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Abstract

In this thesis we focus on the modeling of large credit losses in corporate as-

set portfolio. We compare loss estimates based on the classic Vasicek’s approach

with the assumption of normal-distributed loss distribution, and the copula ap-

proach generating heavier-tailed loss distribution. We also provide the numeric

implementations of both Vasicek’s and copula modeling approaches which are

widely used in bank’s risk management. In addition, we demonstrate how Va-

sicek’s approach can be adopted for estimating portfolio’s concentration risk

charge. The last work is my own development inspired by my internship expe-

rience at the Royal Bank of Scotland. All presented results are complemented

with review of the corresponding classical works in credit risk modeling.
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Chapter 1

Introduction

1.1 Background

Financial mathematics is one of the oldest branches of mathematical science.

Modern historians believe that banking itself appeared in Babylonia around

3000 BC. It was driven out of temples and palaces storing deposits of grain,

cattle, and precious metals [2]. This activity had brought into life a concept of

risks. For example, a clay tablet called the Code of Hammurabi (CA.1700 BCE)

prescribes that a carrier of caravan should give a receipt for the consignment,

take all responsibility, and exact a receipt upon delivery, or pay fivefold in case

of default [2].

Despite such a long history, management of financial risks remains an un-

solved problem. Recently, Laurence H Meyer [10] conducted analysis of the

Asian financial crisis of 1997. He demonstrated how the risk management at

many Asian financial institutions was weakened by a decade of rapid economic

growth and prosperity. Many banks were extending loans without assessment

of risks or even simple cash flow analysis. Rather, lending was driven by formal

availability of the collateral regardless its remoteness on default, and on the ba-

sis of relationship with the borrower. As a result, volume of loans was growing

faster than borrowers’ ability to pay back. Also, limits on concentrations in

lending to businesses haven’t been respected and loans were often large relative

in comparison with bank’s capital. As a result, these banks felt sharply already

a very beginning of economic downturn, and created a chain effect in the bank-

ing system. This example illustrates how ignoring basic risk management can

contribute to economy-wide difficulties.

Thinking about such examples from a mathematical point of view, the prob-

lems seem to appear when our apriori expectations of future losses (or risks, in

financial terminology) turn out to be significantly lower the corresponding apos-
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teriori estimates. Development of systematic scientific methods of correcting

our optimistic expectations seems to be the only way to address this problem.

This thesis is concerned with potential credit losses (i.e. credit risk) in large

homogeneous asset portfolios. Credit risk refers to the risk that a borrower will

default on a debt by failing to make required payments [8]. Credit risk may im-

pact all credit-sensitive transactions, including loans, securities and derivatives.

Recent historical events, like the default of the large American investment bank

Lehman Brothers and the Greek sovereign crisis, popularised two particular

types of credit risk:

• Concentration risk. As defined by regulators [15], this risk is associated

with any single exposure or group of exposures with the potential to pro-

duce large enough losses to threaten a bank’s core operations. It may

arise in the form of single name concentration (e.g. loans only to Greek

banks), industry concentration (e.g. loans only to oil industry) or product

concentration (e.g. only mortgages).

• Country transfer risk. The risk of loss arising from a sovereign state

freezing foreign currency payments (e.g. Venezuela)

• Sovereign risk. The risk of loss when a country defaults on its obligations

(e.g. Argentina).

Significant resources and sophisticated programs are used by financial insti-

tutions to analyse and manage credit risk [15]. Many of them run large credit

risk departments for assessing the financial conditions of their customers, and

adjust their credit practices accordingly. They either use in house capabilities

to advise on reducing and transferring risk, or the credit intelligence solutions

provided by the big international companies like Standard & Poor’s, Moody’s,

Fitch Ratings or their smaller local counterparts like DBRS, Dun and Bradstreet

and Bureau van Dijk.

Although the variety of financial instruments is large, the core idea of ef-

fective risk management is simple: the clients should be accepted taking into

account their ability to pay, and subsequently the riskier clients need to pay

more to compensate for higher potential loss for the bank. There are many

practical implementations of this idea:

• As stated in [8], most lenders employ their credit scoring models to rank

potential and existing customers according to their risk, and then apply

appropriate strategies.

• With products such as unsecured personal loans or mortgages, lenders

charge a higher price for higher risk customers (see [4]).
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• It is remarked in [8] that with revolving products such as credit cards and

overdrafts, risk is controlled through setting of the credit limits.

• It is also mentioned in [8] that some products also require collateral, usu-

ally an asset that is pledged to secure the repayment of the loan.

Importantly, the accurate assessment is ultimately important for large risks

when many customers default on their obligations at the same time. This point

brings us to formulation of the main idea of this thesis.

1.2 Thesis Idea

In this thesis we focus on the modelling of large credit losses in corporate as-

set portfolios. We compare loss estimates based on the classic Vasicek’s ap-

proach [22] with the assumption of normal-distributed loss distribution, and

the copula approach [13] generating heavier-tailed loss distributions. We also

provide the numeric implementations of both Vasicek’s and copula modeling ap-

proaches which are widely used in bank’s risk management. In addition, we will

demonstrate how Vasicek’s approach can be adopted for estimating portfolio’s

concentration risk charge. The last work is my own development inspired by

my internship experience at the Royal Bank of Scotland.

1.3 Thesis Structure

This thesis consists of the following four parts:

Firstly, we focus on derivation of a price evolution of a European call or put

option under some idealized assumptions using language of stochastic differential

equations. This result - called the Black-Scholes equation - has a fundamental

role in credit risk modelling, since it provides a structural framework of think-

ing about company’s default as settlement of ‘in-the-money’ call option on the

company’s residual asset value.

This model was first published by Fischer Black and Myron Scholes in their 1973

paper [18]. As pointed out in [6], the key idea behind the model is to hedge the

option by buying and selling the underlying asset in just the right way to elim-

inate risk. This type of hedging is called delta hedging and is the basis of more

complicated hedging strategies such as those engaged in by investment banks

and hedge funds. From the model, one can deduce the BlackScholes formula,

which gives a theoretical estimate of the price of European-style options. The

formula led to a boom in options trading of the Chicago Board Options Ex-

change and other options markets around the world. It is widely used, although

often with adjustments and corrections, by options market participants. It is
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also observed in [7] that many empirical tests have shown that the BlackScholes

price is fairly close to the observed prices, although there are well-known dis-

crepancies such as the option smile.

Secondly, in Chapter 4 we extend our analysis and look not at a single as-

set, but at the large homogeneous portfolio of assets, and derive the probability

distribution of portfolio’s loss. Properties of this loss distribution were first de-

scribed in Oldrich Vasicek 1991 paper [22], which has fundamental importance

for the credit risk management industry.

Its key observation is that in a large portfolio of loans (or large portfolio of

European call options) in Black-Scholes-Merton’s world with correlations gov-

erned by a single economic factor, the distribution of the portfolio’s loss has a

closed analytic form. This results has been extensively used in deriving approx-

imations for more complex portfolios and instruments like derivatives such as

collateralized debt obligations (CDO), as well as in regulatory capital estimates

and portfolio risk management.

Importantly, Vasicek’s result is based on the assumption of normality of

obligor’s asset value. The events of the 2008 financial crisis with many obligors

defaulting within a very short time interval were extremely unlikely according

to the Vasicek’s model, thus corresponding portfolio losses were not covered

by the capital buffers. These events draw a lot of attention to the alternative

models which lead to much heavier-tailed loss distributions. A useful example

of alternative models is the family of multivariate normal mixture distributions,

which include Student’s tdistribution and the hyperbolic distribution. Rudiger

Frey, and Alexander J. McNeil and Mark A. Nyfeler in 2001 paper [13] showed

that the aggregate portfolio loss distribution is often very sensitive to the exact

nature of the multivariate distribution of the asset values.

We are looking at these results here using a copula approach described in

Chapter 6 and Chapter 5. Copula is a useful tool for analysis of heavy-tail dis-

tributions by allowing the modelling of the marginals and dependence structure

of a multivariate probability model separately (see [12]). For example, in our

case, the individual obligor’s asset can be characterised by the choice or mod-

elling of the corresponding loss marginal distribution. As all obligors are in the

same market and interact with each other, this interaction can be captured via

modelling the dependency structure. Paper [13] showed that it is the copula (or

dependence structure) of the obligor’s asset value variables that determines the

higher order joint default probabilities, and thus determines the extreme risk

that there are many defaults in the portfolio.

11



By choosing an asset value distribution from a normal mixture family, we implic-

itly work with alternative copulas which often differ markedly from the normal

copula. Embrechts, McNeil, and Straumann [21] in 1999 showed that some of

these copulas, such as the t copula, possess tail dependence and in contrast to

the normal copula, they have a much greater tendency to generate simultane-

ous extreme values. As discussed earlier, this effect is highly important since

simultaneous low asset values will lead to many joint defaults.

In 1999, David X. Li [5] made an important contribution to the field of credit

risk modelling. Instead of choosing the obligor’s asset value as modeling vari-

able, he used a random variable called time-until-default to denote the survival

time of each defaultable entity or financial instrument. He modeled the default

correlation of two entities as the correlation between their survival times using

standard normal dependency but each entity’s survival time was characterized

by an exponential marginal distribution with a special parameter called the

hazard rate. In Chapter 7, we look at three methods of estimating hazard rate:

• Obtaining historical default information from rating agencies like Moody;

• Taking the implied approach using market prices of defaultable bonds or

asset swap spreads;

• Taking Merton’s option theoretical approach.

Finally, we provide independent numeric R implementations for the ideas de-

scribed in previous Chapters. We choose three applications which are common

in bank risk management. My internship at the Economic Capital Modeling

team of the Royal Bank of Scotland helped me to absorb the relevant ideas and

inspired me with these implementations. Applications described in Chapter 4

are relevant for estimates of portfolio’s default correlations and concentration

risk charges. In Chapter 5, we implement Li’s ‘time-until-default’ copula mod-

eling idea [5]. The implementation method is inspired by Jun Yan [24].
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Chapter 2

Relevant SDE Concepts

and Methods

Formalism of stochastic differential equations in financial applications often sim-

plifies formulation of the corresponding mathematical model. Here we provide

a brief overview of SDE concepts and methods relevant for our further analyses.

2.1 Wiener Processes

A Markov process is a type of stochastic process for which only the present

value of a variable is relevant for predicting the future. The past history of

the variable and the way the present has emerged from the past is irrelevant.

Wiener processes, which are particularly relevant in financial mathematics, are

a special case of Markov processes.

Definition 2.1.1. A stochastic process (Z(t))t≥0 is a Wiener process if it has

the following properties:

• The change Z(t+ ∆t)− Z(t) during a small period of time ∆t ≥ 0 has a

normal distribution with mean 0 and variance ∆t:

∆Z = Z(t+ ∆t)− Z(t) = ε
√

∆t, (2.1)

where ε has a standardized normal distribution N(0, 1).

• The random variable Z(t+∆t)−Z(t) and Z(s+∆s)−Z(s) are independent,

provided 0 ≤ t ≤ t+ ∆t ≤ s ≤ s+ ∆s.

• Z(0) = 0.
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• t→ Z(t) is continuous almost surely.

A Wiener process is a type of Markov stochastic process with a mean change

of zero and a variance rate of 1 per unit of time. In physics, it is often referred

as Brownian motion as it has been used to describe the motion of a particle

subject to a large number of small molecular shocks.

2.2 Ito Process

An Ito process is composed of a drift part and an Ito integral. Definition of an

Ito process requires defining filtration, adapted process and a class of function

which can be the integrand of Ito integral. see [14] for more information.

Definition 2.2.1. Given a measurable space (Ω,F), a filtration is a family of

σ-algebras {Ft}t≥0 with Ft ⊆ F for each t such that when s ≤ t, we have

Fs ⊆ Ft.

Definition 2.2.2. Let {Ft}t≥0 be an increasing family of σ-algebras of subset

of Ω. A process g : [0,∞) × Ω → Rn is called Ft-adapted if for each t ≥ 0 the

function

ω → g(t, ω)

is Ft-measurable.

Using these definitions, we come to the definition of Ito process:

Definition 2.2.3. (1-dimensional Ito processes [14]) LetBt be 1-dimensional

Brownian motion on probability space (Ω,F , P ), and let Ft≥0 be a filtration such

that B is F-adapted and B(t)−B(s) is independent of Fs for all t ≥ s ≥ 0. An

Ito process is a stochastic process (Xt)t≥0 on (Ω,F , P ) of the form

Xt = X0 +

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dBs, (2.2)

where µ and σ are F-adapted and

P [

∫ t

0

σ(s)2ds <∞,∀t ≥ 0] = 1

and

P [

∫ t

0

|µ(s)|ds <∞,∀t ≥ 0] = 1.

If Xt is an Ito process of the form (2.2), it is sometimes written in the shorter

differential form

dXt = µ(t)dt+ σ(t)dBt (2.3)
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and (t, w) → µ(t, ω) is then called the expected drift rate, and (t, w) → σ(t, ω)

is called the volatility.

2.3 Asset Price Process

A standard example of an Ito process in financial mathematics is a model of

the price of a non-dividend-paying stock. Here we demonstrate the process of

mapping properties of financial product into the parameters of Ito formula:

• Stochastic variable X should be identified not with the stock price A, but

with its instantaneous return dA/A. The first model would imply that

the expected stock return does not depend on the stock’s price – investors

would require a 12% per annum expected return when the stock price is

$10, as well as when it is $30, which is not realistic.

• Assuming zero uncertainty and a constant expected drift rate µ and inte-

grating between time 0 and time T , we get

XT = X0e
µT , (2.4)

where X0 and XT are the stock price at time 0 and T , respectively. Thus,

µ can be identified with a continuously compounded growth rate of the

stock price per unit of time

• In [3] it is remarked that it is reasonable to assume that the variability of

the instantaneous return in a short period of time does not depend on the

stock price. This suggests that the standard deviation of the change in a

short period of time should be proportional to the stock price.

Thus, we arrive at the most widely used model of stock price behaviour:

dXt = µXtdt+ σXtdBt, (2.5)

with µ being the stock’s expected rate of return, and σ being volatility of the

stock price.

2.4 Ito Formula

Ito’s formula is widely employed in mathematical finance, and its best known

application is in the derivation of the Black-Scholes equation for option values.
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2.4.1 The 1-dimensional Ito formula

Theorem 2.4.1. (1-dimensional Ito formula [14]) Assume Xt is a Ito

drift-diffusion process that satisfies the stochastic differential equation

dXt = µdt+ σdBt,

where Bt is a Brownian motion. Let f ∈ C2([0,∞)×R) be a twice-differentiable

scalar function, then we have

df(t,Xt) =

(
∂f

∂t
+ µ

∂f

∂x
+
σ2

2

∂2f

∂x2

)
dt+ σ

∂f

∂x
dBt, (2.6)

where the derivatives of f are evaluated at (t,Xt).

It is obvious that f(t,Xt) is an Ito process with a drift rate of(
∂f

∂t
+ µ

∂f

∂x
+
σ2

2

∂2f

∂x2

)
(t,Xt),

and a volatility of σ ∂f∂x (t,Xt).

Example 2.4.2. (Source: B. Øksendal [14]) What is the value of∫ t

0

sdBs?

From classical calculus it seems that the term tBt should appear, so we let

f(t, x) = tx, then f(t, Bt) = tBt. Then by Ito formula,

df(t, Bt) = d(tBt) = Btdt+ tdBt,

so

tBt =

∫ t

0

Bsds+

∫ t

0

sdBs,

so ∫ t

0

sdBs = tBt −
∫ t

0

Bsds.

Example 2.4.3. Now consider the Stochastic Differential Equation dXt =

µXtdt + σXtBt with X0 = x0 ∈ R. We let f(t, x) = x0e
(µ− 1

2σ
2)t+σx, there-

fore

Xt = f(t, Bt) = x0e
(µ− 1

2σ
2)t+σBt ,
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then by Ito formula,

dXt = df(t, Bt) =
∂f

∂t
dt+

∂f

∂x
dBt +

1

2

∂2f

∂x2
(dBt)

2

= (µ− 1

2
σ2)Xtdt+ σXtdBt +

1

2
σ2Xtdt

= µXtdt+ σXtdBt.

So all conditions in the definition of solution (using Ito formula) are satisfied.

Hence the complete solution is

Xt = x0e
(µ− 1

2σ
2)t+σBt .

2.4.2 The multi-dimensional Ito formula

Translating the previous arguments into the higher dimensions, we arrive at the

following

Definition 2.4.4. [14] Let B(t) = (B1(t), . . . , Bm(t)) denote m-dimensional

Brownian motion. If each of the processes µi(t) and σij(t) satisfies the condition

given in Definition 2.2.3 (1 ≤ i ≤ n,1 ≤ j ≤ m) then we can form the following

n Ito processes

dX1(t) = µ1dt+ σ11dB1(t) + · · ·+ σ1mdBm(t)

dX2(t) = µ2dt+ σ21dB1(t) + · · ·+ σ2mdBm(t)
...

dXn(t) = µndt+ σn1dB1(t) + · · ·+ σnmdBm(t)

,

Or, in matrix notation

dX(t) = µdt+ σdB(t),

where

X(t) =


X1(t)

...

Xn(t)

 , µ =


µ1

...

µn

 , σ =


σ11 · · · σ1m

...
...

σn1 · · · σnm

 , dB(t) =


dB1(t)

...

dBm(t)

 .

(2.7)

Such a process X(t) is called an n-dimensional Ito process, we use notation

X(t) instead of Xt to indicate the difference between n-dimensional Ito process

and 1-dimensional Ito process.

It is natural to ask what is the Ito formula for n-dimensional Ito process.

An answer is provided by the following:
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Theorem 2.4.5. (General Ito formula [14]) Let

dX(t) = µdt+ σdB(t)

be an n-dimensional Ito process as above. Let (t, x)→ f(t, x) = (f1(t, x), . . . , fp(t, x))

be a C2 map from [0,∞)×Rn into Rp. Then the process

Y (t, ω) = f(t,X(t))

is again an Ito process, whose nth component, Yk, is given by

dYk(t) =
∂fk
∂t

(t,Xt)dt+
∑
i

∂fk
∂xi

(t,X)dXi(t)+
1

2

∑
i,j

∂2fk
∂xi∂xj

(t,Xt)dXi(t)dXj(t)

where dXi(t) is expanded as in Definition 2.4.4 with the convention that dBidBj =

δijdt, dBidt = dtdBi = 0.
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Chapter 3

The Black-Scholes Model

3.1 The Black-Scholes world

Ideas of Ito calculus were formulated in the 1950s, however their application in

finance required a set of additional modelling which were made approximately 30

years later in works of the economists R. Merton, F. Black and M. Scholes [18].

F. Black and M. Scholes tried to formulate a minimal description of the ‘fair’

world, and asked a question whether in this world the stochasticity (or risk) of

the value of a financial instrument can be completely eliminated by holding

in a portfolio a small number of other financial instruments. The answer to

this question turned out to be positive, and this led to a significant advance in

financial mathematics.

Black and Scholes set the following assumptions for their idealised world:

• a riskless profit cannot be made on the market, i.e. two different types

of financial instruments which provide the same payoff for the investors

should have the same price (in financial jargon, there is no arbitrage op-

portunity)

• Any amount, even fractional, of cash can be borrowed and lent at the

market at the riskless rate r

• As well as any amount, even fractional, of any financial instrument can be

bought and sold on the market. Note that this includes so called ’short

selling’: you can sell a financial instrument which is not in your portfolio

at this moment, and purchase it only at the time of its delivery

• The financial transactions on the market are costless (in financial jargon,

the market is frictionless).
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To study the properties of this ‘fair’ world, Black and Scholes assumed that

a company’s stock has the following properties:

• The instantaneous log returns of the stock price S is a geometric Brownian

motion with constant drift rate µ and volatility σ, i.e.

dSt
St

= µdt+ σ dWt, (3.1)

where Wt is a Brownian motion, and t is time.

• The stock does not pay dividends. Even though this sounds not realis-

tic, there are companies in the real world like Google which never paid

dividends so far.

The riskless rate of borrowing money form the market is realized in Black-

Scholes ’fair’ world by a bond for any required lifetime T of the transaction

which pays a constant rate r per unit of time.

Finally, a second stochastic financial instrument in Black-Scholes’s world is

called a call option on a stock. This is a financial contract which gives a buyer

a right but not an obligation to buy a stock at fixed price K at expiry time

t = T regardless of the stock price S(T ) at that time point. We view the price

of the option as a function of the stock price and of time, denoting the price

of this call option as C(S, t) and its payoff V (S, T ) at expiry. Note that since

the price of the stock is stochastic, the price of the call option on the stock is

stochastic as well. However, Black and Scholes observed that the nature of this

stochasticity is identical for both of them and the right combination of those

two instruments should eliminate this stochasticity completely.

3.2 The Black-Scholes equation

John C. Hull in [3] gave a derivation of The Black-Scholes equation. Consider

a portfolio consisting of one call option on a stock and a certain fraction α of

the stock itself. In order to find the fraction α of the stock which eliminates the

stochasticity of the option’s price, we need to know how the payoff price of the

option at expiry V changes as a function of S and t over an infinitesimaly small

time increment dt. By Ito’s lemma and (3.1), we have:

dVt =

(
µSt

∂V

∂S
+
∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2

)
dt+ σSt

∂V

∂S
dWt. (3.2)
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Thus, if we allow α to vary in time, we can choose α = ∂V
∂S , which makes the

price Π of the portfolio equal to

Π = −V +
∂V

∂S
S. (3.3)

Over the small time interval [t, t+∆t], the change of the value of the portfolio

is approximately:

∆Π = −∆V +
∂V

∂S
∆S. (3.4)

We will assume that this is a self-financing portfolio, i.e. the infinitesimal change

in its value is only due to the infinitesimal changes in the values of its assets,

and not due to changes in the positions in the assets.

Discretizing the equations for dS/S and dV ,

∆S = µS∆t+ σS∆W, (3.5)

∆V =

(
µS

∂V

∂S
+
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2

)
∆t+ σS

∂V

∂S
∆W, (3.6)

we get the following expression for ∆Π:

∆Π =

(
−∂V
∂t
− 1

2
σ2S2 ∂

2V

∂S2

)
∆t. (3.7)

Since the volatility part has been completely eliminated now, the rate of

return for this portfolio must be equal to the rate of return on a bond, i.e.

rΠ ∆t = ∆Π. (3.8)

Otherwise, the assumption of no arbitrage would be violated.

Finally, equating the two formulas for ∆Π we obtain:(
−∂V
∂t
− 1

2
σ2S2 ∂

2V

∂S2

)
∆t = r

(
−V + S

∂V

∂S

)
∆t, (3.9)

and simplifying, we arrive at the celebrated Black - Scholes partial differential

equation:
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0. (3.10)

In [3] it is remarked that under the assumptions of the Black - Scholes world, this

equation holds for any type of option if its price V (S, t) is twice differentiable

with respect to S and once with respect to t.
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3.3 The Black-Scholes formula

John C. Hull in [3] provided a derivation of the The Black-Scholes formula.

For the call option on a stock, the Black-Scholes PDE has the following boundary

conditions:

C(0, t) = 0 for all t (3.11)

lim
S→∞

C(S, t)

S
= 1 for all t (3.12)

C(S, T ) = max{S −K, 0} (3.13)

The Black Scholes PDE can be transformed into a standard diffusion equa-

tion
∂u

∂τ
=

1

2
σ2 ∂

2u

∂x2
(3.14)

by using the following transformations:

τ = T − t, (3.15)

u = C(S, t)erτ , (3.16)

x = ln
(
S
K

)
+
(
r − 1

. 2σ
2
)
τ (3.17)

The terminal condition C(S, T ) = max{S − K, 0} transforms into an initial

condition,

u(x, 0) = u0(x) = K(emax{x,0} − 1), x ∈ R. (3.18)

Using the standard textbook method for solving a diffusion equation, we

have

u(x, τ) =
1

σ
√

2πτ

∫ ∞
−∞

u0(y) exp

[
− (x− y)2

2σ2τ

]
dy, (3.19)

which, after some manipulations, yields

u(x, τ) = Kex+
1
2σ

2τN(d1)−KN(d2), (3.20)

where

d1 = 1
σ
√
τ

[(
x+ 1

2σ
2τ
)

+ 1
2σ

2τ
]
, (3.21)

d2 = 1
σ
√
τ

[(
x+ 1

2σ
2τ
)
− 1

2σ
2τ
]
, (3.22)

and N(x) is the standard normal cumulative distribution function.

Reverting u, x, τ to the original set of variables, yields the final expression
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for the solution of the Black-Scholes equation,

C(S, t) = N(d1)S −N(d2)Ke−r(T−t), (3.23)

d1 =
1

σ
√
T − t

[
ln

(
S

K

)
+

(
r +

σ2

2

)
(T − t)

]
, (3.24)

d2 = d1 − σ
√
T − t. (3.25)
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Chapter 4

Portfolio Loss Distribution

A main idea behind the Black-Scholes equation was a perfect hedging of risk

for an option by a fraction of the underlying stock in a portfolio. However,

it was very well known that in large portfolios of even identical financial in-

struments, there are risks, and those risks tend to materialise at different time

points (see [23]). This observation inspired another fundamental results which

gives the likelihood of losses in a large portfolio of options.

Note that the binary nature of an option at expiry can be used in a context

of corporate finance to model an indicator of default. If the stock price is

above zero, the company is performing, whereas if it becomes equal to zero, the

investors choose to liquidate the company and declare its default. This analogy

was made rigorous in work of R. Merton. However, we will not elaborate on

his results here, and simply assume that an obligor i defaults if the value of its

assets Ai at time t = T falls below the contractual value B of its obligations.

As in Merton’s model (2.5), the value of its assets Ai(t) will be described by the

process

dAi(t) = µAi(t)dt+ σAi(t)dWt,

where Wt is a Brownian motion and µ and σ are positive constants. As Ai(0) >

0, Ai(T ) can be formally solved as (see example 2.4.3 in Chapter 2)

logAi(T ) = logAi(0) + µT − 1

2
σ2T + σ

√
TW, (4.1)

with Xi now being a standard normal variable. The probability of default of

obligor i is equal to

pi = P[Ai(T ) < Bi] = P[Xi < ci] = N(ci)
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where

ci =
logBi − logAi − µT + 1

2σ
2T

σ
√
T

and N(x) is the cumulative normal distribution function.

Now consider a portfolio consisting of n identical loans with the same term

T and identical obligors. Let the probability of default on each loan be pi = p,

and assume the same correlation ρ between asset values of any two obligors.

For the sake of simplicity, let’s assume that the gross loss Li on the i-th loan is

Li = 1 if the i-th borrower defaults and Li = 0 otherwise. It is convenient to

denote by L the portfolio fraction gross loss,

L =
1

n

n∑
i=1

Li

For independent defaults and in a limit of n→∞, the distribution of L would

converge, by the central limit theorem, to a normal distribution. In a more

realistic model, the defaults are not independent. The conditions of the central

limit theorem are not satisfied and L is not asymptotically normal. It turns out,

however, that the closed form analytical expression for the portfolio probability

loss distribution P (L) can be derived.

4.1 The Limiting Distribution of Portfolio Losses

Vasicek in [22] assumes that the pairwise correlations ρ between obligors log

returns in one time unit can be represented by splitting the variables Xi in

Equation (4.1) as

Xi = Y
√
ρ+ Zi

√
1− ρ (4.2)

where Y and Zi are mutually independent standard normal variables, and

ρ ∈ [0, 1] is a constant, i = 1, · · · , n. The variable Y can be interpreted as a

portfolio common economic factor over the interval (0, T ), whereas Zi
√

(1− ρ)

characterises the company’s specific risk. We also call such a model a ‘factor

model’ (see [22]).

Since p = P[Xi < ci] = N(ci), we have ci = N−1(p). For the fixed common

factor Y , the conditional probability of loss on any one loan is

p(Y ) = P[Li = 1|Y ] = N

(
N−1(p)− Y√ρ
√

1− ρ

)
. (4.3)

Conditional on the value of Y , the variables Li are independent equally

distributed Bernoulli variables, hence with a finite variance. The portfolio loss

conditional on Y converges, by the law of large numbers, to its expectation

25



p(Y ) as n → ∞. Then in a limit as n → ∞ and hence approximately for large

portfolios,

P[L ≤ x] = P[p(Y ) ≤ x],

= P
[
N

(
N−1(p)− Y√ρ
√

1− ρ

)
≤ x

]
,

= P
[
−Y ≤

√
1− ρN−1(x)−N−1(p)

√
ρ

]
,

= N

(√
1− ρN−1(x)−N−1(p)

√
ρ

)
.

Thus, the cumulative distribution function of loan losses in a large portfolio’s

limit is

P[L ≤ x] = N

(√
1− ρN−1(x)−N−1(p)

√
ρ

)
. (4.4)

Note that the assumption of equal obligor’s weights in the portfolio is not

critical. Let the portfolio weights be w1, w2, · · · , wn with
∑n
i=1 wi = 1. It has

been shown by Vasicek in [22] that the portfolio loss L =
∑n
i=1 wiLi conditional

on Y converges to its expectation p(Y ) whenever (and this is a necessary and

sufficient condition)
∑n
i=1 w

2
i → 0 and the portfolio loss distribution converges

to the form 4.4. In other words, if the portfolio contains a sufficiently large

number of loans without it being dominated by a few loans much larger than the

rest, the limiting distribution provides a good approximation for the portfolio

loss.

4.2 Properties of the Loss Distribution

As stated in (4.4), the portfolio loss distribution is given by the cumulative

distribution function

F (x; p, ρ) = N

(√
1− ρN−1(x)−N−1(p)

√
ρ

)
. (4.5)

In this section we discuss some more properties of this distribution follow-

ing [22], we find that

• When ρ→ 1:

We have P(L ≤ x) = 1− p = P(L = 0) for all x ∈ (0, 1) , and

P(L = 1) = p.

Thus all loans default with probability p.

• When ρ→ 0:

We have P(L ≤ x)→ 0 for x < p, and
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P(L ≤ x) = 1 for x ≥ p.
This yields P(L = p) = 1.

The corresponding probability density can be derived by calculating the

derivative of F (x; p, ρ) with respect to x, which is

f(x; p, ρ) =
∂F (x; p, ρ)

∂x
,

=

√
1− ρ
ρ
× exp(

− (1− 2ρ)(N−1(x))2 − 2
√

1− ρN−1(x)N−1(p) + (N−1(p))2

2ρ

)
,

=

√
1− ρ
ρ

exp

(
1

2
(N−1(x))2 − 1

2ρ
(N−1(p)−

√
1− ρN−1(x))2

)
.

Proposition 4.2.1. [22] For any given level of confidence α, the α-quantile

qα(L) of a random variable L with distirbution function F (x; p, ρ) is given by

qα(L) = p(−qα(Y )) = N(
N−1(p) +

√
ρqα(Y )

√
1− ρ

)

where Y has distribution N(0, 1) and qα(Y ) denotes the α-quantile of the stan-

dard normal distribution.

Proposition 4.2.2. [22] The expectation and the variance of a random variable

L with distribution function F (x; p, ρ) are given by

E(L) = p

and

V(L) = N2(N−1(p), N−1(p); ρ)− p2,

where N2(·, ·; ρ) denotes the cumulative bivariate normal distribution function

with correlation ρ.

4.3 Use of Vasicek’s distribution

In this section, we give two examples and the corresponding R programming

implementations of the practical use of Vasicek’s portfolio loss distribution func-

tion, i.e. Equation (4.4). Ideas of these examples were inspired by my internship

at the Economic Capital Modeling team of the Royal Bank of Scotland.
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Figure 4.1: Obligors’ standardized asset in 15 time points

4.3.1 Correlation estimation

The value of the pairwise correlations ρ are not known in practical situations,

and it needs to be determined from empirical time series of portfolios default

rates. These correlations ρ are usually also used in the required level of the

bank’s economic capital to ensure its solvency with specified confidence at a

future time point. Since we have no real historic data, we will first generate a

data set.

The algorithm is as follows:

1. Randomly generate 2000 obligors with assets satisfying normal distribu-

tion with mean 0 and correlation 0.7, in 100 time points. Figure 4.1 shows

part of the obligors’ asset in 15 time points.

2. Set corresponding 2000*100 standard liability threshold matrix, with thresh-

old N−1(p), where p is the default probability. In our case, p = 0.1,

therefore the threshold equals to -1.28.

3. Compare asset and liability threshold matrix, finding ‘default or not’ ma-

trix. (see Figure 4.2)

4. For each time point (i.e. each realization of Y), calculate the default rate,

which equals to the fraction (the number of default)/(total number of

obligors), i.e., p(Y ) in Equation (4.3)

5. After getting p(Y ), we can estimate the correlation ρ based on a small

derivation:

28



Figure 4.2: Obligor’s default-or-not matrix in 15 time points

(a) We know from Equation (4.3) that:

p(Y ) = P[Li = 1|Y ] = N

(
N−1(p)− Y√ρ
√

1− ρ

)
.

(b) Next, we introduce a variable: Distance-to-Default(DD).

DD = N−1(p(Y )) =
N−1(p)− Y√ρ
√

1− ρ
.

(c) Then

var(DD) =
ρ

1− ρ
var(Y ) =

ρ

1− ρ

due to the assumption of var(Y ) = 1.

(d) Thus, the estimated value of ρ is

ρ =
var(DD)

1 + var(DD)
.

The whole R code is as follows:
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1 l i b r a r y (MASS)

2

3 #number o f time po in t s

4 T <− 100

5

6 #number o f o b l i g o r s

7 Nobl <− 2000

8

9 #average value o f a s s e t s i s 0

10 mu <− rep (0 , Nobl )

11

12 #co r r e l a t i o n rho = 0 .7

13 rho = 0 .7

14

15 #co r r e l a t i o n matrix

16 Sigma <− matrix ( rho , nrow=Nobl , nco l=Nobl ) + diag (Nobl ) ∗(1−rho )

17

18 #values o f a s s e t s

19 a s s e t s <− mvrnorm(n=T, mu=mu, Sigma=Sigma )

20

21 #po r t f o l i o d e f au l t r a t e

22 p <− 0 .1

23

24 #thus the corre spond ing standard l i a b i l i t y th r e sho ld

25 Lthr <− qnorm(p)

26

27 #and a l l l i a b t r e s h o l d s in matrix form

28 l i a b <− matrix ( rep ( Lthr , T∗Nobl ) , nrow=T, nco l=Nobl )

29

30 #observed d e f a u l t s

31 d e f a u l t s <− a s s e t s < l i a b

32

33 #po r t f o l i o d e f au l t r a t e at each time point , i . e . l e f t s i d e o f Eq

. ( 4 . 3 )

34 portDefaultRate <− rowSums( d e f a u l t s ) /Nobl

35

36 #time average p o r t f o l i o d e f au l t rate , should be c l o s e to p

37 avDefaultRate <− mean( portDefaultRate )

38

39 #so c a l l e d d i s t anc e to d e f au l t s e r i e s ( exc lud ing po in t s o f no

d e f au l t ) , i . e . i t i s Nˆ{−1}(p(Y) ) , (p(Y) ) i s in Eq . ( 4 . 3 )

40 dis tanceToDefau l t <− qnorm( portDefaultRate [ portDefaultRate > 0 ] )

41

42 #var iance o f d i s t ance to d e f au l t

43 varAvDefaultRate <− var ( d i s tanceToDefau l t )

44

45 #Vasicek ’ s e s t imate o f rho , should be c l o s e to rho

46 rhoVasicek <− varAvDefaultRate / (1 + varAvDefaultRate )

corrVasicek.R
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4.3.2 Concentration risk charge

The implementation of the example of a concentration risk charge discussed be-

low is my original work, inspired by discussions with my former RBS colleagues.

The Concentration Risk Charge covers the risk of losses which a regulated

institution acquires via excessive exposures to a particular asset, counterparty or

group of related counterparties. For example, people were very optimistic about

the economy prior to the 2008 financial crisis, and were simply borrowing to-

morrow’s money on today. Many banks acquired large exposures on mortgages,

focusing on profit and ignoring increasing credit risk. Therefore, during the

crisis, when defaults on mortgages were high, these banks easily got bankrupt

due to the large exposure on mortgage business.

Regulators recognize this problem, however they assume that it cannot be

solved within a standardized regulatory approach. The regulatory capital re-

quirements are calculated using a Vasicek-like formula with predefined parame-

ters which (mostly) don’t take into account differences between different sectors

of the economy. Thus, a portfolio with all exposures in a single sector attracts

the same amount of regulatory capital as a portfolio with exposures spread over

multiple sectors. Therefore, regulators require from banks to develop their in-

ternal methodology of calculating their concentration risk charge and report the

number to the central bank. Finding the right exposure of each business sector

in a bank’s portfolio, is the key to calculate right concentration risk charge.

The algorithm is as follows:

1. Estimate the value of the portfolio’s quantile risk measure for the current

portfolio composition.

2. Choose a risk diversification measure. A common choice is a variance of

portfolio’s loss since it is typically used for portfolio risk management.

3. Estimate the value of the chosen risk diversification measure for the marginal

(sector) loss distribution for the current portfolio composition. (see Fig-

ure 4.3)

4. Choose risk diversification strategy. For example, a diversification strategy

might consist of shifting a fraction of the portfolio proportional to sector’s

loss variance from a sector with high variance to a sector with low variance.

5. Repeat execution of risk diversification strategy until a stationary state

or a predefined business constraint is reached.

6. Estimate the value of the portfolio’s quantile risk measure for the diversi-

fied portfolio. (see Figure 4.4)
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Figure 4.3: The initial portfolio losses with 99% quantile line
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Figure 4.4: The diversified portfolio losses with 99% quantile line
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7. The difference between the quantile’s risk measure for the current and

diversified portfolios constitutes a concentration risk charge. We can see

from Figure 4.3 and Figure 4.4 that under 99% quantile’s measure, the

concentration risk charge is 0.6-0.37=0.23.

The following code provides a method to calculate concentration risk

charge:

We Assume the portfolio consists of two different sectors: mortgage and credit-

card.

1 r e qu i r e ( l a t t i c e )

2 l i b r a r y (mvtnorm)

3

4 #probab i l i t y o f d e f au l t o f o b l i g o r

5 PD <− 0 .1

6

7 #bank ’ s r e s p e c t i v e exposure o f mortgage p o r t f o l i o and c r ed i t c a rd

p o r t f o l i o

8 exposure <− c ( 0 . 9 , 0 . 1 )

9

10 #correspond ing ob l i g o r c o r r e l a t i o n with in mortgage p o r t f o l i o and

c r ed i t c a rd p o r t f o l i o

11 rho1 <− c ( 0 . 4 , 0 . 1 )

12

13 #d i f i n e a func t i on c a l u cu l a t i n g d e f au l t p robab i l i t y , i . e . Equation

( 4 . 3 )

14 vasCondPD <− f unc t i on (PD, rho ,Y) {
15 r e turn ( pnorm( (qnorm(PD) − s q r t ( rho ) ∗ Y) / sq r t (1 − rho ) ) )

16 }
17

18 #number o f s c e n a r i o s

19 nScenar io s <− 1000

20

21 #co r r e l a t i o n between mortgage p o r t f o l i o and c r ed i t c a rd p o r f o l i o

22 rho <− 0 .6

23

24 #genera t ing 1000 s c ena r i o s s tandard i zed normal−d i s t r i b u t e d mortgage

p o r t f o l i o and c r ed i t c a rd p o r f o l i o with c o r r e l a t i o n

25 mat <− rmvnorm( nScenar ios , mean=c (0 , 0 ) , sigma=(1−rho ) ∗diag (2 )+rho )

26 mat <−as . matrix (mat)

27

28

29 #ca l c u l a t i n g i n i t i a l l o s s e s f o r 2 p o r t f o l i o s r e s p e c t i v e l y , l o s s=

exposure ∗ de f au l t p r obab i l i t y

30 lossMort0 <− exposure [ 1 ] ∗ vasCondPD(PD, rho1 [ 1 ] , mat [ , 1 ] )

31 l o s sCards0 <− exposure [ 2 ] ∗ vasCondPD(PD, rho1 [ 2 ] , mat [ , 2 ] )

32

33 #to t a l i n i t i a l l o s s e s
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34 t o t a lLo s s 0 <− lossMort0 + lossCards0

35

36 #ca l c u l a t i n g 99% quan t i l e o f the i n i t i a l t o t a l l o s s e s

37 q99 <− quan t i l e ( to ta lLos s0 , probs =0.99)

38

39 #histogram of the i n i t i a l t o t a l l o s s e s with 99% quan t i l e l i n e

40 h i s t ( to ta lLos s0 , f r e q=FALSE)

41 ab l i n e (v=q99 )

42

43 #concent ra t i on adjustment p r o c e s s e s :

44 #1. s e t the i n i t i a l p o r t f o l i o l o s s e s f o r mortgage and c r ed i t c a rd

r e s p e c t i v e l y

45 lossMort <−lossMort0

46 l o s sCards <− l o s sCards0

47

48 #2. everyt ime ad jus t the exposure with the change p ropo r t i ona l on

the var iance o f the l o s s e s from prev ious round un t i l i t r eaches

the balance

49 f o r ( t in 1 :1000) {
50 lossMort <− exposure [ 1 ] ∗ vasCondPD(PD, rho1 [ 1 ] , mat [ , 1 ] )

51 l o s sCards <− exposure [ 2 ] ∗ vasCondPD(PD, rho1 [ 2 ] , mat [ , 2 ] )

52

53 dExpMort <− var ( lossMort ) ∗ exposure [ 1 ]

54 dExpCards <− var ( lo s sCards ) ∗ exposure [ 2 ]

55

56 exposure [ 1 ] <− exposure [ 1 ] − dExpMort + dExpCards

57 exposure [ 2 ] <− exposure [ 2 ] + dExpMort − dExpCards

58 }
59

60 #to t a l l o s s e s a f t e r d i v e r s i f i f i c a t i o n

61 to ta lLos sDiv <− lossMort + los sCards

62

63 #ca l c u l a t i n g 99% quan t i l e o f the d i v e r s i f i e d t o t a l l o s s e s

64 q99Div <− quan t i l e ( tota lLossDiv , probs =0.99)

65

66 #histogram of the d i v e r s i f i e d t o t a l l o s s e s with 99% quan t i l e l i n e

67 h i s t ( tota lLossDiv , f r e q=FALSE)

68 ab l i n e (v=q99Div )

69

70 #the d i f f e r e n c e o f the quan t i l e between the i n i t i a l p o r t f o l i o and

d i v e r s i f i e d p o r t f o l i o , i . e . the so−c a l l e d concent ra t i on charge

71 concCharge = q99 − q99Div

vasicek.R
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Chapter 5

Copula

5.1 Mathematical Definition of Copula

As stated in [13], a copula function is simply a multivariate joint distribution

function of random vectors with standard uniform marginal distributions. As

mentioned in Chapter 6, a copula gives a way of putting marginal distributions

of several individual obligor’s asset returns, or survival time in Li’s case, to-

gether to form a joint distribution of groups of risks. We can simply say that a

copula is a tool which enables us to model the marginal distribution, as well as

the dependency structure of a vector of latent variables separately.

For example, the obligor’s asset return can be described by modeling the

marginals. Also, as all obligors are in the same market, each obligor’s action

and financial status has an interaction effect with other obligors. This interac-

tion effect can be described by modeling the dependency structure.

Definition 5.1.1. [12] Given a random vector (X1, X2, . . . , Xd) with continuous

marginal distributions Fi(x) = P(Xi ≤ x), x ∈ R, i = 1, . . . , d, a copula function

is a multivariate distribution function such that its marginal distributions are

standard uniform. A common notation for a copula is:

C(u1, u2, . . . , ud) = P(U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud), (5.1)

where (U1, U2, . . . , Ud) = (F1(X1), F2(X2), . . . , Fd(Xd)).

The marginal diatribution Fi contains all the information about each variable

Xi, whereas the copula C contains all the information about the dependency

structure.
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If for each i the inverse of Fi exists, equation (5.1) can also be written as

follows:

C(u1, u2, . . . , ud) = P(X1 ≤ F−11 (u1), X2 ≤ F−12 (u2), . . . , Xd ≤ F−1d (ud)),

(5.2)

where F−1i is the inverse of Fi.

Example 5.1.2. [13] If the vector of latent variables X has a multivariate

Gaussian distribution with correlation matrix R, then the copula of X may be

represented by

CGaR (u1, . . . , um) = NR(N−1(u1), . . . , N−1(um)), (5.3)

where NR denotes the joint distribution function of a centered m-dimensional

normal random vector with correlation matrix R, and N is the distribution

function of univariate standard normal. CGaR is known as the Gaussian copula

with the correlation matrix R.

Example 5.1.3. [23] The independence copula is defined by

C(u1, . . . , ud) = u1 × · · · × ud.

5.1.1 Sklar’s theorem

A copula is powerful because of Sklar’s theorem, which enables the seperation

of modeling marginal distributions and dependency structure.

Theorem 5.1.4. (Sklar [19], see also [13]) Let F be a multivariate d-

dimensional distribution function with marginals F1, . . . , Fd. Then there exists

a copula C such that

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (x1, . . . , xd ∈ R).

Moreover, if the marginal distributions F1, . . . , Fd are continuous, then C is

unique.

The converse is also true:

Proposition 5.1.5. [13] For any copula C and marginal distribution functions

F1, . . . , Fd, the function

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (x1, . . . , xd ∈ R)

defines a multivariate distribution function with marginals F1, . . . , Fd.
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Summarizing Theorem 5.1.4 and Proposition 5.1.5, one can say that every

multivariate distribution with continuous marginals admits a unique copula rep-

resentation. Also copulas and distribution functions are the building blocks to

derive new multivariate distributions with prescribed correlation structure and

marginal distributions.

5.2 Copula for Fatter-tail Loss Distribution

We are interested in the model which would generate a fatter-tailed portfolio loss

distribution, for the reason, see Chapter 6. In this section, we will consider some

examples given in [23] of how the copula approach can be used for constructing

loss distributions with fatter tails than it would be for the normally distributed

asset value log-returns introduced in Chapter 4.

We look at the vector of asset value log-return but replace the assumption of

multivariate normal distribution with multivariate t distribution for the reasons

given in Section 6.3 of Chapter 6. We first recall some basic test distributions

from statistics (see [17]).

Definition 5.2.1. (The Chi-square distribution) Given an i.i.d. sample

X1, . . . , Xn ∼ N(0, 1), X2
1 + · · ·+X2

n is said to be χ2-distributed with n degrees

of freedom.

Definition 5.2.2. (The Student’s t-distribution) Given a standard normal

variable Y ∼ N(0, 1) and a χ2-distributed variable X ∼ χ2(n), such that Y and

X are independent. Then the variable Z defined by Z = Y/
√
X/n is said to be

t-distributed with n degrees of freedom.

In general the t-distribution has more mass in the tails than a normal dis-

tribution. Due to the property of a t-distribution that as the degree of freedom

parameter ν goes to infinity, it converges to the normal distribution. If we start

with an approximately normal distribution, we can gradually move away from

this model by choosing smaller values of ν step-by-step.

Definition 5.2.3. (The multivariate t-distribution) Given a multivariate

Gaussian vector Y = (Y1, . . . , Ym) ∼ N(0, R) with correlation matrix R, the

scaled vector θY is said to be multivariate t-distributed with n degrees of free-

dom, if θ =
√
n/X with X ∼ χ2(n) and X is independent of Y. And

5.2.1 t-Copula

Definition 5.2.4. [23] Given n ≥ 3 and Fn a t-distribution function with n

degrees of freedom, given the multivariate t-distribution function with n degrees
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of freedom and correlation matrix R, denoted by Fn,R ∼ t(n,R), we define a

t-copula function as follows:

Cn,R(u1, . . . , ud) = Fn,R(F−1n (u1), . . . , F−1n (ud)), u1, . . . , ud ∈ (0, 1). (5.4)

The copula Cn,R incorporates a multivariate t-dependency structure. Simi-

larly with Gaussian copulas, we can combine with a t-copula with any marginal

distributions we like. For example, if we want to build a factor model which

would generate the fatter-tailed loss distribution, we can choose a t-copula with

Gaussian marginals, or a Gaussian copula with t-marginals just like the follow-

ing:

Example 5.2.5. [23] A multivariate distribution function with t-dependency

and Gaussian marginals can be defined by

F (x1, . . . , xd) = Cn,R(N(x1), . . . , N(xd)), x1, . . . , xd ∈ R,

where N(·) denotes the standard normal distribution function.

Example 5.2.6. [23] A multivariate distribution function with Gaussian de-

pendency and t-marginals can be defined by

F (x1, . . . , xd) = CGaR (Fn(x1), . . . , Fn(xd)), x1, . . . , xd ∈ R,

where Fn(·) denotes the student’s t-distribution function.

Replacing Gaussian dependency by t-dependency, or replace Gaussian marginal

by t-marginals will both significantly shift mass into the tail of the loss distri-

bution arising from a corresponding factor model.

Figure 5.1 contrasts the lack of tail dependence of the normal copula with

the strong tail dependence of the t copula with n = 3 degrees of freedom. The

left hand plot shows 7000 points from bivariate normal distribution, whereas the

right hand plot shows 7000 points from a bivariate t distribution. The correla-

tion in each plot is 0.7. Clearly, in the lower left and upper right quadrants, the

t dependence structure produces more joint extreme values close to the diagonal.

5.3 Common Copula Families

Article [24] divide copulas into two main families, the most frequently used

copula families are Elliptical copulas and Archimedean copulas.
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Figure 5.1: Normal dependence vs. t dependence. Vertical and horizontal lines
at 99.5% and 0.5% quantiles of marginal distribution

5.3.1 Elliptical copula

An elliptical copula has a correlation matrix inherited from the corresponding

elliptical distributions, which determines the dependency structure. J. Yan [24]

implemented the four commonly used dependency structures in R: autoregres-

sive of order 1, exchangeable, toeplitz, and unstructured, depending on the

correlation between each variable. For example, in the case of dimension d = 3,

the corresponding correlation matrices are as follows (see [24]):

 1 ρ1 ρ21

ρ1 1 ρ1

ρ21 ρ1 1

 ,

 1 ρ1 ρ1

ρ1 1 ρ1

ρ1 ρ1 1

 ,

 1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1

 ,

 1 ρ1 ρ2

ρ1 1 ρ3

ρ2 ρ3 1

 , (5.5)

where ρj ’s are correlation parameters.

5.3.2 Archimedean copula

Another common copula family is Archimedean copula. Archimedean copulas

are popular because they allow modeling dependency structure in arbitrarily

high dimensions with only one parameter [12].
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Family Parameter α Generator ϕ(t) Inverse ϕ−1(s)

Clayton α ≥ 0 t−α − 1 (1 + s)−1/α

Frank α ≥ 0 − ln e−αt−1
e−αt−1 −α−1 ln(1 + e−s(e−α − 1))

Gumbel α ≥ 1 (− ln t)α exp(−s1/α)

Table 5.1: Summary of three One-Parameter Archimedean copulas for d > 2

Definition 5.3.1. [24] A copula is called Archimedean if it has the following

representation:

C(u1, . . . , ud) = ϕ−1(ϕ(u1) + · · ·+ ϕ(ud)), (5.6)

where ϕ is a continuous, strictly decreasing and convex function, and is the

so-called generator, ϕ−1 is the inverse of the generator ϕ. A generator uniquely

determines an Archimedean copula.

Table 5.1 gives three common one-parameter multivariate Archimedean cop-

ulas (d > 2). It is worth to know that Archimedean copulas with dimension 3

or higher only allow positive correlation, whereas negative correlation is allowed

for bivariate Archimedean copulas. Figure 5.2 compares four common bivariate

copula, bivariate Gaussian (normal), Student-t, Gumbel, and Clayton copula.

We can see from the figure that all of Student-t, Gumbel and Clayton copula

have a fatter tail dependence than Gaussian copula.

5.4 R Implementation

In this section we will implement Li’s model introduced in Chapter 7. Part

of the approach was initially explored by Jun Yan in paper [24]. We do the

following steps in our code:

1. We firstly plot 1000 random points generated from a trivariate normal

copula and a trivarite t copula. (see Figure 5.3)

2. Then we generate a 200-sized object from a trivariate normal copula with

exponential margins with respective parameter (hazard rate): 0.015, 0.02,

0.025. We set the correlation parameter as 0.5.

3. Finally, we use maximum likelihood method to fit this copula-based model.

The result is shown in Figure 5.4.

The R code is as follows:
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Figure 5.2: An example of the bivariate Gaussian (normal), Student-t, Gumbel,
and Clayton copula. Source: [12]
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Figure 5.3: 3d scatter plots of random numbers from a normal copula and a
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Figure 5.4: The estimation of copula correlation and marginal parameters by
maximum likelihood method

1 l i b r a r y ( copula )

2 r e qu i r e ( s c a t t e r p l o t 3d )

3

4 ###1. p l o t 1000 random po in t s from a t r i v a r i a t e normal copula and a

t r i v a r i t e t copula

5 #crea t e a 3−dim normal copula without s p e c i f y i n g magins with

c o r r e l a t i o n 0 .5

6 myCop . norm <− e l l i pCopu l a ( fami ly=normal , dim=3, d i s p s t r=ex , param

=0.5)

7

8 #crea t e a 3−dim t copula without s p e c i f y i n g margins with

c o r r e l a t i o n 0 .5 and 3 degree o f freedom

9 myCop . t <− e l l i pCopu l a ( fami ly=t , dim=3, d i s p s t r=ex , param = 0 .5 , df

=3)

10

11 #random generate 1000 po in t s from a t r i v a r i a t e normal copula and a

t r i v a r i t e t copula

12 n <− 1000

13 Norm <− rcopu la (myCop . norm , n)

14 StudT <− rcopu la (myCop . t , n )

15

16 #plo t 1000 random po in t s

17 par (mfrow=c (1 , 2 ) )

18 s c a t t e r p l o t 3d (Norm)

19 s c a t t e r p l o t 3d (StudT)

20

21 ###2. generate a 200− s i z e d sample from a t r i v a r i a t e normal copula

with exponent i a l margins with d i f f e r e n t parameter
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22 cop . normExp <− mvdc( copula=myCop . norm , margins=c ( exp , exp , exp ) ,

paramMargins = l i s t ( 0 . 0 1 5 , 0 . 0 2 , 0 . 0 2 5 ) )

23 dat <− rmvdc ( cop . normExp , 200)

24

25 ###3. us ing maximum l i k e l i h o o d method to f i t the copula−based model

generated from proce s s 2

26 #the l o g l i k e l i h o o d at the t rue parameter va lue :

27 l o g l i k e . True <− logl ikMvdc ( c ( 0 . 0 1 5 , 0 . 0 2 0 , 0 . 0 2 5 , 0 . 5 ) , dat , cop .

normExp)

28

29 #est imate the copula c o r r e l a t i o n and margins ’ parameter by moments

es t imate .

30 l o g l i k e . F i t <− f itMvdc ( dat , cop . normExp , c ( 0 . 0 1 5 , 0 . 0 2 0 , 0 . 0 2 5 , 0 . 5 ) )

copula.R
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Chapter 6

Latent Variable Models

6.1 Latent Variable Models

The formalism of a latent variable underlies essentially all credit risk models

derived from Merton’s firm value model, as discussed in Chapter 4. Each latent

variable model of credit risk contains three components: a latent variable, a

threshold, and a corresponding binary default indicator with value of 0(non-

default) or 1(default). A latent variable is typically chosen as a value of obligor’s

assets, and a threshold is associated with values of the long-term liabilities. If

the value of the latent variable falls below the threshold, we know that the

default happened, and as a result the value of the indicator will be 1.

Consider a portfolio of m obligors. At time t = 0 all obligors are assumed

to be in a non-default state. Following Frey, McNeil and Nyfeler [13], we give

the following formal definition of a latent variable model:

Definition 6.1.1. [13] Let X = (X1, . . . , Xm) be an m-dimensional random

vector with continuous marginal distributions representing the latent variables

at time T , and let (D1, ..., Dm) be a vector of deterministic cut-off levels. We

call (Xi, Di)1≤i≤m a latent variable model for the binary random vector Y =

(Y1, . . . , Ym) if the following relationship holds:

Yi = 1⇔ Xi ≤ Di.

In the factor model introduced in Chapter 4, the latent variables Xi are

assumed to be Gaussian random variables and are interpreted as the relative

changes in asset’s log-returns.

For modelling of a portfolio’s credit risk, Definition 6.1.1 should be com-

plemented with a specification of the dependency structure between the latent

variables. This dependency plays a crucial role in determining large losses in
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the portfolio. Again, in the factor model introduced in Chapter 4, the depen-

dency between latent variables Xi is a multivariate Gaussian with a uniform

correlations ρ (we have looked at a way of estimating ρ in Chapter 4).

It is natural to specify this dependency using a copula approach. Copula

gives a way of putting marginal distribution of an individual obligor’s asset

return, or survival time in Li’s case [5], together to form a joint distribution of

groups of risks. A good introduction to copulas is provided in [12].

Copula approach allows to provide an alternative definition of the equiva-

lence of latent variable models as was also pointed out by Frey, McNeil and

Nyfeler [13].

6.2 Equivalence for Latent Variable Models

Consider the following definition of the structurally equivalent latent variable

models.

Definition 6.2.1. [13](Equivalence for latent variable models)

Let (Xi, Di)1≤i≤m and (X ′i, D
′
i)1≤i≤m be two latent variable models generating

default indicator vectors Y and Y′. The models are called equivalent if Y
d
= Y′,

i.e. Y and Y′ has the same distribution.

In other words, the equivalence in distribution for the corresponding default

indicators defines the equivalence of the latent variable models.

As stated in [13], a sufficient condition for two latent variable models to be

equivalent is that individual default probabilities are the same in both models

and the copulas of the latent variables are the same. The following propositions

was proved in Frey, McNeil and Nyfeler [13].

Proposition 6.2.2. [13] Consider two latent variable models (Xi, Di)1≤i≤m

and (X ′i, D
′
i)1≤i≤m with default indicator vectors Y and Y′. These two models

are equivalent if:

1. P (Xi ≤ Di) = P (X ′i ≤ D′i), i ∈ {1, . . . ,m}, and

2. X and X′ have the same copula.

Thus, as stated in [13], even if the terms defining the model (Xi, Di)1≤i≤m

are interpreted and calibrated in different ways, the models still can be struc-

turally equivalent.

Gaussian copula, whose definition we have already given in Chapter 5, is

the latent variable dependence structure which implicitly underlies all standard

industry models.
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6.3 Change of Dependence Structure

Many factor models in credit risk assume the multivariate normality of the

corresponding latent variables. However, this choice is not supported by solid

empirical evidence - unfortunately, the world is not Gaussian. Also, it has been

shown in [13] that the aggregate portfolio loss distribution can be very sensitive

to the exact nature of the multivariate distribution of the latent variables.

The models which lead to heavy-tailed loss distributions, can be developed

even keeping the individual default probabilities of obligors and the matrix of

latent variable correlations fixed.

It is elegant to use a copula, which we will introduce in Chapter 5, as a

bridge to connect a multivariate latent variable distribution with the portfolio

loss distribution which banks are mostly interested in. If we want a model which

can generate a heavier-tailed loss distribution, which represents the higher si-

multaneous joint default probability, we can simply choose a copula which has

the property of heavier tail dependence.

To illustrate this point, Frey, McNeil and Nyfeler [13] used the t-distribution

for the following reasons:

• As the degree of freedom parameter ν goes to infinity, the t-distribution

converges to the normal distribution. Therefore if we start with an ap-

proximately normal distribution, we can gradually move away from this

model by choosing smaller values of ν.

• The t copula is very different to the Gaussian copula. It has the property of

tail dependence, so that it tends to generate simultaneous extreme events,

such as bigger losses (see Figure 6.1 [11]), with higher probabilities than

the Gaussian copula [21]. This is exactly what we want, since we want a

realistic credit model which is able to give sufficient weight to scenarios

where large joint defaults occur.

6.4 Alternative Latent Variable Model Proposed

by Li (1999)

We leave the detailed mathematical definition of copula to Chapter 5. In this

section we only explain a brief idea of Li’s model in 1999 for the preparation of

the next chapter.

In 1999, David X. Li [5] took another route of relaxing constraints of Guas-

sian models, which we will discuss in Chapter 7.
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Figure 6.1: Normal vs. fat-tailed loss distribution (Source: [11])

Using the converse of Sklar’s Theorem (see Proposition 5.1.5), assuming

there are m entities, a copula of the form:

CGaR (1− exp(λ1x1), . . . , 1− exp(λmxm)),

where λ1, . . . , λm are the parameters of each marginal exponential distribution,

can be used to model the whole dependency structure.

We will elaborate on Li’s model and the meaning of the parameter λi, which

is actually the hazard rate in survival analysis, in Chapter 7.
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Chapter 7

Li’s Model and Hazard

Rate

7.1 Main Idea of Li

In 1999, David X. Li [5] built a special latent variable model, where he modeled

the survival time of each defaultable entity i as a latent variable Xi. He assumed

that each Xi satisfies an exponential distribution marginally, but globally the

vector of these latent variables X = (X1, . . . , Xm) has a Gaussian copula, with

the correlation as the same as the correlation between the variables Xi.

So basically Li applied the essence of survival analysis widely used in bio-

logical statistical modeling, to the credit risk modeling. He first made a very

interesting choice of the latent variable, which is the survival time rather than

the asset return of an entity, and built a model still using normal dependence,

but with exponential marginal distribution with a special parameter, which is

so-called hazard rate.

7.1.1 Survival function

Inspired by [5], let us first consider an individual obligor. This obligor’s time-

until-default, T , is a continuous random variable, which measures the length of

time from today to the time when default occurs.

First we give the definition of the survival function given in [5]:

S(t) = P(T > t), t ≥ 0. (7.1)

It gives the probability that an obligor will survive until time t.
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Let F (t) denote the distribution function of T ,

F (t) = P(T ≤ t) = 1− S(t), t ≥ 0. (7.2)

If the obligor has already survived x years, the future life time for this obligor

has the conditional distribution of T − x given T > x. Li [5] also introduced

two more notations,

q(t, x) = P[T − x ≤ t|T > x], t ≥ 0, x ≥ 0. (7.3)

p(t, x) = 1− tqx = P[T − x > t|T > x], t ≥ 0, x ≥ 0. (7.4)

q(t, x) can be interpreted as the conditional probability that the obligor will

default within the next t years conditional on its survival for x years, and p(t, x)

can be interpreted as the conditional probabilty that the obligor will still survive

t years more on its survival for x years. In the special case of x = 0, we have

p(t, 0) = S(t), t ≥ 0.

If t = 1, we have following definition:

Definition 7.1.1. [5]

qx = P[T − x ≤ 1|T > x]

is called the marginal default probability, which gives the probability of default

in the next year conditional on the survival until the beginning of this year.

7.1.2 Hazard rate function

The hazard rate is defined as the instantaneous default probability rate for an

obligor that has survived until age x. It can be seen as the conditional default

rate during the next instant of time.

Definition 7.1.2. The function

h(x) =
f(x)

1− F (x)

is called hazard rate function, where f(x) = F ′(x) is the probability density

function of T .

The relationship of the hazard rate function with the survival function is as

follows:

h(x) = −S
′(x)

S(x)
, x ≥ 0.

So, the survival function can be expressed in terms of the hazard rate func-

tion:
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Figure 7.1: two obligor’s survival plot (Source: [1])

S(t) = e−
∫ t
0
h(s)ds, t ≥ 0. (7.5)

In addition the distribution function is

F (t) = 1− S(t) = 1− e−
∫ t
0
h(s)ds, t ≥ 0. (7.6)

The hazard rate has many similarities with the short-term interest rate [5].

Therefore many modeling techniques for the short-term interest rate can be

applied to model the hazard rate. In reality, people usually assume that the

hazard rate is a constant, h. This is the key assumption for our following

section, where we provide three ways to calculate this constant. In this case,

the density function is

f(t) = F ′(t) = he−ht,

which shows that the survival time follows an exponential distribution with

parameter h.

Generally, survival analysis involves the modeling of time to ‘event’, for

example, death or failure, therefore it is widely used in biological organizations

and medical institutions. To visualize the survival time and its relationship

with hazard rate, we found two plots from [1] (see Figure 7.1, Figure 7.2), it is

obvious that the survival declines with time.
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Figure 7.2: Two obligor’s hazard rate plot (Source: [1])

7.1.3 Joint survival function

Finally, we give the definition of the joint survival function for two obligors

introduced in [20]. Given obligors A and B, based on their survival times TA

and TB , we have the joint survival function

STATB (s, t) = P[TA > s, TB > t],

and the joint distribution function is

F (s, t) = P[TA ≤ s, TB ≤ t] = 1− STA(s)− STB (t) + STATB (s, t).

7.2 Estimation of Constant Hazard Rate

The term structure of default rates can be obtained in three significantly differ-

ent ways:

• From time series of historical default rates provided by rating agencies like

Moody’s and Fitch.

• From market prices of defaultable bonds or asset swap spreads.

• From a framework of the Merton model.

We will next discuss each of these approaches.
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Years 1 2 3 4 5 7 10 15 20
Aaa 0.000 0.012 0.012 0.037 0.105 0.245 0.497 0.927 1.102
Aa 0.022 0.059 0.091 0.159 0.234 0.384 0.542 1.150 2.465
A 0.051 0.165 0.341 0.520 0.717 1.179 2.046 3.572 5.934

Baa 0.176 0.494 0.912 1.404 1.926 2.996 4.851 8.751 12.327
Ba 1.166 3.186 5.583 8.123 10.397 14.318 19.964 29.703 37.173
B 4.546 10.426 16.188 21.256 25.895 34.473 44.377 56.098 62.478

Caa 17.723 29.384 38.682 46.094 52.286 59.771 71.376 77.545 80.211

Table 7.1: Average cumulative default rates (%), 1970 - 2009. Source: Moody’s.

7.2.1 Method 1: Historical default probability

Rating agencies, such as Moody’s, S&P, and Fitch, systematically rate credit-

worthiness of corporate bonds. For example, Moody’s long-term rating scale

consists of 9 categories, Aaa, Aa, A, Baa, Ba, B, Caa, Ca, and C, in order from

the best to the worst rating category. Assignment of a rating category is not

purely model based, and takes into account a whole range of qualitative and

quantitative factors.

Table 7.1 gives a typical example of data provided by the rating agencies.

It shows the cumulative default rates for the corporate bonds with a particu-

lar rating between 1 and 20 years within a 39-years observation window. As

illustrated in [3], for example, a bond with an A credit rating has a 0.051%

chance of defaulting during the first year, a 0.165% chance of defaulting by

the end of the second year, and so on. The probability of a bond defaulting

during a particular year can be calculated from the table. For example, the

probability that an initially rated A bond will default during the second year is

0.165%− 0.051% = 0.114%.

Note that the probability of default within a year can be both increas-

ing and decreasing function of time. Typically, it is an increasing function

for investment-grade bonds (e.g., the probabilities of an A-rated bond default-

ing during years 0-5, 5-10, 10-15, and 15-20 are 0.717%, 1.329%, 1.526%, and

2.362%, respectively): the bond issuer is initially considered to be creditwor-

thy, and the factors affecting its financial health arrive rather randomly over a

long period of time. For bonds with a poor credit rating, the probability of de-

fault can be a decreasing function of time (e.g., the probabilities that a B-rated

bond will default during years 0-5, 5-10, 10-15, and 15-20 are 25.895%, 18.482%,

11.721%, and 6.380%, respectively). For these bond issuers the factors which

might be leading to default are already identifiable, and the next year or two

may be critical for all of them. However, the longer such an issuer survives, the

greater the chance of improvement for its financial health.
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Hazard rate estimation from historical default probability

The hazard rates can be easily estimated from Table 7.1. For example, the

unconditional default probability for a Caa-rated bond during the third year as

seen at time 0 is 38.682 - 29.384=9.298%. Its survival probability in the first

two years is 100 - 29.384 = 70.616%. The default probability during the third

year conditional on no earlier default is therefore 0.09298/0.70616, or 13.17%.

These conditional default probabilities are the hazard rates entering equation

(7.5).

Obviously, we can transform the default probability function (7.6)

F (t) = 1− e−
∫ t
0
h(s)ds

into

F (t) = 1− eh(t)t, (7.7)

where h(t) is the average hazard rate(or default intensity) between time 0 and

time t.

Example 7.2.1. For an A-rated company, if we want to calculate the default

intensity using historical data and based on equation (7.7), when t = 7, we have

h(7) = −1

7
ln[1− F (7)].

The value of F (7) is taken directly from table 7.1, which is 0.01179. The average

7-year hazard rate is therefore

h(7) = −1

7
ln[0.98821] = 0.0017.

7.2.2 Method 2: Estimate hazard rate from bond price

This methods looks at estimating the hazard rate without using historical de-

fault rates but based on the other market information.

Recovery rate

The recovery rate for a bond is typically defined as the bond’s market value (as

a fraction of its face value) right after a default. Table 7.2 provides historical

average recovery rates for different categories of bank loans and bonds in the

United States. It shows that bank loans with a first lien on assets had the best

average recovery rate, 65.6%. For bonds, the average recovery rate ranges from

49.8% for those that are both senior to other lenders and secured to 24.7% for
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Class Average recovery rate (%)
First lien bank loan 65.6

Second lien bank loan 32.8
Senior unsecured bank loan 48.7

Senior secured bond 49.8
Senior unsecured bond 36.6

Senior subordinated bond 30.7
Subordinated bond 31.3

Junior subordinated bond 24.7

Table 7.2: Recovery rates on corporate bonds as a percentage of face value,
1982-2009. Source: Moody’s.

those that rank after other lenders with a security interest that is subordinate

to other lenders.

Interestingly, recovery rates are significantly negatively correlated with de-

fault rates. This means that a bad year for the default rate is usually doubly bad

because it is accompanied by a low recovery rate. Moody’s looked at average

recovery rates and the average default rates each year between 1982 and 2009,

and found [16] that the following relationship provides a good fit to the data:

Average recovery rate = 0.503− 6.3×Average default rate. (7.8)

Hazard rate estimation from bond price

In the simplest approach, the only reason for the price of a corporate bond

being lower than a similar risk-free bond (this difference in financial jargon is

called ‘credit spread’) is the possibility of default. Consider first the following

approximate calculation, John C. Hull in [3] supposes that a bond yields 2%

more than a similar risk-free bond and that the expected recovery rate in the

event of a default is 40%, from the expectation to lose 2% per year from defaults

and the recovery rate of 40%, an estimate of the probability of a default per

year conditional on no earlier default is 0.02/(1-0.4), or 3.33%. In a more formal

form,

h =
s

1−R
, (7.9)

where h is the hazard rate per year, s is the annualised spread of the corporate

bond yield over the risk-free rate, and R is the expected recovery rate.

To calculate average hazard rates from bond prices, we use equation (7.9)

and bond yields published by Merrill Lynch (see [3]). The recovery rate is

assumed to be 40%. To calculate the bond yield spread, we assume that the

risk-free interest rate is the 7-ear swap rate minus 10 basis points (see [3]).

Example 7.2.2. [3] For an A-rated bond, the average Merrill Lynch yield was
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5.995%. The average 7-year swap rate was 5.408%, so that the average risk-free

rate was 5.308%. This gives the average 7-year hazard rate as

0.05995− 0.05308

1− 0.4
= 0.0115,

or 1.15%.

7.2.3 Comparison between method 1 and method 2

The described approaches differ significantly and might lead to quite different

results. People intend to use market information rather than historical infor-

mation for the following reasons:

• A bank market unit is required to base its calculation of profit and loss on

current market information. This information reflects the market expec-

tations about the future which will determine the actual profit and loss.

This forward-looking view is not present in historical default data.

• Market’s response in anticipation of future credit quality modifications

is much faster than the rating agencies. A typical example is the rating

agencies reaction to the Asian financial crisis in 1997.

• Factors influencing deterioration of corporate’s credit quality change over

long periods of time which make the longer term estimates of default

probabilities unstable.

7.2.4 Method 3: Using Black-Scholes formula to estimate

hazard rate

K. Merton [9] pioneered an approach of modelling a company’s equity as an

option on the assets of the company. Suppose that a firm has one zero-coupon

bond outstanding with maturity time T . Let A(t) be the value of the company’s

assets at time t, E(t) the value of its equity, and D(T ) be the debt repayment

due at time T , and let σA and σE be the volatility of the assets (assumed

constant) and instantaneous volatility of the equity, respectively.

If A(T ) = D, the value of its equity is zero, therefore it is (at least in theory)

rational for the company to default on the debt at time T . If A(T ) > D, the

company should make the debt repayment at time T , therefore, the value of the

firm’s equity at time T in Merton’s model is

ET = max(A(T )−D, 0).
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John C. Hull in [3] gives a way to estimate hazard rate using Black-Scholes

formula. He shows that the equity is a call option on the value of the assets

with a strike price equal to the repayment required on the debt. The Black-

Scholes-Merton formula gives the value of the equity today as

E(0) = A(0)N(d1)−De−rTN(d2), (7.10)

where

d1 =
ln(A(0)/D) + (r + σ2

A/2)T

σA
√
T

,

and

d2 = d1 − σA
√
T ,

and N is the univariate standard normal distribution function. The value of the

debt today is A(0)− E(0).

The risk-neutral probability that the company will default on the debt is

N(−d2). To calculate this, we require A(0) and σA. Neither of these are directly

observable. However, if the company is publicly traded, we can observe E(0)

and σE . Also, from Ito’s formula and explanation in [3],

σEE(0) =
∂E

∂A
σAA(0). (7.11)

This provides another equation that must be satisfied by A(0) and σA, so com-

bining equation (7.10) and (7.11), we can get A(0) and σA.

Example 7.2.3. (Source:[3]) The value of a company’s equity is $3 million

and the volatility of the equity is 80%. The debt that will have to be paid in 1

year is $10 million. The risk-free rate is 5% per annum. In this case E(0) = 3,

σE = 0.80, r = 0.05, T = 1, and D = 10. Solving equations (7.10) and (7.11)

yields A(0) = 12.40 and σV = 0.2123. The parameter d2 is 1.1408, so that

the probability of default is N(−d2) = 0.127, or 12.7%. The market value of

the debt is A(0) − E(0), or 9.40. The present value of the promised payment

on the debt is 10e−0.05×1 = 9.51. The expected loss on the debt is therefore

(9.51 − 9.40)/9.51, or about 1.2% of its no-default value. The expected loss

(EL) equals the probability of default (PD) times one minus the recovery rate.

It follows that the recovery rate equals one minus EL/PD. In this case, the

recovery rate is (12.7− 1.2)/12.7, or about 91%, of the debt’s no-default value.
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Chapter 8

Further work

8.1 Further work

We found there are still some interesting problems which can be researched on

in the future, for example,

• For the asset price model described in (2.5) of Chapter 2, we have assumed

that the stochastic part is a Brownian Motion. Based on this simple diffu-

sion model, Vasicek derived the portfolio credit loss distribution function.

However, we are interested in a kind of asset model, whose stochastic part

is not standard Brownian Motion, but with jumps. Also in the future we

hope to derive a loss distribution based on jump-diffusion models.

• In this thesis and in practice, hazard rate is usually being assumed to be

a constant. This definitely simplified the risk modeling. However, we are

interested in a stochastic hazard rate, and we want to find a way to model

hazard rate in the future research.

• In Chapter 5, Figure 5.2 gives an example of the bivariate Gaussian,

Student-t, Gumbel, and Clayton copula. It is obvious that all of Student-t,

Gumbel, and Clayton copula have a fatter tail than the Gaussian copula.

However, we also see that the tails of the Gumbel and Clayton copula

are fatter in a different way. In the future we want to go deeper to the

comparison between Archimedean copulas, in order to use them better to

model dependency structure.
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