outer regions. To accomplish this, the two solutions should be close enough within the
transition region. So letting x̄ go to minus infinity and x approach 1, we expect the
outer and inner outer solutions to have same value. In other words, we require that

lim
x→1

Louter(x, t) = lim
x̄→−∞

Linner(x̄, t).

Based on the expression (3.6), we have

lim
x→1

Louter(x, t) =e−kct
LC
2

(
erf

(
1√
dt

)
− ε

2d
√
πt
e−

1
dt − ε

2d
√
πt

)
+ · · · . (3.22)

According to (3.21), we know that

lim
x̄→−∞

Linner(x̄, t) = L00(t) + εαL10(t).

Thus, we can conclude that α = 1,

L00(t) = e−kct
LC
2

erf

(
1√
dt

)
and

L10(t) = −e−kctLC
2

(
1

2d
√
πt
e−

1
dt +

1

2d
√
πt

)
.
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Hence, the inner solution can be approximated by

Linner(x, t) =e−kct
LC
2

(
erf

(
1√
dt

)
− ε

2d
√
πt
e−

1
dt − ε

2d
√
πt

)
+ · · · . (3.23)

Numerical Results

In this part, we use numerical method to solve the following system
∂L

∂t
=− kcL+ d

∂2L

∂x2
− konfL+ (koff + konL)B

∂B

∂t
=konfL− (koff + konL)B,

(3.24)

along with the no-flux boundary conditions and initial conditions:

L(x, 0) ≡ LC and B(x, 0) ≡ 0 for 0 ≤ x ≤ 1.

Here the function f(x, t), the concentration of receptors, is assumed to be a step function
and doesn’t change with respect to t, that is

f(x, t) ≡
{

0 for x ∈ [0, 1− ε]
fC for x ∈ (1− ε, 1]

where fC is a constant.

We use the forward-difference formula [15] to approximate all the derivatives. Before
programming, we have to write our system into the extrapolation formula (given in
Appendix A.2.1). However, the formulas for boundary points are a little different from
those for interior points, so we have to think about them separately. As soon as we get
all the extrapolation formulas, we can implement them in MATLAB.

Boundary Conditions If using the extrapolation formula on the boundary points,
there is a problem: two imaginary nodes L(n)

Nx+1 and L
(n)
−1 appear in the formula. In

this part, we will figure out how to deal with these points. The system uses the no-flux
boundary conditions, which mean there is no ligand leaving on the boundaries, i.e.

∂L

∂x

∣∣∣
x=0

=
∂L

∂x

∣∣∣
x=1

= 0.

Using forward-difference formulas to approximate the derivatives, we have

∂L

∂x

∣∣∣
x=0
≈ L

(n)
1 − L(n)

0

∆x
and

∂L

∂x

∣∣∣
x=1
≈
L

(n)
Nx+1 − L

(n)
Nx

∆x
.

Thus, the no-flux boundary conditions are enforced by explicitly requiring that L(n)
Nx+1 =

L
(n)
Nx

and L
(n)
0 = L

(n)
1 . Using these results, we get the extrapolation formulas for the

boundary points, which are given in Appendix A.2.2.

Numerical Simulations Using the extrapolation formulas given in last paragraph,
we design the program to solve the general one-dimensional system (3.24). According
to the discussion in Section 2.3, the values of parameters are kon = 1, koff = 2, kc = 1,
d = 10−4, ε = 5× 10−3, LC = 0.1 and fC = 286.43.
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Our simulation starts at time t = 0 and ends at t = 60. We record all the values
at each node and present the results at different times. Figure 3.2 and Figure 3.3 com-
pare the analytical and numerical solutions. Figure 3.2 shows the real analytical solution
and numerical solution in outer region. Figure 3.3 presents the approximation of inner
solution and its numerical counterpart. The ligand concentration for the whole region
at time t = 1.0, t = 1.5 and t = 3.0 are shown in Figure 3.4. While Figure 3.5 shows the
enlarged plots around the receptor region. The solutions at time t = 5.0, t = 6.0 and
t = 10.0 are given in Figure 3.6 and Figure 3.7. The solutions for the whole region are
shown in Figure 3.6 and those near receptor compartment are given in Figure 3.7.

The comparison of the analytical and numerical solutions of the outer region at time
t = 30.0 and t = 60.0 are given in Figure 3.2(a) and Figure 3.2(b), respectively. Ac-
cording to the plots, the analytical and numerical solutions perfectly match in the outer
region, except the part near the receptor compartment. Based on this, we can say the
analytical outer solution we got is pretty good. The inner region also having an impact
on the outer solution is the reason why the analytical solution deviates from the numer-
ical counterpart when approaching the receptor region.

Figure 3.3(a) and Figure 3.3(b) compare the approximate inner solution and numerical
solution at time t = 30.0 and t = 60.0, respectively. From these plots we can see that
the expansion of the inner solution couldn’t approximate the numerical one very well.
That’s because we only expand the inner solution to the second term, which is a O(ε)
term. The ε is assumed to be 5× 10−3, while the numerical solution of the inner region
is around O(10−4), so the approximate inner solution with two terms is not accurate
enough. To achieve a better approximation, we need to consider even higher-order terms.

Based on the numerical results given by Figure 3.4 and Figure 3.6, we can see the
ligand concentration decreases during the whole procedure. That’s because the ligand
is constantly being washed out of the brain. At the beginning, the concentration of
the ligand in the receptor compartment decreases much faster than the region outside
the compartment. This phenomenon corresponds with what we expect. In the receptor
area, the ligand was not only washed out of the brain but also bound to the receptors.
However, when t getting large most of the ligand gathered in the receptor compartment,
that’s because in that region the ligand was bound to the receptors, while the majority
of the ligand outside that area was washed out of the brain.

Figure 3.4-3.7 all show the information about ligand. In our system, some of the ligand
bind to the receptor and form the bound product, so we are also curious about the
change of its concentration. Figure 3.8 and Figure 3.9 present the numerical solutions of
B, the bound product of L and R. Figure 3.8 shows the solutions of B at time t = 1.0,
t = 1.5 and t = 3.0. While the other one shows those at time t = 5.0, t = 6.0 and
t = 10.0. From both plots, we can see the concentration of bound product decreases
throughout the whole period, although the speed is quite slow. When the procedure
starts the bound product has highest concentration on the side near outer region, and
it gradually changes to the other way round.

We are also interested in the change of the ligand concentration at certain positions. So
we tracked the change of ligand concentration at the positions x = 0.25 and x = 0.5,
see Figure 3.10. According to the numerical results, we can see the ligand concentration
decreases quickly and approaches zero no matter at position x = 0.25 or x = 0.5. And
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the decreasing rate also diminishes with respect to time t.

(a) at time t = 30.0 (b) at time t = 60.0

Figure 3.2: Comparison of the analytical outer solution and the numerical solution to
system (3.24) with the no-flux boundary conditions and initial conditions: Lini(x) = LC
and B(x, 0) ≡ 0 for 0 ≤ x ≤ 1. f is a step function only depending on x, i.e. f(x) ≡ fC
for 1− ε < x ≤ 1, otherwise zero. L denotes the ligand concentration and x the spatial
position. Red dashed lines are analytical solution of the outer region and blue lines
are the numerical solution of that region. Figure 3.2(a) compares the solutions at time
t = 30.0, while Figure 3.2(b) present the comparison at time t = 60.0. Parameter values:
kon = 1, koff = 2, kc = 1, d = 10−4, ε = 5× 10−3, LC = 0.1 and fC = 286.43.
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(a) at time t = 30.0 (b) at time t = 60.0

Figure 3.3: Comparison of the approximate inner solution and the numerical solution to
system (3.24) with the no-flux boundary conditions and initial conditions: Lini(x) = LC
and B(x, 0) ≡ 0 for 0 ≤ x ≤ 1. f is a step function only depending on x, i.e. f(x) ≡ fC
for 1− ε < x ≤ 1, otherwise zero. L denotes the ligand concentration and x the spatial
position. Red dashed lines are the approximations of the inner solutions and blue lines
are the numerical solutions to the inner region. Figure 3.3(a) compares the solutions at
time t = 30.0, while Figure 3.3(b) presents the comparison at time t = 60.0. Parameter
values: kon = 1, koff = 2, kc = 1, d = 10−4, ε = 5× 10−3, LC = 0.1 and fC = 286.43.

Figure 3.4: Numerical simulations of system (3.24) with the no-flux boundary conditions
and initial conditions: Lini(x) = LC and B(x, 0) ≡ 0 for 0 ≤ x ≤ 1. f is a step function
only depending on x, i.e. f ≡ fC for 1 − ε < x ≤ 1, otherwise zero. L denotes the
ligand concentration and x the spatial position. Red line shows the ligand concentration
at time t = 1.0, green line shows that at time t = 1.5, and blue one represents that at
time t = 3.0. Parameter values: kon = 1, koff = 2, kc = 1, d = 10−4, ε = 5 × 10−3,
LC = 0.1 and fC = 286.43.
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Figure 3.5: Numerical simulations of system (3.24) with the no-flux boundary conditions
and initial conditions: Lini(x) = LC and B(x, 0) ≡ 0 for 0 ≤ x ≤ 1. f is a step
function only depending on x, i.e. f(x) ≡ fC for 1 − ε < x ≤ 1, otherwise zero. L
denotes the ligand concentration and x the spatial position. Plots show the solutions
with x ∈ [0.95, 1], which is a region around receptor compartment. Red line shows the
ligand concentration at time t = 1.0, green line shows that at time t = 1.5, and blue one
represents that at time t = 3.0. Parameter values: kon = 1, koff = 2, kc = 1, d = 10−4,
ε = 5× 10−3, LC = 0.1 and fC = 286.43.
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Figure 3.6: Numerical simulations of L of system (3.24) with the no-flux boundary
conditions and initial conditions: Lini(x) = LC and B(x, 0) ≡ 0 for 0 ≤ x ≤ 1. f
is a step function only depending on x, i.e. f(x) ≡ fC for 1 − ε < x ≤ 1, otherwise
zero. L denotes the ligand concentration and x the spatial position. Red line shows the
ligand concentration at time t = 5.0, green line shows that at time t = 6.0, and blue one
represents that at time t = 10.0. Parameter values: kon = 1, koff = 2, kc = 1, d = 10−4,
ε = 5× 10−3, LC = 0.1 and fC = 286.43.
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Figure 3.7: Numerical solutions around the receptor region of system (3.24) with the
no-flux boundary conditions and initial conditions: Lini(x) = LC and B(x, 0) ≡ 0 for
0 ≤ x ≤ 1. f is a step function only depending on x, i.e. f(x) ≡ fC for 1− ε < x ≤ 1,
otherwise zero. L denotes the ligand concentration and x the spatial position. Plots
show the solutions around the receptor compartment with x ∈ [0.95, 1]. Red line shows
the ligand concentration at time t = 5.0, green line shows that at time t = 6.0, and blue
one represents that at time t = 10.0. Parameter values: kon = 1, koff = 2, kc = 1,
d = 10−4, ε = 5× 10−3, LC = 0.1 and fC = 286.43.
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Figure 3.8: Numerical solutions of B(x, t) of system (3.24) with the no-flux boundary
conditions and initial conditions: Lini(x) = LC and B(x, 0) ≡ 0 for 0 ≤ x ≤ 1. f is a
step function only depending on x, i.e. f(x) ≡ fC for 1 − ε < x ≤ 1, otherwise zero.
B denotes the concentration of the bound product of L and R, while x is the spatial
position. Red line shows the ligand concentration at time t = 1.0, green line shows that
at time t = 1.5, and blue one represents that at time t = 3.0. Parameter values: kon = 1,
koff = 2, kc = 1, d = 10−4, ε = 5× 10−3, LC = 0.1 and fC = 286.43.
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Figure 3.9: Numerical solutions of B(x, t) of system (3.24) with the no-flux boundary
conditions and initial conditions: Lini(x) = LC and B(x, 0) ≡ 0 for 0 ≤ x ≤ 1. f is a
step function only depending on x, i.e. f(x) ≡ fC for 1− ε < x ≤ 1, otherwise zero. B
denotes the concentration of bound product and x the spatial position. Red line shows
the ligand concentration at time t = 5.0, green line shows that at time t = 6.0, and blue
one represents that at time t = 10.0. Parameter values: kon = 1, koff = 2, kc = 1,
d = 10−4, ε = 5× 10−3, LC = 0.1 and fC = 286.43.

(a) x = 0.25 (b) x = 0.5

Figure 3.10: Sketches of the changes of ligand concentrations according to time at two
different positions. In each plot, the vertical axis is the ligand concentration and hori-
zontal axis is time. The time starts at 0 and ends at 60. The plot (a) shows the ligand
concentration at x = 0.25 and plot (b) shows that at x = 0.5.
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3.2.2 Lini(x) is constant for x1 < x < x2 and B(x, 0) ≡ 0 for 0 ≤
x ≤ 1

In this part, we continue using numerical technique to solve system (3.24) along with
the no-flux boundary conditions and initial conditions:

Lini(x) =

{
LC for x ∈ (x1, x2)
0 for x ∈ [0, x1] ∪ [x2, 1]

and B(x, 0) ≡ 0 for 0 ≤ x ≤ 1.

Moreover, the assumption (3.1) about f(x, t) are still used. The values of all the param-
eters are going to be used are based on Section 2.3, they are kon = 1, koff = 2, kc = 1,
d = 10−4. In addition, we choose ε = 5× 10−3, x1 = 0.375 and x2 = 0.625.

We modified the code from the previous case and ran the simulation again. The con-
centrations of the ligand at time t = 4.0, t = 5.0 and t = 10.0 are shown in Figure 3.11.
Based on the graph, we can know the ligand has been quickly washed out and it seems
that the receptors have no effect on the concentration of ligand. The graph just looks
like the diffusion of the initial ligand. Actually that is because the rate of the ligand
being washed out is much faster than its diffusion, so the ligand has no time to reach the
receptors before being washed out. In other words, the receptor compartment is too far
away from the ligand, and only a few of the ligand can reach the receptor region before
being washed out. Because of the tiny amount of the ligand arriving at that region, it’s
hard to see the change of the ligand concentration on the graph.

Similar to the previous case, we detect the changes of the ligand concentration at posi-
tions x = 0.25 and x = 0.5, see Figure 3.12. Comparing Figure 3.10 and Figure 3.12, we
can see there is not too much difference between the two cases at position x = 0.5, while
the difference at x = 0.25 is quite big. In previous case, the ligand concentration directly
went to zero, because the ligand was consistently washed out of the brain. However, in
this case, the ligand concentration increases until time t ≈ 7 and decreases afterwards.
The reason for this is that the ligand reaches this area due to the ligand diffusion, but
the amount is really tiny, so it was quickly washed out.

If we slow down the rate of ligand being washed out or accelerate the diffusion, then
we would expect the receptors have bigger effect on the change of the ligand concentra-
tion. First, we want to see how the result changes if less ligand has been washed out.
Hence, we carry out another experiment, following all the assumptions and using same
parameters, except kc. Now, we set kc = 0.1 instead 1. The results are given in Figure
3.13. We do see less ligand has been washed out during the same amount of time, but
the change of ligand concentration caused by ligand-receptor interactions is still hard to
see. Then we further decrease kc and amplify the diffusion effect, i.e. letting kc = 0.01
and d = 10−3. Remaining the other parameters the same, we run the simulation again
and present the new results at time t = 5.0, t = 10.0 and t = 20.0 in Figure 3.14. The
effect of the receptor can be clearly seen, the left half of the interval has less ligand than
the other half.
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Figure 3.11: Numerical simulations of system (3.24) with the no-flux boundary condi-
tions and the initial conditions: Lini(x) = LC for x1 < x < x2 and B(x, 0) ≡ 0 for
0 ≤ x ≤ 1. f is a step function only depending on x, and it is defined as f(x) = fC
for 1 − ε < x ≤ 1, otherwise zero. L denotes the ligand concentration and x the spa-
tial position. Red line shows the ligand concentration at time t = 4.0, green line shows
that at time t = 5.0, and blue one represents that at time t = 10.0. Parameter values:
kon = 1, koff = 2, kc = 1, d = 10−4, LC = 0.1, fC = 286.43, ε = 5 × 10−3, x1 = 0.375
and x2 = 0.625.

(a) x = 0.25 (b) x = 0.5

Figure 3.12: Sketches of the changes of ligand concentrations according to time at two
different positions. The vertical axis is the ligand concentration and horizontal axis is
time. The time starts from 0 to 60. The plot (a) shows the ligand concentration at
x = 0.25 and the plot (b) shows that at x = 0.5.
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Figure 3.13: Numerical simulations of system (3.24) with the no-flux boundary condi-
tions and the initial conditions: Lini(x) = LC for x1 < x < x2 and B(x, 0) ≡ 0 for
0 ≤ x ≤ 1. f is a step function only depending on x, and it is defined as f(x) = fC for
1− ε < x ≤ 1, otherwise zero. L denotes the ligand concentration and x the spatial po-
sition. Red line shows the ligand concentration at time t = 4.0, green line shows that at
time t = 5.0, and blue one represents that at time t = 10.0. Parameter values: kon = 1,
koff = 2, kc = 0.1, d = 10−4, LC = 0.1, fC = 286.43, ε = 5 × 10−3, x1 = 0.375 and
x2 = 0.625.
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Figure 3.14: Numerical simulations of system (3.24) with the no-flux boundary condi-
tions and the initial conditions: Lini(x) = LC for x1 < x < x2 and B(x, 0) ≡ 0 for
0 ≤ x ≤ 1. f is a step function only depending on x, f(x) = fC for 1 − ε < x ≤ 1,
otherwise zero. L denotes the ligand concentration and x the spatial position. Red line
shows the ligand concentration at time t = 5.0, green line shows that at time t = 10.0,
and blue one represents that at time t = 20.0. Parameter values: kon = 1, koff = 2,
kc = 0.01, d = 10−3, LC = 0.1, fC = 286.43, ε = 5× 10−3, x1 = 0.375 and x2 = 0.625.
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3.3 Receptors in the Middle
In this section, we consider another scenario with the receptors lying in the middle of
the line segment, say near x∗, and the receptor compartment is (x∗− ε

2 , x
∗+ ε

2 ) ⊂ (0, 1).
Just keep in mind, we say the receptor is lying in the middle, but it doesn’t mean the
receptor compartment should be located exactly at the center of the line segment. So
x∗ can be any number in the interval (0, 1), but not close to 0 or 1. The size of the
receptor compartment is ε� 1. We still suppose the function f(x, t), the concentration
of receptors, is a step function and it doesn’t change with respect to t, that is

f(x, t) =

{
fC x ∈ (x∗ − ε

2 , x
∗ + ε

2 )
0 x ∈ [0, x∗ − ε

2 ] ∪ [x∗ + ε
2 , 1],

(3.25)

where fC is a constant. In the following, we will use numerical method to solve two
cases with different initial conditions. B(x, 0) ≡ 0 for any x ∈ (0, 1) is used as the initial
condition of B for both cases, while the initial conditions of L(x, t) are slightly different.
Same as previous section, we assume L(x, 0) is constant for 0 ≤ x ≤ 1 for the first
case, and for the second one L(x, 0) is constant on the interval x1 < x < x2. Here we
choose x∗ = 0.5, ε = 5× 10−3, x1 = 0.375 and x2 = 0.625 for the numerical simulation.
According to Section 2.3, the values of other parameters are kon = 1, koff = 2, kc = 1
and d = 10−4.

3.3.1 Lini(x) is constant and B(x, 0) ≡ 0 for 0 ≤ x ≤ 1

This part continues to solve system (3.24) with numerical method, but now the concen-
tration of receptors, is defined as (3.25).

Following the previous routine, we plot the ligand concentration at time t = 1.0, t = 1.5
and t = 2.0, see Figure 3.15 and Figure 3.16. The ligand concentrations for the whole
region at different times are presented in Figure 3.15, while the solutions on a tiny in-
terval around the receptor region are shown in Figure 3.16. When the procedure starts,
the concentration of the ligand dramatically decreases at the center of the region, where
the receptor compartment lies. This can be attributed to the presence of the receptors.
In the receptor compartment, ligand also binds to the receptors besides being washed
out, so the ligand concentration plummeted at the center of the region. Based on the
plots, we can also see the binding rate was higher than the rate of ligand being washed
out.

Figure 3.17 shows the ligand change with respect to time at positions x = 0.25 and
x = 0.5. The simulation starts at time t = 0 and ends at t = 60. But we only show
the ligand concentration change at x = 0.25 from t = 0 to t = 10 and at x = 0.5 from
t = 0 to t = 1, because the concentration only has dramatic change at the beginning and
afterwards it is almost zero. Based on the plots, we can see the ligand concentration
decreases faster at position x = 0.5 than that at x = 0.25. At position x = 0.5 the
ligand concentration went to zero much faster than that at x = 0.25. It is because at
position x = 0.5 the ligand is not only washed out of the brain but also bound to the
receptors, and the binding rate is quite high.
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Figure 3.15: Numerical simulations of system (3.24) with the no-flux boundary condi-
tions and initial conditions: Lini(x) = LC and B(x, 0) ≡ 0 for 0 ≤ x ≤ 1. f is a step
function only depending on x, that is f(x) ≡ fC for x∗ − ε

2 < x < x∗ + ε
2 , otherwise

zero. L denotes the ligand concentration and x the spatial position. Red line shows the
ligand concentration at time t = 1.0, green line shows that at time t = 1.5, and blue one
represents that at time t = 2.0. Parameter values: kon = 1, koff = 2, kc = 1, d = 10−4,
x∗ = 0.5, ε = 5× 10−3, LC = 0.1 and fC = 286.43.
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Figure 3.16: Numerical simulations of system (3.24) with the no-flux boundary condi-
tions and initial conditions: Lini(x) = LC and B(x, 0) ≡ 0 for 0 ≤ x ≤ 1. f is a step
function only depending on x, that is f(x) ≡ fC for x∗− ε

2 < x < x∗+ ε
2 , otherwise zero.

L denotes the ligand concentration and x the spatial position. Plots show the solutions
around the receptor compartment with x ∈ [0.474, 0.524]. The area between the dashed
lines is the receptor region. Red line shows the ligand concentration at time t = 1.0,
green line shows that at time t = 1.5, and blue one represents that at time t = 2.0. Pa-
rameter values: kon = 1, koff = 2, kc = 1, d = 10−4, x∗ = 0.5, ε = 5× 10−3, LC = 0.1
and fC = 286.43.

(a) x = 0.25 (b) x = 0.5

Figure 3.17: Sketches of the changes of ligand concentrations according to time at two
different positions. The vertical axis is the ligand concentration and horizontal axis is
time. The plot (a) shows the ligand concentration at x = 0.25 from t = 0 to t = 10 and
the plot (b) shows that at x = 0.5 from t = 0 to t = 1.
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3.3.2 Lini(x) is constant for x1 < x < x2 and B(x, 0) ≡ 0 for 0 ≤
x ≤ 1

This part will continue to solve system (3.24) with numerical method. The no-flux
boundary conditions and the assumption (3.25) about f(x, t) will still be used. But the
initial conditions become:

Lini(x) =

{
LC for x ∈ (x1, x2)
0 for x ∈ [0, x1] ∪ [x2, 1]

and B(x, 0) ≡ 0 for 0 ≤ x ≤ 1.

We changed the initial conditions and ran our code again. Figure 3.18 and Figure 3.19
present the ligand concentrations at time t = 1.0, t = 1.5 and t = 2.0. The ligand con-
centrations for the whole region at different times are shown in Figure 3.18, while the
solutions on a tiny interval around the receptor region are given in Figure 3.19. From
the plots, we can see the ligand concentration descends quickly, especially at the center
of the receptor compartment. That is because in that region, the ligand is washed out
of the brain and at the same time bound to the receptors. We also notice that Figure
3.16 and Figure 3.19 look almost the same. Although the initial conditions for this case
are different from those for the previous one, the initial values at the receptor region
are exactly the same. Hence, the plots around the receptor compartment are almost the
same.

We also plot the changes of ligand concentration with respect to time at positions
x = 0.25 and x = 0.5, see Figure 3.20. Compared with the case having the same
initial conditions but the receptors lying at one end of the region, the ligand concen-
tration at x = 0.25 has a similar pattern, which increases at the beginning and then
approaches zero, see Figure 3.12 and Figure 3.20. The diffusion of the ligand first reaches
the region and then it was washed out of the brain. Comparing Figure 3.20 and Figure
3.17, we can see at position x = 0.5 the changes of the ligand concentrations are quite
similar, i.e. in both cases the amounts of the ligand drop to around zero just when the
procedure starts. That is also because in both cases the receptor compartments have
the same initial values.
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Figure 3.18: Numerical simulations of system (3.24) with the no-flux boundary condi-
tions and the initial conditions: Lini(x) = LC for x1 < x < x2, otherwise zero, and
B(x, 0) ≡ 0 for 0 ≤ x ≤ 1. f is a step function only depending on x, that is f(x) = fC
for x∗ − ε

2 < x < x∗ + ε
2 , otherwise zero. L denotes the ligand concentration and x the

spatial position. Red line shows the ligand concentration at time t = 1.0, green line shows
that at time t = 1.5, and blue one represents that at time t = 2.0. Parameter values:
kon = 1, koff = 2, kc = 1, d = 10−4, LC = 0.1, fC = 286.43, x∗ = 0.5, ε = 5 × 10−3,
x1 = 0.375 and x2 = 0.625.
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Figure 3.19: Numerical simulations of system (3.24) with the no-flux boundary con-
ditions and initial conditions: Lini(x) = LC for x1 < x < x2, otherwise zero, and
B(x, 0) ≡ 0 for 0 ≤ x ≤ 1. f is a step function only depending on x, that is f(x) ≡ fC
for x∗ − ε

2 < x < x∗ + ε
2 , otherwise zero. L denotes the ligand concentration and x

the spatial position. Plots show the solutions around the receptor compartment with
x ∈ [0.474, 0.524]. The area between the dashed lines is the receptor region. Red line
shows the ligand concentration at time t = 1.0, green line shows that at time t = 1.5,
and blue one represents that at time t = 2.0. Parameter values: kon = 1, koff = 2,
kc = 1, d = 10−4, x∗ = 0.5, ε = 5× 10−3, LC = 0.1 and fC = 286.43.

(a) x = 0.25 (b) x = 0.5

Figure 3.20: Sketches of the changes of the ligand concentrations according to time at
two different positions. The vertical axis is the ligand concentration and horizontal axis
is time. The plot (a) shows the ligand concentration at x = 0.25 from t = 0 to t = 60
and the plot (b) shows that at x = 0.5 from t = 0 to t = 1.
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Chapter 4

Two-dimensional Model

In Chapter 3 we studied the model in one-dimensional space. In this chapter, we plan
to go further, using a two-dimensional model to simulate the procedure involving the
ligand and the receptors. As we assume the brain is a round disk in two-dimensional
space, the model will be given in polar coordinates. This chapter provides three cases,
the first two are radially symmetric and the last one without symmetry.

This section starts with a general model, system (2.4) with a diffusion term in polar
coordinates. Section 4.1 provides the general assumptions for this chapter and the ini-
tial conditions that are going to be used. The initial condition of B is still assumed to
be zero everywhere, while the initial condition for L is based on Gaussian function. The
initial conditions for different cases are slightly different, which will also be discussed in
Section 4.1.

In Section 4.2 and Section 4.3 we focus on the radially symmetric models. In Sec-
tion 4.2, we assume the receptors lie on the circular boundary of the region under study,
while in Section 4.3 the receptor compartment is at the center. Analytical and numer-
ical solutions for the case with receptors on the boundary are provided, while we only
give the numerical solution for the other radially symmetric case. Because of radial
symmetry, the analysis can be simplified by analyzing the cross section. The analytical
solution to the first radially symmetric case is based on matched asymptotic technique
[13, 14]. And the outer solution is derived from Gaussian function.

Finally, Section 4.4 turns our attention to the nonsymmetric case. The initial con-
ditions for this case are same as those for the radially symmetric case with the receptors
at the center. But the receptor compartment is located neither at the center nor on the
boundary. Numerical simulations are provided to give a clear view about the trend of
the ligand concentration.

4.1 Modeling

Similar to the one-dimensional cases, the general assumptions for this chapter are based
on Chapter 2. Here the region under study is assumed to be a round disk, so it’s better
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to write the model in polar coordinates. We use

∂2L

∂r2
+

1

r2

∂2L

∂θ2
+

1

r

∂L

∂r
(4.1)

as the diffusion term in system (2.4), where r ∈ [0, 1] is the radial coordinate and
θ ∈ [0, 2π) is the angular coordinate. As is standard, we assume a positive angular
coordinate means that the angle θ is measured counterclockwise from positive x-axis.

According to Section 2.2, we need to make sure that there is no flux at the bound-
ary. Actually, no flux at the circular boundary r = 1 is enough to preserve all the ligand
in the whole region. However, we impose another boundary condition at the center for
the radially symmetric cases. That is because we want to make sure the solution is
smooth at the origin. Moreover, we will analyse the outer and the inner regions sepa-
rately, and the systems in both regions need boundary conditions.

For all the cases, the initial value of B is zero everywhere, i.e.

B(r, θ, 0) ≡ 0 for any r ∈ [0, 1] and θ ∈ [0, 2π). (4.2)

While the initial conditions of L(r, θ, t) are different. And the assumptions for f(r, θ, t),
the concentration of the receptors, depend on the location of the receptor compartment.

For the radially symmetric case with receptors on the boundary, we assume the con-
centration of ligand is highest at the center and it is constant outside the receptor
compartment, that is, for any θ ∈ [0, 2π)

L(r, θ, 0) =

LC exp
(
− r2

2σ2
0

)
for r ∈ [0, 1− ε]

LC exp
(
− 1

2σ2
0

)
for r ∈ (1− ε, 1].

Here we suppose there is no receptor in the region with r ∈ [0, 1−ε], and we call that part
outer region. The receptor compartment or inner region is the part with r ∈ (1− ε, 1].

For the radially symmetric case with receptors at the center and the nonsymmetric
case, the initial ligand concentration is assumed to be spread out from the center, so the
initial condition of L is defined as

L(r, θ, 0) = LC exp

(
− r2

2σ2
0

)
for r ∈ [0, 1] and any θ ∈ [0, 2π). (4.3)

For this case, the outer region is the area with r ∈ [ε, 1], while the inner region is
r ∈ [0, ε).

The both initial conditions of the ligand concentration we mentioned above are all
defined with σ0, where σ0 is a constant and we choose σ0 = 0.1 for the numerical
simulations.

4.2 Radially Symmetric Case with Receptors on the
Boundary

In this section, we consider a radially symmetric case in two-dimensional space. Because
of radial symmetry, all the variables don’t depend on θ in this section. Hence we focus
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on the study of its cross section, which is the intersection of the real solution with a
plane through the center. For both radially symmetric cases, we still use the previous
notations, although L, f and B don’t depend on θ anymore. Thus, the general two-
dimensional system becomes

∂L

∂t
=− kcL+ d

(
∂2L

∂r2
+

1

r

∂L

∂r

)
− konfL+ (koff + konL)B

∂B

∂t
=konfL− (koff + konL)B,

(4.4)

along with the boundary conditions

∂L(r, t)

∂r

∣∣∣
r=0

= 0 and
∂L(r, t)

∂r

∣∣∣
r=1

= 0. (4.5)

We assume all the receptors lie on the circular boundary of the round disk, so here
the receptor compartment is located at r = 1 with size ε. Hence the initial conditions
become

L(r, 0) =

LC exp
(
− r2

2σ2
0

)
for r ∈ [0, 1− ε]

LC exp
(
− 1

2σ2
0

)
for r ∈ (1− ε, 1]

(4.6)

and
B(r, 0) ≡ 0 for any r ∈ [0, 1]. (4.7)

Again assuming f(r, t), the concentration of receptors, is a step function, that is

f(r, t) ≡
{

0 for r ∈ [0, 1− ε],
fC for r ∈ (1− ε, 1].

(4.8)

In the following parts, we will provide the analytical solution and numerical simulations
for the system mentioned above.

4.2.1 Analytical Solution

This part gives an approximate solution to the radially symmetric case with receptors
on the boundary. As this case is radially symmetric, the analysis is focusing on the cross
section, which is the intersection of the whole area with a vertical plane through the
center. The exact solution for the outer region is provided. Following the method of
matched asymptotic expansions, we get an approximation for inner solution.

Outer Region

Based on definition, the outer region is the region with r ∈ [0, 1− ε]. As f(r, t) ≡ 0 for
r ∈ [0, 1− ε] and there is no receptor in this region, hence we don’t need to consider the
bound product of the ligand and the receptor. As a result, the equation (4.4) becomes

∂L

∂t
= −kcL+ d

(
∂2L

∂r2
+

1

r

∂L

∂r

)
for r ∈ [0, 1− ε], (4.9)

with boundary condition
∂L(r, t)

∂r

∣∣∣
r=0

= 0 (4.10)
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and initial condition

L(r, 0) = LC exp

(
− r2

2σ2
0

)
for r ∈ [0, 1− ε]. (4.11)

To solve equation (4.9), we assume

L(r, t) = e−kctL̃(ξ, t) where ξ =
r√
d
.

Based on this assumption, we have

∂L

∂t
=

∂

∂t

(
e−kctL̃(ξ, t)

)
and − kcL = −kce−kctL̃(ξ, t).

Then we can rewrite the equation (4.9) in terms of L̃(ξ, t), that is

−kce−kctL̃(ξ, t) + e−kct
∂L̃

∂t
= −kce−kctL̃(ξ, t) + e−kct

∂2L̃

∂ξ2
+
e−kct

ξ

∂L̃

∂ξ
.

Cancelling the term −kce−kctL̃(ξ, t) and multiplying ekct on both sides, we get a system
depending on ξ, that is

∂L̃

∂t
=
∂2L̃

∂ξ2
+

1

ξ

∂L̃

∂ξ
for ξ ∈

[
0,

1− ε√
d

]
, (4.12)

along with boundary condition

∂L̃(ξ, t)

∂ξ

∣∣∣
ξ=0

= 0 (4.13)

and initial condition

L̃(ξ, 0) = LC exp

(
− dξ

2

2σ2
0

)
. (4.14)

The general solution to equation (4.12) is

L̃(ξ, t) =
A0

4t+ C0
exp

(
− ξ2

4t+ C0

)
,

where A0 and C0 are two undetermined constants. According to initial condition (4.14),
we obtain

C0 =
2σ2

0

d
and A0 =

2σ2
0LC
d

.

Hence the final solution to (4.12) is

L̃(ξ, t) =
LCσ

2
0

2dt+ σ2
0

exp

(
− dξ2

4dt+ 2σ2
0

)
.

Writing the solution back into the original notation and substituting ξ with r/
√
d, we

get the solution for system (4.9), which is

L(r, t) =
LCσ

2
0

2dt+ σ2
0

exp

(
− r2

4dt+ 2σ2
0

− kct
)
. (4.15)
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Inner Region

Now, we study the receptor region, i.e. r ∈ (1− ε, 1]. In this region, we have f(x) ≡ fC ,
hence the system becomes

∂L

∂t
=− kcL+ d

(
∂2L

∂r2
+

1

r

∂L

∂r

)
− konfCL+ (koff + konL)B

∂B

∂t
=konfCL− (koff + konL)B,

(4.16)

with boundary condition

∂L(r, t)

∂r

∣∣∣
r=1

= 0 (4.17)

and initial conditions

L(r, 0) = LC exp

(
− 1

2σ2
0

)
and B(r, 0) = 0 for r ∈ (1− ε, 1]. (4.18)

As the size of this region is ε, so we want to introduce a new variable, which is

r̄ =
1− r
εδ̄

with δ̄ > 0, (4.19)

where δ̄ will be determined in the following part. Writing system (4.16) with respect to
variable r̄, it becomes

∂L

∂t
=− kcL+ d

(
d

ε2δ̄

∂2L

∂r̄2
− 1

εδ̄
1

1− εδ̄ r̄
∂L

∂r̄

)
− konfCL+ (koff + konL)B

∂B

∂t
=konfCL− (koff + konL)B.

As 1− εδ̄ r̄ ≈ 1, so substituting 1− εδ̄ r̄ with 1 in previous equation and rearranging all
the terms, then we have


∂2L

∂r̄2
− εδ̄ ∂L

∂r̄
=
ε2δ̄

d

(
∂L

∂t
+ kcL+ konfCL− (koff + konL)B

)
∂B

∂t
=konfCL− (koff + konL)B.

(4.20)

We suppose the expansions for the solutions are

L(r̄, t) = L0(r̄, t) + εᾱL1(r̄, t) + · · · (4.21)

and

B(r̄, t) = B0(r̄, t) + εβ̄B1(r̄, t) + · · · , (4.22)
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where ᾱ, β̄ > 0. Substituting the expansions (4.21) and (4.22) into (4.20), we can rewrite
the system as

∂2L0

∂r̄2
+ εᾱ

∂2L1

∂r̄2
+ εδ̄

∂L0

∂r̄
+ εδ̄+ᾱ

∂L1

∂r̄
+ · · ·

¬ ­ ® ¯

=
ε2δ̄

d

(
∂L0

∂t
+ kcL0 + konL0fC − (koff + konL0)B0

)
°

+
ε2δ̄+ᾱ

d

(
∂L1

∂t
+ kcL1 + konL1fC − konL1B0

)
+ · · · ,

±

(4.23)

and

∂B0

∂t
+ εβ̄

∂B1

∂t
+ · · · =konfCL0 − (koff + konL0)B0

− εβ̄konL0B1 + εᾱ (fCL1 − konL1B0) .

(4.24)

According to the assumptions δ̄ > 0 and ᾱ > 0, the leading term is ∂2L0

∂r̄2 and the other
terms all have higher orders, so we have

∂2L0(r̄, t)

∂r̄2
= 0

L0(r̄, 0) = LC .

(4.25)

The general solution to previous system is

L0(r̄, t) = L00(t) + L01(t)r̄, (4.26)

where L00(t) and L01(t) are two functions only depending on time t. According to the
initial condition, we get L00(0) = LC and L01(0) = 0. Hence the first term of inner
solution is

L0(r̄, t) = L00(t) + L01(t)r̄, with L00(0) = LC and L01(0) = 0. (4.27)

Then consider the first term of B, which should satisfy the following equation

∂B0(r̄, t)

∂t
= konfCL0(r̄, t)− (koff + konL0(r̄, t))B0(r̄, t).

This equation is almost the same as equation (3.15) in Section 3.2.1, only with different
variable, so we still use previous result, that is

B0(r̄, t) =e
∫ t
0
−(koff+konL0(r̄,ξ))dξ

∫ t

0

konfCL0(r̄, η)e
∫ η
0
koff+konL0(r̄,ξ)dξdη.

Now, we already got the expressions of L0(r̄, t) and B0(r̄, t). To let the solution be
more precise, we are also interested in the expression of L1(r̄, t). To get the solution
of L1(r̄, t), we need to balance the other terms of equation (4.23). As we already knew
the leading-order term is ¬, and based on ᾱ > 0 and δ̄ > 0, we can conclude that ¯, °
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and ± are the higher-order terms in the equation. It remains to determine the balance
between ­ and ®. Letting ® balance itself and ­ be higher-order term, we have ᾱ > δ̄.
The reason to choose this balance is given in Appendix B.1.1. Based on our choice, we
get an extra requirement for L0(r̄, t), that is

∂L0(r̄, t)

∂r̄
= 0.

According to expression (4.26), we get L01(t) = 0. Considering the next term of inner
solution, we need to solve the following system:

∂2L1

∂r̄2
= 0 with L1(r̄, 0) = 0.

The solution to previous equation is

L1(r̄, t) = L10(t) + L11(t)r̄ with L10(0) = L11(0) = 0.

Thus, the approximation of the inner solution is

Linner(r̄, t) = L00(t) + εα (L10(t) + L11(t)r̄) + · · · . (4.28)

Matching It remains to determine the function L00(t), L10(t) and L11(t), we will use
the matching technique again to determine the unknowns. The fundamental idea of
matching technique concerns the tiny transition region around r = 1 − ε. To connect
the expansions on either side of this region, we introduce an intermediate variable rη̄,
defined as

rη̄ =
r − 1 + ε

εη̄
, (4.29)

with η̄ > 1. This interval for η̄ comes from the requirement that the intermediate
variable is valid in a tiny neighborhood around 1− ε. So r can be written as

r = 1− ε+ εη̄rη̄, (4.30)

which is followed by

r̄ =
1− r
εδ̄

= ε1−δ̄ − εη̄−δ̄rη̄. (4.31)

Then the outer and inner solutions will be rewritten in terms of intermediate variable
rη̄. Using (4.30) in (4.15), we get

Louter(r, t) =
LCσ

2
0e
−kct

2dt+ σ2
0

exp

(
− (1− ε+ εη̄rη̄)2

4dt+ 2σ2
0

)
. (4.32)

Based on Taylor series, we have

exp

(
− (1− ε+ εη̄rη̄)2

4dt+ 2σ2
0

)
= exp

(
− 1

4dt+ 2σ2
0

)
+ exp

(
− 1

4dt+ 2σ2
0

)
ε

2dt+ σ2
0

+ · · · .

Hence, the outer solution (4.32) can be written as

Louter(r, t) ∼
LCσ

2
0e
−kct

2dt+ σ2
0

exp

(
− 1

4dt+ 2σ2
0

)(
1 +

ε

2dt+ σ2
0

+ · · ·
)
. (4.33)
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Similarly, we do the same procedure for the inner solution (4.28), and it becomes

Linner(r̄, t) =L00(t) + εᾱL10(t) +
(
εᾱ+1−δ̄ − εᾱ+η̄−δ̄rη̄

)
L11(t) + · · · . (4.34)

After getting the inner and outer solutions in terms of intermediate variable, we have
to match them. Because δ̄ > 0, ᾱ > δ̄ and η̄ > 1, L00(t) is the leading term in the inner
solution. With this, we can match (4.33) with (4.34). To match those two expansions,
the inner and outer approximations must give the same result when they are expressed
in this transition layer variable, which implies ᾱ = 1. Then we get

L00(t) =
LCσ

2
0e
−kct

2dt+ σ2
0

exp

(
− 1

4dt+ 2σ2
0

)
and

L10(t) =
LCσ

2
0e
−kct

(2dt+ σ2
0)2

exp

(
− 1

4dt+ 2σ2
0

)
.

The next term in inner solution is εᾱ+1−δ̄L11(t). Since we only have η̄ > 1 and don’t
know η̄ is larger or less than 2, so the next term in outer solution is either

LCσ
2
0e
−kct

2dt+ σ2
0

exp

(
− 1

4dt+ 2σ2
0

)(
− εη̄rη̄

2dt+ σ2
0

)
or

LCσ
2
0e
−kct

2dt+ σ2
0

exp

(
− 1

4dt+ 2σ2
0

)(
− ε2

4dt+ 2σ2
0

)
.

As L11(t) doesn’t depend on rη̄ and ᾱ + 1 − δ̄ < 2, so εᾱ+1−δ̄L11(t) can balance with
neither of the terms above, which means L11(t) = 0. Therefore, the approximate inner
solution is

Linner(r, t) ∼
LCσ

2
0e
−kct

2dt+ σ2
0

exp

(
− 1

4dt+ 2σ2
0

)(
1 +

ε

2dt+ σ2
0

+ · · ·
)
. (4.35)

4.2.2 Numerical Results
This part provides the numerical simulations for the radially symmetric case (4.4), with
boundary conditions (4.5) and initial conditions (4.6) and (4.7). Moreover, f(r, t) is
assumed to be a step function, which is defined by (4.8).

To get the numerical solution, we need to write the system into an extrapolation formula
to approximate the system of equations. The detailed steps to get the finite difference
expression and the general formula are given in Appendix B.1.2. We use the notation
L

(n)
i,j to represent the value of L at the position (ri, θj) and at time tn. B

(n)
i,j uses the

same notation. Forward-difference formulas [15] are used to approximate all the deriva-
tives. As we mentioned before, this is a radially symmetric case, so we only need to
study its cross sections. Just to notice that we keep the index j in notations L(n)

i,j and
B

(n)
i,j , even though the system doesn’t depend on θ. That is because we want to keep

the notation inconsistency and the formulas with this notation can be easily extended
to more general cases.

However, the general expression is not valid for boundary points, because there are two
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imaginary points L(n)
Nr+1,j and L(n)

−1,j when using the extrapolation formula to estimate
the boundary points. So we have to determine the values for those points separately.
In the following parts, we will discuss the boundary points and present the numerical
results.

Boundary Conditions

For the boundary points, the time derivatives remain the same, while the partial deriva-
tive of L with respect to r needs to be modified, hence we have to reconsider the formulas
for L at positions r = r0 and r = rNr . As the formula for B only depends on time deriva-
tive, so we still can use that general extrapolation formula. When using the general
extrapolation formula to compute L(n+1)

0,j and L
(n+1)
Nr,j

, there are two imaginary points

L
(n)
−1,j and L(n)

Nr+1,j , respectively. We choose L(n)
Nr+1,j = L

(n)
Nr,j

and L(n)
−1,j = L

(n)
1,j . Then

we can get the extrapolation formulas for the boundary points. The reason to choose
those values for imaginary points and all the extrapolation formulas for boundary points
are given in Appendix B.1.3.

Numerical Simulations

As we already got the extrapolation formulas for all the points, then we can imple-
ment the numerical simulation for the radially symmetric case with the receptors on the
boundary. We choose ε = 2× 10−3 and the choices for other constants are based on the
discussion in Section 2.3.

Figure 4.1 plots the ligand concentration at time t = 1.0, t = 2.0 and t = 3.0. The
solutions at different times are plotted with different colors: black line is the initial
ligand concentration, and the solutions at t = 1.0, t = 2.0 and t = 3.0 are colored with
red, green and blue, respectively. We also plot its reflection next to the solution on the
interval [−1, 0], even though a solution for r ∈ [0, 1] is enough to show the results. That
is because the cross section of the real solution consists of two symmetric parts: the
solution on interval [0, 1] and its reflection.

Based on these plots, we can see the ligand concentration is invariably highest at the
center of the studying region. The plots mainly show the diffusion of the ligand and
it seems that the receptors have no effect on the ligand concentration. This is because
the diffusion of the ligand is much slower than the rate of ligand being washed out, so
the ligand can hardly reach the receptor compartment before being washed out. From
another perspective, the phenomenon is caused by the fact that the receptor region is
too far away from the initial ligand and it’s quite difficult for the ligand to reach that
region by diffusion.
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Figure 4.1: Numerical simulations of the radially symmetric case (4.4), with boundary
conditions (4.5) and initial conditions (4.6) and (4.7). Here f(r, t) is assumed to be a
step function, which is defined by (4.8). L denotes the ligand concentration and r the
spatial position. Red line shows the ligand concentration at time t = 1.0, green line
shows that at time t = 2.0, and blue one represents that at time t = 3.0. Parameter
values: kon = 1, koff = 2, kc = 1, d = 10−4, ε = 2× 10−3, LC = 0.1 and fC = 286.43.
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4.3 Radially Symmetric Case with Receptors at the
Center

In this section, we consider another radially symmetric case with the receptors at the
center. All the receptors are assumed to lie in a round disk with radius ε � 1. The
initial condition of B is still zero everywhere. While the initial condition of L is defined
by Gaussian equation, because we assume at the beginning the ligand concentration is
highest at the center and it’s getting lower when it’s far away from the center. Thanks
to radial symmetry, the analysis only needs to be focused on its cross section and all
the variables don’t depend on θ anymore. Thus, the general two-dimensional system
becomes 

∂L

∂t
=− kcL+ d

(
∂2L

∂r2
+

1

r

∂L

∂r

)
− konfL+ (koff + konL)B

∂B

∂t
=konfL− (koff + konL)B,

(4.36)

along with boundary conditions:

∂L(r, t)

∂r

∣∣∣
r=0

= 0 and
∂L(r, t)

∂r

∣∣∣
r=1

= 0, (4.37)

and the initial conditions:

L(r, 0) = LC exp

(
− r2

2σ2
0

)
for r ∈ [0, 1] (4.38)

and
B(r, 0) ≡ 0 for any r ∈ [0, 1]. (4.39)

Again assuming f(r, t), the concentration of receptors, is a step function, that is

f(r, t) ≡
{
fC for r ∈ [0, ε),
0 for r ∈ [ε, 1].

(4.40)

In the following part, we will give the numerical solution to this system.

4.3.1 Numerical Results
In this part, we use numerical method to solve system (4.36), along with boundary
conditions (4.37) and initial conditions (4.38) and (4.39). Moreover, f(r, t), the con-
centration of receptors, is defined by (4.40). We follow the notations from the previous
section. The detailed steps to get the extrapolation formula and the general formula
are given in Appendix B.1.2. The formulas for boundary points are shown in Appendix
B.1.3. Note that the initial conditions and the assumption for f are different from the
previous case. In the following part, we will present the numerical results.

Numerical Simulations

After getting the extrapolation formulas for all the points, we implement the numerical
simulation for the radially symmetric system (4.36). We choose ε = 2 × 10−3 and the
choices for other constants are based on the discussion in Section 2.3. Figure 4.2 plots
the ligand concentrations at time t = 1.0, t = 2.0 and t = 3.0. The solutions at different
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times are plotted with different colors: black line is the initial condition, and the solu-
tions at t = 1.0, t = 2.0 and t = 3.0 are colored with red, green and blue, respectively.
Same as previous case, we plot not only the solution on r ∈ [0, 1] but also its reflection
on the interval [−1, 0].

Based on these plots, we can see when the procedure started the concentration of the
ligand descended at the center of the region, where the receptor compartment is located.
This is because most of the ligand in that area was bound to the receptors. However,
in the end the ligand concentration is highest at the receptor compartment, which is
also caused by the presences of the receptors. In the receptor compartment the ligand
combined with the receptor and formed the ligand-receptor compound, while in other
area most of the ligand was washed out. According to Figure 4.2, the ligand concentra-
tion had dramatic change in the receptor compartment. In order to have a clear view
of that, we zoom in on the receptor region, see Figure 4.3. The receptor compartment
has the lowest ligand concentration, because of the existence of the receptors.

Figure 4.2 and Figure 4.3 provide a lot of information about the ligand and present
the change of ligand concentration due to the interactions between the ligand and the
receptor. In the model, the ligand also binds to the receptor and forms the bound
product. So we are also really interested in seeing the change of bound product density.
Figure 4.4 presents the numerical solutions of B, the bound product of L and R. We
can see the bound product has the highest concentration on the side near outer region
when the procedure starts, but in the end the concentration is higher on the other side
of the region.

Figure 4.2: Numerical simulations of the radially symmetric case (4.36), with boundary
conditions (4.37) and initial conditions (4.38) and (4.39). Here f(r, t) is assumed to be
a step function, which is defined by (4.40). L denotes the ligand concentration and r
the spatial position. Red line shows the ligand concentration at time t = 1.0, green line
shows that at time t = 2.0, and blue one represents that at time t = 3.0. Parameter
values: kon = 1, koff = 2, kc = 1, d = 10−4, ε = 2× 10−3, LC = 0.1 and fC = 286.43.
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Figure 4.3: Numerical simulations of the radially symmetric case (4.36), with boundary
conditions (4.37) and initial conditions (4.38) and (4.39). Here f(r, t) is assumed to be
a step function, which is defined by (4.40). L denotes the ligand concentration and r
the spatial position. Red line shows the ligand concentration at time t = 1.0, green line
shows that at time t = 2.0, and blue one represents that at time t = 3.0. Parameter
values: kon = 1, koff = 2, kc = 1, d = 10−4, ε = 2× 10−3, LC = 0.1 and fC = 286.43.
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Figure 4.4: Numerical simulations of B of the radially symmetric case (4.36), with
boundary conditions (4.37) and initial conditions (4.38) and (4.39). Here f(r, t) is
assumed to be a step function, which is defined by (4.40). B denotes the concentration
of bound product and r the spatial position. Red line shows the ligand concentration at
time t = 1.0, green line shows that at time t = 2.0, and blue one represents that at time
t = 3.0. Parameter values: kon = 1, koff = 2, kc = 1, d = 10−4, ε = 2× 10−3, LC = 0.1
and fC = 286.43.
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4.4 Nonsymmetric Case
In this section, we consider a case without radial symmetry. Using (4.1) as the diffusion
term in system (2.4), we get the following system,

∂L

∂t
=− kcL+ d

(
∂2L

∂r2
+

1

r2

∂2L

∂θ2
+

1

r

∂L

∂r

)
− konfL+ (koff + konL)B

∂B

∂t
=konfL− (koff + konL)B,

(4.41)

with boundary condition
∂L(r, θ, t)

∂r

∣∣∣
r=1

= 0, (4.42)

and initial conditions

L(r, θ, 0) = LC exp

(
− r2

2σ2
0

)
and B(r, θ, 0) ≡ 0, (4.43)

for r ∈ [0, 1] and any θ ∈ [0, 2π). This system will be our model throughout this section.
The receptor compartment is assumed to be (r1, r2)× (θ1, θ2) and located neither at the
center nor on the boundary of the entire region. Based on the assumptions in Chapter 2,
the receptor region should be tiny enough compared to the whole region, which requires
(r2 − r1) · (θ2 − θ1) � 1. Moreover, assuming f(r, θ, t), the concentration of receptors,
is a step function and it doesn’t depend on time, so f(r, θ, t) is defined as

f(r, θ, t) ≡
{
fC for r ∈ (r1, r2) and θ ∈ (θ1, θ2),
0 otherwise, for any t, (4.44)

where fC is a constant.

4.4.1 Numerical Results
To have a clear view about the ligand-receptor interactions, we will run the numerical
simulation to solve the nonsymmetric case (4.41) along with boundary conditions (4.42)
and initial conditions (4.43). Following the steps for the radially symmetric cases in
previous sections, we first get the general extrapolation formula to approximate the
system, then consider the boundary conditions, and in the end present the result of
3D simulation. The notations are inherited from the previous cases, and again forward-
difference formulas are used to approximate all the derivatives. Appendix B.2.1 provides
the detailed calculations to get the general extrapolation formula. In the following, we
will discuss the boundary points separately and provide the numerical solution to this
model. We use 3D plot to present our solution. The xy-plane denotes the region under
study and z-axis represents the concentration of ligand, so we can clearly see which area
has the highest density of ligand.

Boundary Points

As we know, the general extrapolation formula is only valid for the interior points. We
have to deal with boundary points separately. Here the problem can be even more
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complicated. There are boundaries at r = 0, r = 1, θ = 0, and θ = 2π, so it’s necessary
to determine several imaginary points, such as L(n)

−1,j , L
(n)
Nr+1,j , L

(n)
i,−1 and L

(n)
i,Nθ+1 for

0 ≤ i ≤ Nr and 0 ≤ j ≤ Nθ. As there is no definition for these points, we have to
choose certain values for them. We divide those boundary points into several groups
and discuss them separately. Following what we have done for the radially symmetric
cases, we leave the detailed steps and the results in Appendix B.2.2.

Numerical Simulations This part presents the numerical results of the system (4.41)
with boundary conditions (4.42) and initial conditions (4.43). Moreover, f(x, t), the con-
centration of receptors, is defined by (4.44). As is standard, we assume a positive angular
coordinate means that the angle θ is measured counterclockwise from positive x-axis.
We use 3D simulation to present our results, x and y coordinates define the positions
of the region under study, while z-axis shows the concentration of ligand, which clearly
shows how the ligand concentration changes at different times.

Here we choose r1 = 0.45, r2 = 0.5, θ1 = 2π
5 , and θ2 = π

2 . The choices for other
constants are based on the discussion in Section 2.3. We first ran the simulation with
following constants: kon = 1, koff = 2, kc = 1, d = 10−4, LC = 0.1 and fC = 286.43.
But the results we get are not exactly what we want. It seems that almost no ligand
can reach the receptor region. The reason is that the diffusion coefficient is too small,
so the ligand could hardly reach the receptor compartment before being washed out.
We want to see how the interactions between the ligand and the receptor affect the
concentration of the ligand. Hence, we increase the diffusion coefficient, letting d = 6,
and run the simulation again, we get better results, which are given in Figure 4.5. The
plots show the 3D simulations of system (4.41) from time t = 0 to t = 12.50. The
vertical axis in each figure is the concentration of the ligand, and the colors denote the
concentration of the ligand, on a scale from blue (low) to red (high). We can see the
ligand started from the center and gradually spread out by diffusion. Although the
total amount of ligand was decreasing, more and more ligand gathered at the receptor
compartment. That is because in the receptor compartment the ligand was bound to
the receptors, while in the rest of the area most of the ligand was washed out of the brain.

In Figure 4.6, we plot the cross sections of the numerical solutions at different times.
Each cross section is the intersection of the solution with a vertical plane passing through
the center of the receptor compartment and the origin. Although our system is in polar
coordinates, when plotting the curves we still use the Cartesian coordinates. That is why
in the graph the horizontal axis is x-coordinate instead of radial coordinate. The vertical
axis is the ligand concentration. We marked the cross sections of the solutions at differ-
ent times with different colors. From the plots, we can see the total amount of ligand
decreased all the time and more and more gathered around the receptor compartment.
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Initial Conditions t = 2.50.

t = 5.00. t = 7.50.

t = 10.00. t = 12.50.

Figure 4.5: Numerical solutions of system (4.41) along with boundary conditions (4.42)
and initial conditions(4.43). f(r, θ, t) is defined by (4.44). First subfigure shows the
initial values of the ligand. The other five show the ligand concentrations at time t =
2.50, t = 5.00, t = 7.50, t = 10.00 and t = 12.50, respectively. The vertical axis is the
concentration of ligand. The blue disk is the area under study. The receptor region is
the area marked in red. The colors denote the concentration of the ligand, on a scale
from blue (low) to red (high). Each subfigure has different scale of the vertical axis: the
vertical axis range of the first subfigure is [0, 0.1], that of the second subfigure is [0, 0.03],
the vertical axes of the the subfigures at time t = 5.00 and t = 12.50 range from 0 to
0.02, and at time t = 7.50 and t = 10.00 the scale of vertical axis is [0, 0.012]. Parameter
values: kon = 1, koff = 2, kc = 1, d = 6, LC = 0.1, fC = 286.43, r1 = 0.45, r2 = 0.5,
θ1 = 2π

5 and θ2 = π
2 .
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Figure 4.6: Cross sections of the numerical solutions of the system (4.41), with boundary
conditions (4.42) and initial conditions (4.43). Here f(r, t) is assumed to be a step
function, which is defined by (4.44). L denotes the ligand concentration and r the spatial
position. Plot shows the cross sections of the solution through the receptor compartment
at time t = 0, t = 2.50, t = 5.00, t = 7.50, t = 10.00 and t = 12.50. The solutions
at different times are marked by different colors. Parameter values: kon = 1, koff = 2,
kc = 1, d = 6, LC = 0.1, fC = 286.43, r1 = 0.45, r2 = 0.5, θ1 = 2π

5 and θ2 = π
2 .
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Chapter 5

Summary

This thesis was performed to gain further insight in understanding the interaction be-
tween the ligand and the receptor. Adding diffusion term to the existing model, we built
a general model to simulate the process, which is

∂L

∂t
=− kcL+ d∆L− konfL+ (koff + konL)B

∂B

∂t
=konfL− (koff + konL)B,

(5.1)

where L denotes the concentration of the ligand and B is the concentration of ligand-
receptor bound product. This model considered three factors, which are the ligand being
washed out of brain, the basic binding mechanism with the receptors, and the diffusion
of the ligand. We assumed there was no flux at the boundary.

Firstly, the general model was considered in one-dimensional space. Four cases were
given, the first two had the same location of the receptor compartment, which was lo-
cated at one end of the region under study, while the last two assumed the receptors
were located at the center of the whole region. The ligand concentration decreased
during the whole procedure, because the ligand was constantly being washed out of the
brain. At the beginning of the procedure, the concentration of the ligand in the receptor
compartment decreased much faster than that in the outer region, but in the end more
and more ligand gathered in the receptor compartment. This phenomenon corresponded
with what we expected. In the receptor region, the ligand was not only washed out of
the brain but also bound to the receptors when the process just started. However, when
t enlarging the ligand was still bound to the receptors in the inner region, while the
majority of the ligand outside that compartment was washed out. Compared to the
change of ligand concentration, the density of the bound product didn’t have dramatic
change throughout the whole process. When the experiment started the bound product
of the ligand and the receptor had the highest concentration on the side near the outer
region, but it gradually changed to the other way round.

The detailed steps to solve the first one-dimensional case were given. The case as-
sumed the receptor compartment was located on the boundary and had the following
initial conditions: Lini(x) was a constant and B(x, 0) ≡ 0 for 0 ≤ x ≤ 1. The analytical
solution was based on the method of matched asymptotic expansions. Getting the outer
solution, we used Duhamel’s principle. The numerical solution was given, and we also
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compared it with the analytical solution. According to the comparison, the analytical
outer solution can perfectly match the numerical solution. However, the expansion of
the inner solution was not accurate enough. That is because the expansion only had two
terms and the second term was around O(10−3), but the numerical solution was about
O(10−4). The solution was too small to be approximated by a two-term expansion.
Considering higher-order terms would achieve a better approximation. Based on the
numerical simulations, the ligand concentration decreased very quickly, because most of
the ligand was washed out of the brain. Since the ligand was bound to the receptors in
the receptor compartment, in the end the ligand concentration in this region was higher
than the rest of the area.

The numerical simulations for other three one-dimensional cases were given as well.
One of the cases also assumed the receptor region was located at one end of the re-
gion, but with different initial conditions, Lini(x) was constant for x1 < x < x2 and
B(x, 0) ≡ 0 for 0 ≤ x ≤ 1. Based on the first simulation, the ligand was washed out
quickly and the ligand was difficult to reach the receptor compartment via diffusion.
In order to see the effect of the receptors on ligand concentration, we decreased the
elimination rate kc and increased the diffusion coefficient d, and then ran the simulation
again. It turns out that the ligand on the side with receptors had less density than the
other side. That is because in the receptor compartment the ligand needed to be bound
to the receptors.

The other two cases assumed the receptor compartment was located at the center of
the region. The initial condition of B for these two cases is B(x, 0) ≡ 0 for 0 ≤ x ≤ 1,
but they had different initial conditions for L: one assumed Lini(x) was a constant for
0 ≤ x ≤ 1; the other supposed Lini(x) was constant for x1 < x < x2. In both cases,
the ligand concentration plummeted at the center of the receptor compartment, because
the ligand was also bound to the receptors besides being washed out of that region.
Moreover, the both cases had the same initial values at the receptor compartment, so
in the two scenarios the ligand at the center got very close to zero once the procedure
started.

The second part of this dissertation analysed the model in two-dimensional space. Based
on all the numerical results, we can see when the procedure started the concentration
of the ligand plunged at the inner region, where the receptors were located. However,
at the end of the simulation the ligand concentration was highest in that region. Both
phenomena were caused by the presences of the receptors. At the beginning, the lig-
and in the receptor compartment was bound to the receptors besides being washed out.
At the end of the procedure the ligand combined with the receptors and formed the
ligand-receptor compounds, while in the outer region most of the ligand was washed
out. The change of the concentration of the bound product is similar to that in the
one-dimensional model. The bound product had highest concentration on the side near
outer region when the procedure started, but in the end the concentration was higher
on the other side of the inner region.

Three two-dimensional cases were provided, the first two with radial symmetry and
the last one without symmetry. In the first case, we supposed the receptors were lo-
cated on the circular boundary of the whole region. Based on these plots, we can see
the ligand concentration is invariably highest at the center of the region under study.
It looks like the plots just showed the diffusion of the ligand and the receptors had no
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effect on the ligand concentration. That is because the diffusion of the ligand was much
slower than the rate of ligand being washed out, so the ligand didn’t have enough time
to reach the receptor compartment before being washed out. From another perspective,
the receptor region was too far away from the initial ligand and it’s quite difficult for
the ligand to reach that region by diffusion.

The other radially symmetric case assumed the receptor compartment was located at
the center of the region and was solved with numerical method. The numerical solutions
of ligand concentration and the density of ligand-receptor bound product are presented.
The concentrations of the ligand around the receptor region at different times were pro-
vided to give a clear view of what happened around the receptor compartment. The
results of the bound product were given at the end of that section. According to the
plots we got, the concentration of the ligand dived at the center of the region, where
the receptor compartment was located, just when the procedure started. However, the
ligand concentration was eventually highest in the inner region. The change of the con-
centration of the ligand-receptor compound went through a gradual procedure, within
which the original peak of the density became the nadir, and vice versa.

For the two-dimensional case without symmetry, we gave the numerical solution and
presented the change of ligand concentration with 3D plots. We first ran the simulation
with the constants from Section 2.3. Because of a small diffusion coefficient the ligand
could hardly reach the receptor compartment, consequently we didn’t see the interac-
tions between the ligand and the receptors. Hence, we accelerated the diffusion and ran
the simulation again. We clearly see the ligand gradually diffused from the center and
eventually gathered at the receptor compartment. The reason is that in the receptor
compartment the ligand was bound to the receptors, while most of the ligand outside
had already been washed out of the brain.
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Appendix A

One-dimensional Model

A.1 Analytical Solution

A.1.1 Writing Louter(x, t) as a combination of error functions.

The outer solution

L(x, t) = e−kct
LC

2
√
dπt

∫ 1−ε

0

[
exp

(
− (x− r)2

4dt

)
+ exp

(
− (x+ r)2

4dt

)]
dr

can be written as

Louter(x, t) =e−kct
LC

2
√
dπt

∫ 1−ε

0

[
exp

(
−
(

x

2
√
dt
− r

2
√
dt

)2
)

+ exp

(
−
(

x

2
√
dt

+
r

2
√
dt

)2
)]

dr.

Letting u = r
2
√
dt
, we get

Louter(x, t) =e−kct
LC√
π

∫ 1−ε
2
√
dt

0

[
exp

(
−
(

x

2
√
dt
− u
)2
)

+ exp

(
−
(

x

2
√
dt

+ u

)2
)]

du.

Then splitting the integral into two integrals, we have

Louter(x, t) =e−kct
LC√
π

∫ 1−ε
2
√
dt

0

[
exp

(
−
(

x

2
√
dt
− u
)2
)

+ exp

(
−
(

x

2
√
dt

+ u

)2
)]

du

=e−kct
LC√
π

[∫ 1−ε
2
√
dt

0

exp

(
−
(

x

2
√
dt
− u
)2
)

du

+

∫ 1−ε
2
√
dt

0

exp

(
−
(

x

2
√
dt

+ u

)2
)

du

]
.
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Defining w1 = x
2
√
dt
− u for the first integral, we have

∫ 1−ε
2
√
dt

0

exp

(
−
(

x

2
√
dt
− u
)2
)

du

=−
∫ x−1+ε

2
√
dt

x

2
√
dt

e−w
2
1dw1 =

∫ x

2
√
dt

x−1+ε

2
√
dt

e−w
2
1dw1.

For the second one, we define w2 = x
2
√
td

+ u and get

∫ 1−ε
2
√
dt

0

exp

(
−
(

x

2
√
dt

+ u

)2
)

du =

∫ x+1−ε
2
√
dt

x

2
√
dt

e−w
2
2dw2.

Using the previous results in the outer solution, we obtain

L(x, t) =e−kct
LC√
π

[∫ 1−ε
2
√
dt

0

exp

(
−
(

x

2
√
dt
− u
)2
)

du

+

∫ 1−ε
2
√
dt

0

exp

(
−
(

x

2
√
dt

+ u

)2
)

du

]

=e−kct
LC√
π

[∫ x

2
√
td

x−1+ε

2
√
td

e−w
2
1dw1 +

∫ x+1−ε
2
√
dt

x

2
√
dt

e−w
2
2dw2

]

=e−kct
LC
2

(
erf

(
x+ 1− ε

2
√
dt

)
− erf

(
x− 1 + ε

2
√
dt

))
,

where

erf(x) =
2√
π

∫ x

0

e−w
2

dw.

A.1.2 Determining the Balance in the Inner Solution

Using asymptotic expansion to approximate the inner solution, we get following system:

∂2L0

∂x̄2
+ εα

∂2L1

∂x̄2
+ · · ·

¬ ­

=
ε2δ

d

(
∂L0

∂t
+ kcL0 + konfCL0 − (koff + konL0)B0

)
®

+
ε2δ+α

d

(
∂L1

∂t
+ kcL1 + konfCL1 − konL1B0

)
+ · · ·

¯

(A.1)

As we know α > 0 and δ > 0, so we can conclude that ¬ is the leading-order term and ¯
has the highest order among the four terms in equation (A.1). It remains to determine
the balance between ­ and ®. There are following possibilities:

58



(i) ­∼®.
The condition ­∼® requires that α = 2δ. With this, L1(x̄, t) should satisfy

∂2L1

∂x̄2
=

1

d

(
∂L0

∂t
+ kcL0 + konL0fC − (koff + konL0)B0

)
,

at the same time L1(x̄, 0) = 0. According to (3.14) and (3.19), L0 and B0 only
depend on t. Simplifying the equation, we have

∂2L1

∂x̄2
=

1

d
L̃10(t), (A.2)

where

L̃10(t) =
∂L0

∂t
+ kcL0 + konL0fC − (koff + konL0)B0. (A.3)

As L̃10(t) is a function only depending on t, so the solution to equation (A.2) is

L1(x̄, t) = C2(t) + C3(t)x̄+
1

2d
x̄2L̃10(t),

where C1(t) and C2(t) are two unknown functions depending on t. Based on
L0(x̄, 0) = LC , B0(x̄, 0) = 0 and expression (A.3), we have L̃10(0) 6= 0, which im-
plies L1(x̄, 0) 6= 0. So the previous expression doesn’t satisfy the initial condition.
Hence, this case is not possible.

(ii) ® balances itself and ­ is higher order.
We need 2δ < α to fulfill this condition. Then we get an extra requirement for
L0(x̄, t), that is

∂L0

∂t
+ kcL0 + konfCL0 − (koff + konL0)B0 = 0.

Based on results (3.13) and (3.18), L0(x̄, t) and B0(x̄, t) cannot satisfy this extra
condition, so this case is also not the one we want.

(iii) ­�®.
This condition requires α > 2δ, so ¬ and ­ are the first two leading-order terms.
In this case, the conclusion is consistent with the original assumptions, and so this
is the balancing we are looking for.

A.2 Numerical Solution

A.2.1 Extrapolation Formula
To implement the numerical method, we need to write our system into the extrapolation
formula. We first specify each of the independent variables on a grid as{

xi = x0 + i∆x, for i = 0, . . . , Nx
tn = t0 + n∆t, for n = 0, . . . , Nt,

where x0, t0 are the starting points and ∆x,∆t are the step sizes for each variable.
Designate L(n)

i as the solution to the differential equation at the position xi and at time
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tn. We use forward difference expressions [15] to approximate the partial derivatives of
L. At time tn, the derivative of L with respect to t can be approximated by

∂L

∂t

∣∣∣
xi
≈L

(n+1)
i − L(n)

i

∆t
+O(∆t). (A.4)

The other partial derivatives of L are approximated by

∂L

∂x

∣∣∣
xi
≈
L

(n)
i+1 − L

(n)
i

∆x
+O(∆x)

and
∂2L

∂x2

∣∣∣
xi
≈
L

(n)
i+1−L

(n)
i

∆x − L
(n)
i −L

(n)
i−1

∆x

∆x
+O(∆x)

≈
L

(n)
i+1 − 2L

(n)
i + L

(n)
i−1

(∆x)2
+O(∆x).

Using previous estimations, the general one-dimensional system can be written as ex-
trapolation formula, i.e.

L
(n+1)
i − L(n)

i

∆t
=− kcL(n)

i + d ·
L

(n)
i+1 − 2L

(n)
i + L

(n)
i−1

(∆x)2
− konfL(n)

i

+ (koff + konL
(n)
i )B

(n)
i

B
(n+1)
i −B(n)

i

∆t
=konL

(n)
i f − (koff + konL

(n)
i )B

(n)
i .

We put all the terms relating to tn+1 on the left side and the terms with tn on the right,
then we have

L
(n+1)
i =

(
1− kc∆t−

2d∆t

(∆x)2
− kon∆tf

)
L

(n)
i +

d∆t

(∆x)2
L

(n)
i+1

+
d∆t

(∆x)2
L

(n)
i−1 + ∆tkoffB

(n)
i + ∆tkonL

(n)
i B

(n)
i

B
(n+1)
i =∆tkonfL

(n)
i + (1−∆tkoff)B

(n)
i −∆tkonL

(n)
i B

(n)
i .

(A.5)

A.2.2 Boundary Conditions
In this part, we will study the boundary points. At the boundary points, the time
derivatives remain the same, hence the approximations (A.4) still hold true. While
the partial derivative of L with respect to x will change a little bit. Based on no-flux
boundary conditions, we choose L(n)

Nx+1 = L
(n)
Nx

and L
(n)
0 = L

(n)
1 . So at the boundary

x = 1, the extrapolation formula becomes
L

(n+1)
Nx

=

(
1− kc∆t−

d∆t

(∆x)2
− kon∆tf

)
L

(n)
Nx

+
d∆t

(∆x)2
L

(n)
Nx−1

+ ∆tkoffB
(n)
Nx

+ ∆tkonL
(n)
Nx
B

(n)
Nx

B
(n+1)
Nx

=∆tkonfL
(n)
Nx

+ (1−∆tkoff)B
(n)
Nx
−∆tkonL

(n)
Nx
B

(n)
Nx
.

(A.6)
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Appendix B

Two-dimensional Model

B.1 Radially Symmetric Cases

B.1.1 Balancing of the Inner Solution
We already got the expressions of L0(r̄, t) and B0(r̄, t), but we are still interested in
the expression of L1(r̄, t), since we want a more precise solution. To get the solution
of L1(r̄, t), we need to balance the other terms of equation (4.23). As we already knew
the leading-order term is ¬, and based on ᾱ > 0 and δ̄ > 0, we can conclude that ¯, °
and ± are the higher-order terms in the equation. It remains to determine the balance
between ­ and ®. There are following possibilities:

(i) ­∼®.
The condition ­∼® requires that ᾱ = δ̄, then we have

∂2L1

∂r̄2
+
∂L0

∂r̄
= 0 with L1(r̄, 0) = 0. (B.1)

Using the result (4.27), we have

∂2L1

∂r̄2
+ L01(t) = 0,

which can be solved by

L1(r̄, t) = C1(t) + C2(t)r̄ − 1

2
r̄2L01(t),

where C1(t) and C2(t) are also two undetermined functions depending on t. Ac-
cording to the initial condition, we have C1(0) = C2(0) = L01(0) = 0, the inner
solution is approximated by

Linner(r̄, t) = L00(t) + L01(t)r̄ + εᾱ
(
C1(t) + C2(t)r̄ − 1

2
r̄2L01(t)

)
.

Writing the inner solution in terms of intermediate variable rη̄ = r−1+ε
εη̄ , we have

Linner(r̄, t) =L00(t) +
(
ε1−δ̄ − εη̄−δ̄rη̄

)
L01(t)

+ εᾱC1(t) +
(
εᾱ+1−δ̄ − εᾱ+η̄−δ̄rη̄

)
C2(t)

− εᾱ

2

(
ε1−δ̄ − εη̄−δ̄rη̄

)2

L01(t).
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As ᾱ = δ̄, so we can simplify the previous equation, which becomes

Linner(r̄, t) =L00(t) +
(
ε1−δ̄ − εη̄−δ̄rη̄

)
L01(t) + εδ̄C1(t)

+
(
ε− εη̄rη̄

)
C2(t)− εδ̄

2

(
ε1−δ̄ − εη̄−δ̄rη̄

)2

L01(t).

Several terms need to be determined, while there are only two terms in the outer
expansion. We cannot determine all the unknowns with those two terms, so we
need higher-order terms of outer solution, which we don’t want to consider. Hence
this case is not what we are looking for.

(ii) ­ balances itself and ® is higher-order term.
This condition requires ᾱ < δ̄. Under this condition, we have to solve the following
equation:

∂2L1

∂r̄2
= 0 with L1(r̄, 0) = 0.

The solution to this equation is

L1(r̄, t) = L10(t) + L11(t)r̄ with L10(0) = L11(0) = 0.

So the approximation of inner solution is

Linner(r̄, t) = L00(t) + L01(t)r̄ + εα (L10(t) + L11(t)r̄) .

Substituting r̄ with intermediate variable rη̄, we have

Linner(r̄, t) =L00(t) +
(
ε1−δ̄ − εη̄−δ̄rη̄

)
L01(t)

+ εᾱL10(t) +
(
εᾱ+1−δ̄ − εᾱ+η̄−δ̄rη̄

)
L11(t).

To match inner and outer solutions, we have to determine the values of ᾱ, δ̄ and
η̄, or at least their relations. We start with determining the dominating term and
there are following possibilities:

(a) L00(t) ∼ ε1−δ̄L01(t).
This condition requires 1− δ̄ = 0, which means δ̄ = 1. Then the inner solution
becomes

Linner(r̄, t) = (L00(t) + L01(t))− εη̄−1rη̄L01(t)

+ εᾱ (L10(t) + L11(t))− εᾱ+η̄−1rη̄L11(t).

To determine all the terms we need higher-order terms in the outer solution,
which is not what we want. So we will not consider this case.

(b) ε1−δ̄L01(t) is the leading term.
To fulfill this condition, we need 1 − δ̄ < 0, that is δ̄ > 1. And we can get
L01(t) = 0. Then we can balance L00(t) with the first term of outer solution.
Because 1− δ̄ < 0 and ᾱ < δ̄, we have ᾱ+ 1− δ̄ < ᾱ and ᾱ+ 1− δ̄ < 1, which
means we can only balance −εᾱ+η̄−δ̄rη̄L11(t) with the second term of outer
solution. But there doesn’t exist rη̄ in the second term of the outer solution,
so it’s still not possible to balance the terms.
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(c) L00(t) is the leading term.
This condition requires 1− δ̄ > 0, i.e. δ̄ < 1. As δ̄ > 0 and ᾱ < δ̄, so we have
1− δ̄ < 1, ᾱ < 1 and ᾱ+ 1− δ̄ < 1. While the second term of outer solution
has order O(ε), hence L01(t) = L10(t) = L11(t) = 0, which is not what we
are looking for.

No matter how we choose δ̄, there is no suitable balancing for the second term of
the inner solution. Hence, this case is not possible either.

(iii) ® balances itself and ­ is higher order.
We need δ̄ < ᾱ to fulfill this condition. With this, ¬ and ­ are the first two terms
in equation (4.23). In this case, the conclusion is consistent with the original
assumptions and this is the balancing we are looking for.

B.1.2 Extrapolation Formula
To use an extrapolation formula to approximate the system, we first specify each of the
independent variables on a grid as ri = r0 + i∆r i = 0, . . . , Nr

θj = θ0 + j∆θ j = 0, . . . , Nθ
tn = t0 + n∆t n = 0, . . . , Nt,

where r0, θ0 and t0 are the starting points and ∆r, ∆θ and ∆t are the step sizes for
corresponding variables. Let the solution to the differential equation be designated as
L

(n)
i,j , which represents the value of L at the position (ri, θj) and at time tn. Similarly,

B
(n)
i,j means the value of B at the position (ri, θj) and at time tn. For the radially

symmetric cases, as we only focus on their cross sections, so L and B don’t depend on
θ at all. The notations L(n)

i,j and B
(n)
i,j are still used, even though the index j has no

meaning. Because in this way, we can remain the inconsistency in the notations and the
formulas can be easily extended to more general cases, for instance, the nonsymmetric
case. We use forward difference expressions [15] to approximate the partial derivatives
of L. At time tn, the derivative of L with respect to t can be approximated by

∂L

∂t

∣∣∣
(ri,θj)

≈
L

(n+1)
i,j − L(n)

i,j

∆t
+O(∆t). (B.2)

The other partial derivatives of L are approximated by

∂L

∂r

∣∣∣
(ri,θj)

≈
L

(n)
i+1,j − L

(n)
i,j

∆r
+O(∆r)

and
∂2L

∂r2

∣∣∣
(ri,θj)

≈
L

(n)
i+1,j−L

(n)
i,j

∆r − L
(n)
i,j −L

(n)
i−1,j

∆r

∆r
+O(∆r)

≈
L

(n)
i+1,j − 2L

(n)
i,j + L

(n)
i−1,j

(∆r)2
+O(∆r).

(B.3)

The derivative of B with respect to t can be approximated by

∂B

∂t

∣∣∣
(ri,θj)

≈
B

(n+1)
i,j −B(n)

i,j

∆t
+O(∆t). (B.4)
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Using the formulas (B.2), (B.3) and (B.4), the system (4.4) can be written as extrapo-
lation formula, which is

L
(n+1)
i,j − L(n)

i,j

∆t
=d

(
L

(n)
i+1,j − 2L

(n)
i,j + L

(n)
i−1,j

(∆r)2
+
L

(n)
i+1,j − L

(n)
i,j

ri∆r

)
− (kc + konf)L

(n)
i,j + koffB

(n)
i,j + konL

(n)
i,j B

(n)
i,j

B
(n+1)
i,j −B(n)

i,j

∆t
=konfL

(n)
i,j − koffB

(n)
i,j − konL

(n)
i,j B

(n)
i,j .

Rearranging all the terms, we get the final extrapolation formula for system (4.4), that
is 

L
(n+1)
i,j =

(
1−∆tkc −∆tkonf −

2d∆t

(∆r)2
− d∆t

ri∆r

)
L

(n)
i,j

+ d∆t

(
1

(∆r)2
+

1

ri∆r

)
L

(n)
i+1,j +

d∆t

(∆r)2
L

(n)
i−1,j

+ ∆tkoffB
(n)
i,j + ∆tkonL

(n)
i,j B

(n)
i,j

B
(n+1)
i,j =∆tkonfL

(n)
i,j + (1−∆tkoff)B

(n)
i,j −∆tkonL

(n)
i,j B

(n)
i,j .

(B.5)

B.1.3 Boundary Conditions
As the extrapolation formula we got in previous section is not valid for boundary points,
so this part takes those points into consideration. For the boundary points, the time
derivatives remain the same, hence the approximations for B(n+1)

i,j still hold true. While
using the extrapolation formula (B.5) to compute L(n+1)

0,j and L
(n+1)
Nr,j

, there are two

imaginary points L(n)
−1,j and L(n)

Nr+1,j , respectively. So we have to choose the values for
these two points. The boundary condition assumes there is no flux leaving the whole
region, i.e.

∂L(r, t)

∂r

∣∣∣
r=0

= 0 and
∂L(r, t)

∂r

∣∣∣
r=1

= 0.

Using the forward difference formula to approximate this boundary condition, we have

∂L

∂r

∣∣∣
r=0
≈
L

(n)
1,j − L

(n)
0,j

∆r
+O(∆r),

and
∂L

∂r

∣∣∣
r=1
≈
L

(n)
Nr+1,j − L

(n)
Nr,j

∆r
+O(∆r).

To satisfy the boundary condition, we need to impose L(n)
1,j = L

(n)
0,j and L(n)

Nr+1,j = L
(n)
Nr,j

.

For the other imaginary points L(n)
−1,j , as the system is radially symmetrical, L(n)

−1,j has
the same value with L(n)

1,j . So we define L(n)
−1,j = L

(n)
1,j = L

(n)
0,j .

The following part will present the extrapolation formulas for the boundary points.
According to our assumption, the receptor compartment is located on the boundary
of our studying area. There is no receptor on the side with r = r0, so the extrapola-
tion formula for the boundary point at r = r0 can be simplified to a formula without
B. But here we still include B in the extrapolation formula, because in this way the
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formula can also be valid for the other radial symmetric case. Keep in mind that the
initial conditions and the assumption for f are not the same for both cases. Hence, the
extrapolation formulas for the boundary points are:

a). The points with r = rNr .

Based on the general formula (B.5) and using L(n)
Nr,j

to substitute L(n)
Nr+1,j , we get fol-

lowing extrapolation formula


L

(n+1)
Nr,j

=

(
1−∆tkc −∆tkonf −

d∆t

(∆r)2

)
L

(n)
Nr,j

+
d∆t

(∆r)2
L

(n)
Nr−1,j

+ ∆tkoffB
(n)
Nr,j

+ ∆tkonL
(n)
Nr,j

B
(n)
Nr,j

B
(n+1)
Nr,j

=∆tkonfL
(n)
Nr,j

+ (1−∆tkoff)B
(n)
Nr,j
−∆tkonL

(n)
Nr,j

B
(n)
Nr,j

(B.6)

b). The points with r = r0.

Using L(n)
0,j to substitute terms L(n)

−1,j and L
(n)
1,j in the general extrapolation formula, we

get

{
L

(n+1)
0,j = (1−∆tkc −∆tkonf)L

(n)
0,j + ∆tkoffB

(n)
0,j + ∆tkonL

(n)
0,jB

(n)
0,j

B
(n+1)
0,j =∆tkonfL

(n)
0,j + (1−∆tkoff)B

(n)
0,j −∆tkonL

(n)
0,jB

(n)
0,j

(B.7)

B.2 Nonsymmetric Case

B.2.1 Extrapolation Formula

Following the notations from previous radially symmetric cases, (B.2) and (B.3) are used
to approximate the derivatives with respect to time and the derivatives of L with respect
to r. To write the system into extrapolation formula, we also need the approximations
of the derivatives of L with respect to θ, which are

∂L

∂θ

∣∣∣
(ri,θj)

≈
L

(n)
i,j+1 − L

(n)
i,j

∆θ
+O(∆θ)

and
∂2L

∂θ2

∣∣∣
(ri,θj)

≈
L

(n)
i,j+1−L

(n)
i,j

∆θ − L
(n)
i,j −L

(n)
i,j−1

∆θ

∆θ
+O(∆θ)

≈
L

(n)
i,j+1 − 2L

(n)
i,j + L

(n)
i,j−1

(∆θ)2
+O(∆θ).
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Using these approximations together with (B.4), we can write the general two-dimensional
system into an extrapolation formula, that is



L
(n+1)
i,j − L(n)

i,j

∆t
=d

(
L

(n)
i+1,j − 2L

(n)
i,j + L

(n)
i−1,j

(∆r)2
+
L

(n)
i+1,j − L

(n)
i,j

ri∆r

+
L

(n)
i,j+1 − 2L

(n)
i,j + L

(n)
i,j−1

r2
i (∆θ)

2

)
− (kc + konf)L

(n)
i,j + koffB

(n)
i,j + konL

(n)
i,j B

(n)
i,j

B
(n+1)
i,j −B(n)

i,j

∆t
=konfL

(n)
i,j − koffB

(n)
i,j − konL

(n)
i,j B

(n)
i,j .

Rearranging all the terms in previous formula, the general extrapolation formula is the
following:



L
(n+1)
i,j =

(
1−∆tkc −∆tkonf −

2d∆t

(∆r)2
− 2d∆t

r2
i (∆θ)

2
− d∆t

ri∆r

)
L

(n)
i,j

+
d∆t

r2
i (∆θ)

2
L

(n)
i,j+1 +

d∆t

r2
i (∆θ)

2
L

(n)
i,j−1 +

d∆t

(∆r)2
L

(n)
i−1,j

+ d∆t

(
1

(∆r)2
+

1

ri∆r

)
L

(n)
i+1,j + ∆tkoffB

(n)
i,j

+ ∆tkonL
(n)
i,j B

(n)
i,j

B
(n+1)
i,j =∆tkonfL

(n)
i,j + (1−∆tkoff)B

(n)
i,j −∆tkonL

(n)
i,j B

(n)
i,j ,

(B.8)

for 0 ≤ i ≤ Nr and 0 ≤ j ≤ Nθ. Nr and Nθ have the same meanings as those in the
radially symmetrical cases. But here we need one more extra assumption, Nθ is even,
which will provide convenience to us when we try to handle the boundary points.

B.2.2 Boundary Conditions

The general extrapolation formula (B.8) is only valid for the interior points. Because
using the general formula on the boundary points, the extrapolation formula contains
imaginary points such as L(n)

−1,j , L
(n)
Nr+1,j , L

(n)
i,−1 and L(n)

i,Nθ+1 for 0 ≤ i ≤ Nr and 0 ≤ j ≤
Nθ. So we have to figure out a way to deal with those imaginary points. Here there are
boundaries at r = 0, r = 1, θ = 0, and θ = 2π, so it’s necessary to determine several
imaginary points. We will divide those boundary points into five groups and discuss
them separately.

1. The points at positions (ri, θ0) and (ri, θNθ ) with 0 < i < Nr.

For each i, the points at (ri, θ0) and (ri, θNθ ) are actually the same point, so we let
L

(n)
i,−1 = L

(n)
i,Nθ−1 and L(n)

i,Nθ+1 = L
(n)
i,1 . Then, the extrapolation formulas for these points
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are 

L
(n+1)
i,0 =

(
1−∆tkc −∆tkonf −

2d∆t

(∆r)2
− 2d∆t

r2
i (∆θ)

2
− d∆t

ri∆r

)
L

(n)
i,0

+
d∆t

r2
i (∆θ)

2
L

(n)
i,1 +

d∆t

r2
i (∆θ)

2
L

(n)
i,Nθ−1 +

d∆t

(∆r)2
L

(n)
i−1,0

+ d∆t

(
1

(∆r)2
+

1

ri∆r

)
L

(n)
i+1,0 + ∆tkoffB

(n)
i,0

+ ∆tkonL
(n)
i,0 B

(n)
i,0

B
(n+1)
i,0 =∆tkonfL

(n)
i,0 + (1−∆tkoff)B

(n)
i,0 −∆tkonL

(n)
i,0 B

(n)
i,0 ,

and 

L
(n+1)
i,Nθ

=

(
1−∆tkc −∆tkonf −

2d∆t

(∆r)2
− 2d∆t

r2
i (∆θ)

2
− d∆t

ri∆r

)
L

(n)
i,Nθ

+
d∆t

r2
i (∆θ)

2
L

(n)
i,1 +

d∆t

r2
i (∆θ)

2
L

(n)
i,Nθ−1 +

d∆t

(∆r)2
L

(n)
i−1,Nθ

+ d∆t

(
1

(∆r)2
+

1

ri∆r

)
L

(n)
i+1,Nθ

+ ∆tkoffB
(n)
i,Nθ

+ ∆tkonL
(n)
i,Nθ

B
(n)
i,Nθ

B
(n+1)
i,Nθ

=∆tkonfL
(n)
i,Nθ

+ (1−∆tkoff)B
(n)
i,Nθ
−∆tkonL

(n)
i,j B

(n)
i,Nθ

.

2. The points at positions (r0, θj) with 0 ≤ j ≤ Nθ.

At the origin, the Laplacian is approximated by the following expression,

∆L|r=0 ≈
4(L̃− L0,j)

(∆r)2
. (B.9)

Here L̃ is the nearest-neighbor mean value of L at the origin, in other words,

L̃ =

∑Nθ
j=0 L1,j

Nθ + 1
.

Using previous expression to substitute the Laplacian, the system at the origin can be
approximated by

L
(n+1)
0,j − L(n)

0,j

∆t
=

4d(L̃− L0,j)

(∆r)2
− (kc + konf)L

(n)
0,j

+ koffB
(n)
0,j + konL

(n)
0,jB

(n)
0,j

B
(n+1)
0,j −B(n)

0,j

∆t
=konfL

(n)
0,j − koffB

(n)
0,j − konL

(n)
0,jB

(n)
0,j .

Putting all the terms relating to time tn+1 on the left side of the equation the rest on
the right side, we have

L
(n+1)
0,j =

(
1−∆tkc −∆tkonf −

4d∆t

(∆r)2

)
L

(n)
0,j +

4d

(∆r)2
L̃

+ ∆tkoffB
(n)
0,j + ∆tkonL

(n)
0,jB

(n)
0,j

B
(n+1)
0,j =∆tkonfL

(n)
0,j + (1−∆tkoff)B

(n)
0,j −∆tkonL

(n)
0,jB

(n)
0,j .
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3. The points at positions (rNr , θj) with 0 < j < Nθ.

When getting the extrapolation formulas for the points at positions (rNr , θj) with 0 <

j < Nθ, there exist several imaginary points L(n)
Nr+1,j with 0 < j < Nθ. Again using

the result from previous case, i.e. L(n)
Nr+1,j = L

(n)
Nr,j

, the extrapolation formulas for those
points become

L
(n+1)
Nr,j

=

(
1−∆tkc −∆tkonf −

d∆t

(∆r)2
− 2d∆t

r2
Nr

(∆θ)2

)
L

(n)
Nr,j

+
d∆t

r2
Nr

(∆θ)2
L

(n)
Nr,j+1 +

d∆t

r2
Nr

(∆θ)2
L

(n)
Nr,j−1 +

d∆t

(∆r)2
L

(n)
Nr−1,j

+ ∆tkoffB
(n)
Nr,j

+ ∆tkonL
(n)
Nr,j

B
(n)
Nr,j

B
(n+1)
Nr,j

=∆tkonfL
(n)
Nr,j

+ (1−∆tkoff)B
(n)
Nr,j
−∆tkonL

(n)
i,j B

(n)
Nr,j

.

4. The points at positions (rNr , θ0) and (rNr , θNθ ).

For the point (rNr , θ0), substituting L(n)
Nr+1,0 with L

(n)
Nr,0

and letting L(n)
0,−1 = L

(n)
0,Nθ−1,

we have 

L
(n+1)
Nr,0

=

(
1−∆tkc −∆tkonf −

d∆t

(∆r)2
− 2d∆t

r2
Nr

(∆θ)2

)
L

(n)
Nr,0

+
d∆t

r2
Nr

(∆θ)2
L

(n)
Nr,1

+
d∆t

r2
Nr

(∆θ)2
L

(n)
Nr,Nθ−1 +

d∆t

(∆r)2
L

(n)
Nr−1,0

+ ∆tkoffB
(n)
Nr,0

+ ∆tkonL
(n)
Nr,0

B
(n)
Nr,0

B
(n+1)
Nr,0

=∆tkonfL
(n)
Nr,0

+ (1−∆tkoff)B
(n)
Nr,0
−∆tkonL

(n)
Nr,0

B
(n)
Nr,0

.

For the other point (rNr , θNθ ), using L
(n)
Nr,Nθ

to substitute the imaginary point L(n)
Nr+1,Nθ

and choose L(n)
Nr,Nθ+1 = L

(n)
Nr,1

, so we obtain

L
(n+1)
Nr,Nθ

=

(
1−∆tkc −∆tkonf −

d∆t

(∆r)2
− 2d∆t

r2
Nr

(∆θ)2

)
L

(n)
Nr,Nθ

+
d∆t

r2
Nr

(∆θ)2
L

(n)
Nr,1

+
d∆t

r2
Nr

(∆θ)2
L

(n)
Nr,Nθ−1 +

d∆t

(∆r)2
L

(n)
Nr−1,Nθ

+ ∆tkoffB
(n)
Nr,Nθ

+ ∆tkonL
(n)
Nr,Nθ

B
(n)
Nr,Nθ

B
(n+1)
Nr,Nθ

=∆tkonfL
(n)
Nr,Nθ

+ (1−∆tkoff)B
(n)
Nr,Nθ

−∆tkonL
(n)
Nr,Nθ

B
(n)
Nr,Nθ

.
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