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Abstract

Suppose a Decision Maker wants to make a prediction about the value of a random variable.
He knows the distribution of the random variable, and he is also told that the outcome is
contained in some given subset of the domain of the random variable. The Decision Maker is
then asked to give his best guess of the true value of the random variable. The knee-jerk reflex
of a probabilist is to use conditioning, if the probability of all outcomes is known. However,
this reflex may well be incorrect if the specific outcome of the random variable is contained
in more than one of the subsets that may be revealed.
This situation has been analysed in the literature in the case of a single (random) selection
procedure. When the selection procedure satisfies a condition called Coarsening at Random,
standard conditioning does the trick. However, in many cases this condition cannot be sat-
isfied. We analyse the situation in which the selection procedure is unknown. We use a
minimax approach of the Decision Maker against Nature, which can choose from a set of
selection procedures. The loss of the Decision Maker is modeled by the logarithmic loss.
We give a minimax theorem applicable in our setting. This enables us to give a characteri-
sation of the best prediction in all cases. Surprisingly, our results show that for certain cases
this characterisation is a kind of reverse Coarsening at Random conditioning.
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Chapter 1

Introduction

There are many situations in which a statistician receives incomplete data and still has to
reach conclusions about this data. One possibility of incomplete data is coarse data. This
means that one does not observe the real outcome of a random event, but only a subset of
all possible outcomes. An example frequently occurs in questionnaires. People have to state
if their date of birth lies between 1950 and 1960 or between 1960 and 1970 et cetera. Their
exact year of birth is unknown, but at least we now know for sure in which decade they are
born. We introduce another instance of coarse data with the following example.

Example 1. [Fair die] Suppose I throw a fair die. I get to see the result of the die, but you
do not. Now I tell you that the result lies in the set {1, 2, 3, 4}. This is an example of coarse
data. The outcome is unknown to you, but it is not missing. At least you now know that the
outcome is certainly not 5 or 6. You know that I used a fair die and would not lie to you.
Now you are asked to predict the probabilities of each outcome. Probably, you would predict
that the probability of each of the remaining possible results is 1/4. This is the knee-jerk
reaction of someone who studied probability theory, since this is standard conditioning. But
is this always correct?
Suppose that there is one alternative set I could tell you, namely the set {3, 4, 5, 6}. I
can now use a selection procedure to decide which set I tell you, once I know the result
of the die. If the outcome is 1, 2, 5 or 6 there is nothing to choose. If the outcome is 3
or 4, I randomly select set {1, 2, 3, 4} with probability 1/2 and also set {3, 4, 5, 6} with
probability 1/2. If I throw the die 6000 times, I expect to see the outcome 3 a thousand
times. Therefore I expect to report the set {1, 2, 3, 4} five hundred times after I see the
outcome 3. By symmetry it is clear that I expect to report the set {1, 2, 3, 4} 3000 times
in total. So the probability that the outcome is 3, when you know that the outcome lies in
{1, 2, 3, 4} is actually 1/6 with this selection procedure. We see that the prediction in the
first paragraph was not correct, in the sense that the probabilities do not correspond to the
long-run relative frequencies. We conclude that the knee-jerk reaction is not always correct.

In Example 1 we have seen that standard conditioning is not always correct. The ques-
tion when standard conditioning in situations in which the revealed subset is not unique, is
correct, is answered by Heitjan and Rubin [1991]. They discovered a necessary and sufficient
condition of the selection procedure, called CAR (Coarsening at Random). The selection
procedure describes which subset is revealed given a particular value of the random variable.
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Loosely speaking, this condition states that the probabilities to observe a subset y giving the
outcomes x ∈ y and x′ ∈ y respectively must be equal. The CAR condition is a property of
the selection procedure. In many situations, however, this condition cannot hold, as proved
by Grünwald and Halpern [2003]. It depends on the arrangement of possible revealed subsets
if there exists a selection procedure satisfying CAR.

What is the best prediction conditional on the revealed subset, if CAR does not hold?
Neither the paper by Grünwald and Halpern nor other literature on Coarsening at Random
answers this question. The goal of this thesis is to identify the best prediction without making
assumptions about the selection procedure, even in cases where CAR cannot hold.

We continue with an example generating much debate among both the general public and
professional probabilists: the Monty Hall puzzle, discussed in Ask Marilyn, a weekly column
in “Parade Magazine” [vos Savant, 1990, Gill, 2011]. In this example the CAR condition
holds only for two special selection procedures.

Example 2. [The Monty Hall puzzle] Suppose you are on a game show and you may
choose one of three doors. Behind one of the doors a car can be found, but the other two
only hide a goat. Initially the car is equally likely to be behind each of the doors. After you
have picked one of the doors, the host Monty Hall, who knows the location of the prizes, will
open one of the doors revealing a goat. Now you are asked if you would like to switch to the
other door, which is still closed. Is it a good idea to switch?
At this moment we will not answer this question, but we show that the Monty Hall problem
is an example of the problems considered in this thesis. The true value of the random variable
is the door concealing the car. When the host does open a door, different from the one you
picked, revealing a goat, this is equivalent to revealing a subset. The subset he reveals is the
set of the two still closed doors. For example, if he opens door 2, he reveals that the true
value, the car, is in the subset of door 1 and door 3. Note that if you have by chance picked
the correct door, there are two possible doors Monty Hall can open, so also two subsets he
can reveal. This implies that Monty has a choice in revealing a subset. How does Monty’s
selection procedure influence your prediction of the true location of the car?
The CAR condition is only satisfied if Monty Hall uses a non-random strategy [Grünwald and
Halpern, 2003]. That means he will either open always door 1 or open always door 2. So for
any other selection procedure standard conditioning will not be best.

In order to reach the goal of this thesis we need to define what we mean by the best
prediction. We consider the prediction as a game between the Decision Maker and Nature,
which can choose a selection procedure from a given set of procedures. In general terms, we
use a minimax approach, which is a standard approach in game theory [Von Neumann et al.,
1944]. The best prediction minimises the worst possible loss among all possible predictions.
We call this problem the conditional prediction problem. We prove a generalised form of the
minimax theorem in Theorem 2 in Chapter 2. The loss function we use is the logarithmic loss.
This loss function is chosen, because it is appropriate in so many different scientific fields:
(quantum) information theory, coding theory and even actuarial science [Robertson et al.,
2005]. Moreover, using the minimax theorem, we find that the minimax of the logarithmic
loss is equal to the maximum conditional entropy. This is a well-studied problem. Other
loss functions, such as a 0/1 loss function, or distance measures, such as the total variation
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distance, are not considered. In chapter 6 we discuss areas of future research with these loss
functions and we conjecture what the best prediction would be under different loss functions.

We do not make any assumption concerning the selection procedure, but we do have to
make three other assumptions in order to get significant results.

(a) We make the assumption that the underlying probability space is finite.
(b) We assume that the subsets which can be revealed, are known by the Decision Maker

beforehand.
(c) The probability of a particular outcome of the random variable is known.

Assumption (c) is the most restrictive assumption, especially concerning applications in statis-
tics, where (c) is almost always violated. However, in game theory this assumption is regularly
made. Note that the Monty Hall problem and Example 1 above satisfy all these assumptions.

Under assumptions (a), (b) and (c), we can find the best prediction for the random vari-
able conditional on the revealed subset. A complete characterisation of the best prediction
can be given. This is done in Theorem 4 and Theorem 5 in Chapter 4. The first result
shows that the best prediction satisfies a property that has a striking similarity with the
CAR condition, but switches the role of outcome and set in this condition. The strenght of
the results come from the fact that the characterisation is valid in every set-up satisfying the
three assumptions, and for any distribution of the random variable. As an illustration, we
show this characterisation in the setting of the fair die, introduced in Example 1.

Example 3. [Fair die, continued] The best prediction conditional on the revealed subset
is found with the help of Theorem 4. The best prediction given that you observe the set {1,
2, 3, 4} is: predict the outcome 1 and 2 each with probability 1/3; and 3 and 4 both with
probability 1/6. Given that you observe the set {3, 4, 5, 6} the best prediction is: 3 and 4
both with probability 1/6; and 5 and 6 with probability 1/3.
These probabilities correspond with the selection procedure mentioned in Example 1. How-
ever, the best prediction is independent of the selection procedure. Why then, is this the
best solution? Here is the intuitive idea. If I want, I can choose a very extreme selection
procedure: if I see a 3 or 4, I always reveal the set {1, 2, 3, 4}. The other extreme selection
procedure of course never reveals this set, if the result is 3 or 4. The best prediction given
above hedges against both possibilities.

Caveats on the use of the word conditioning

Since this thesis is concerned with making the best prediction conditional on a set of outcomes,
we want to highlight the use of the word conditioning. We use the word standard conditioning
for using the conditional information in the standard way. This means that the a-priori
probability of an outcome is divided by the a-priori probabilities of all outcomes in the set.
In Example 1 standard conditioning assigns probability 1/4 to all possible results in the set
{1, 2, 3, 4}.
Above we stated that standard conditioning is not always correct. But standard conditioning
is correct in a larger space, namely the space of all combinations of outcome and set. But
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there you do not have the probabilities, since the selection procedure is unknown. So in some
sense standard conditioning is correct, but it does not help us.
We use the word conditional prediction for the prediction of the Decision Maker conditional
on the revealed set of outcomes. For each set of outcomes, it is a probability distribution.
But it is not necessarily the standard conditional probability distribution. Finally, we call
the probability assigned by a conditional prediction to one outcome conditional on a set, the
conditional predictive probability.

Overview

Chapter 2 casts the problem of obtaining the best prediction in mathematical terms. This is
done by introducing our mathematical definition of the best prediction. We use the common
minimax approach. The logarithmic loss is our choice of loss function. The first result is a
generalised minimax theorem, applicable in this specific setting (Theorem 2). The minimax
theorem is needed to recast the problem in the form of maximising the conditional entropy.
Maximising the conditional entropy is used extensively in the remainder of the thesis, because
it is much easier to handle than minimising the worst-case loss.
Chapter 3 begins with several examples of our problem, one of which is the Monty Hall
problem. It discusses the best conditional prediction in each case. Most examples are then
generalised in the form of a lemma. These lemmata give (part of) the solution for small
classes of problems. If the possible subsets form a partition, then standard conditioning is
the best you can do. Another intuitive result is the following: If Nature can choose between
revealing a set or subset of this set, then it chooses the larger set, hence giving the Decision
Maker a harder time predicting. Also we find the general solution when the whole domain of
the random variable can be revealed, which is the case when there is missing data. In this
case Nature only gives you missing data. In Example 1 this would amount to telling you that
the outcome is in the set {1, . . . , 6}. Other examples and lemmata are less obvious and are
surprising results in themselves.
In Chapter 4 a broad characterisation of the best prediction, valid in a wide range of situations,
is presented (Theorem 4). Surprisingly, this characterisation is similar to a reverse CAR
condition. The best prediction gives each specific outcome the same conditional probability,
independent of the revealed subset. This is then generalised to give a characterisation of the
best prediction in the general case (Theorem 5). For this general case an innovative trick is
used. We extend the structure of the problem by adding an outcome to each possible subset
and giving each new outcome a small probability. The characterisation in Theorem 4 yields
a solution. Upon taking the probability of the added outcomes to zero, in the limit the best
prediction of the original problem is obtained.
In the final chapter of this thesis a summary of all results is given. In that chapter the
implications of the results and possible paths for further research are discussed. We provide
some detail to the importance of the choice of loss function. Moreover, the best conditional
prediction using other possible loss functions is hypothesised.
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Chapter 2

Modelling of the conditional
prediction problem

In this chapter we discuss the mathematical formulation of the prediction problem. In the
first section a straightforward formalisation is given. In Section 2.2 we state and prove useful
properties of the object function: finiteness, continuity and convexity. These properties are
then used in the third section of this chapter to recast the problem in terms of the conditional
entropy. This is done using a special form of the minimax theorem. In the final part of the
chapter an interpretation of our model of the conditional prediction problem is given.

2.1 Conditional Predictions and Best Conditional Predictions

2.1.1 No-Lie and Marginal Consistency Axioms

First, we again state the problem. We formalise the following question: What is the best
prediction of a random variable, conditional on a revealed subset containing the true value?
The prediction takes the form of a probability distribution. We assume that the probability
space is finite and the probability distribution of the random variable is known to the Decision
Maker. Moreover, all possible subsets, i.e. the subsets that may possibly be revealed, are
known. In summary, the whole structure of the problem is known to the Decision Maker,
except the process selecting which subset is revealed. The prediction is actually made before
the subset is given. For each possible subset, a probability distribution of the random variable
is predicted.

We formalise the problem formulated above. Consider a random variable X which takes
its values in a finite set X . X is not observed, instead the observation will be a subset of
X denoted by Y . The distribution of X is known. Denote by px the probability of X = x.
We assume that px > 0 for every x, otherwise one could just remove the element x. The
collection of possible subsets which may be observed is known and denoted by S, so S is a
subset of the power set of X . The procedure how a subset is chosen given X, which can be
probabilistic, is unknown. We require only that the ‘no lie’-axiom holds: X ∈ Y with prob-
ability 1. This is called the ‘no lie’-axiom, since the axiom prohibits that the revealed subset
does not contain the true value (in this case, the Decision Maker would be told a lie). We call
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a probability distribution on X × S with the marginal distribution equal to the distribution
of X, as given by {px : x ∈ X}, marginal consistent. In other words P ({x}×S) = px. Denote
by P all probability distributions on X ×S which are marginal consistent and satisfy the ‘no
lie’-axiom. Note that for every x there is a set in S containing x, otherwise the ‘no lie’-axiom
could not hold.

2.1.2 Conditional and Best Conditional Predictions

Given the subset Y the problem is now to find the best prediction of X. To state the problem
in a mathematically precise way we need the following definition:

Definition 1. A conditional prediction of X is given by a function Q: X × S → [0, 1] that
satisfies the following two conditions:

1. For all y ∈ S,
∑

x∈y Q(X = x|Y = y) = 1.

2. For all y ∈ S, for all x /∈ y, Q(X = x|Y = y) = 0.

We adopt here the notation Q(X = x|Y = y) for Q evaluated in x and y. To avoid confusion,
we use this notation instead of Q(x|y) whenever possible. Let Q be the set of all conditional
predictions.

The first condition just states that for all y ∈ S Q(X = ·|Y = y) is a probability distribu-
tion. The second condition is again the ‘no lie’-axiom, but now it is a statement about the
rationality of the Decision Maker, who makes the prediction. It is not rational to predict that
the revealed subset does not contain the true value. This prediction could not hold under any
possible probability distribution P ∈ P. We only adopt this condition for simplicity. It is not
strictly necessary: if we would drop this condition, the best condition prediction satisfies the
second condition (see Section 3.2).

Finally we can state our problem in mathematical form. We use for the loss function the
expectation of the logarithmic loss [Cover and Thomas, 1991]. We explain the choice of this
loss function in Section 2.4. After a subset y ∈ S is revealed, the logarithmic loss of the
conditional prediction is given by

∑
x (− logQ(X = x|Y = y)). Note that the expected loss

is given by

EP [− logQ(X|Y )] :=
∑
x,y

P (X = x, Y = y) (− logQ(X = x|Y = y)) . (2.1)

The logarithmic loss gives a large penalty if the Decision Maker is confident that a pair (x, y)
has a low probability, but P assigns a large probability to that pair. Decision Maker suffers
even an infinitely large loss if he assigns zero conditional predictive probability to a pair (x, y),
which has positive probability under P .
We need some useful convention when we encounter in this some terms of the type 0 log 0.
Given that lima→0 a log a = limb→∞ 1/b log(1/b) = limb→∞−1/b log(b) = 0, we use 0 log 0 = 0.
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We are now ready to define which conditional predictions we call best.

Definition 2. A conditional prediction Q is best if:

max
P∈P

EP [− logQ(X|Y )] = min
Q′∈Q

max
P∈P

EP
[
− logQ′(X|Y )

]
. (2.2)

The loss consists of the cross entropy between the conditional prediction Q and a probabil-
ity distribution P . In words, the above formulation of the problem means that a conditional
prediction is the best if it minimises the maximum loss. As we will later show in Example
10 in Chapter 3, in general there can be several conditional predictions Q ∈ Q for which the
above expression holds. When we later state that a conditional prediction is ‘the’ solution,
it is just one of the minimising conditional predictions. But we do know that there always
exists at least one best conditional prediction. This will be shown later in Lemma 1. In the
following example the definitions, which are given above, are used in the fair die example (see
Example 1 and Example 3).

Example 4. [Fair die, continued] We describe the fair die example using the defini-
tions in Section 2.1 and 2.2. The random variable X is the (hidden) outcome of the die,
which takes values in X = {1, . . . 6}. The possible subsets I can tell you are in S =
{{1, 2, 3, 4}, {3, 4, 5, 6}}}. The procedure I use to choose a subset has to satisfy two conditions.
The ‘no lie’-axiom means that if the outcome is 1 or 2, I must tell you the subset {1, 2, 3, 4}
and if the outcome is 5 or 6 the subset {3, 4, 5, 6}. We defined the selection procedure as a
probability distribution on X ×S. To be marginal consistent a probability distribution must
assign total probability 1/6 to each outcome, i.e. P (X = x|Y = {1, 2, 3, 4}) + P (X = x|Y =
{3, 4, 5, 6}) = 1/6.
In Example 3 we claimed that the best conditional prediction is the following. The best
prediction given that you observe the set {1, 2, 3, 4} is: predict the outcome 1 and 2 each
with probability 1/3; and 3 and 4 both with probability 1/6. Given that you observe the
set {3, 4, 5, 6} the best prediction is: 3 and 4 both with probability 1/6; and 5 and 6 with
probability 1/3. Firstly, this is a probability distribution for each observed set. Secondly, the
best prediction does not assign positive probability to an impossible outcome. For example,
given the set {1, 2, 3, 4}, we assign no positive probability to the outcomes 5 and 6. We
conclude that both conditions of Definition 1 are satisfied and this is a conditional prediction.

2.1.3 Game Theoretic Interpretation

In this subsection the game theoretic interpretation of the above definition of best conditional
prediction is given. In Section 2.4 we motivate the choice of the logarithmic loss function.
Here we highlight the use of the minimax approach.
One can view the conditional prediction problem as a game between the Decision Maker, who
chooses the Q, and Nature, which chooses P in such a way as to make the loss as large as
possible. Note that in reality there often is no real opponent, trying to maximise the Decision
Maker’s loss. In the examples we provided up till this point one can see Nature as an oppo-
nent. In the fair die example (Example 1) or the Monty Hall problem (Example 2) there is a
human being, who may be trying to maximise your loss. However, if you try to find patterns
in data not generated by humans, there is no malevolent Nature. We still use the minimax
approach, which is based on a worst-case scenario. The idea is that you really do not know
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the selection procedure and you are not willing to make assumptions about this procedure.

Note that we do not require that Q is the result of conditioning on a probability dis-
tribution in P. So the prediction the Decision Maker makes does not have to correspond
with a possible selection procedure. An example is given in Example 5. On the other hand,
we have that a probability distribution P in P gives rise to one or more Q in Q by setting
Q(X = x|Y = y) := P (X = x|Y = y) when P (Y = y) > 0 and any probability distribution
over all x in y when P (Y = y) = 0. We call such a Q generated by P .

Example 5. [Prediction Q not generated by P ] We show in this example that there
are conditional predictions in Q which cannot be generated by a P in P with the method
described above.
Let X = {a, b, c} and S = {{a, b}, {c}, {a, b, c}} and px = 1/3 for every x. We claim that
Q given by Q(X = a|Y = {a, b}) = 1/4, Q(X = a|Y = {a, b, c}) = 1/4 and Q(X = b|Y =
{a, b, c}) = 1/2 will be such a conditional prediction. Note that this indeed fully characterizes
Q. For example, it must hold that Q(X = c|Y = {c}) = 1, by the requirements on Q.
Suppose by means of contradiction that P in P is such that Q(X = x|Y = y) = P (X =
x|Y = y) for all y with P (y) > 0. We will show that this P cannot have the right marginal
distribution on X , which implies that P /∈ P. It is impossible that P (Y = {a, b}) = 0, as
we would then have that P (X = a, Y = {a, b, c}) = 1/3 = P (X = b, Y = {a, b, c}), hence
Q(X = a|Y = {a, b, c}) = P (X = a|Y = {a, b, c}) = P (X = b|Y = {a, b, c}) = Q(X = b|Y =
{a, b, c}). The same reasoning shows that P (Y = {a, b, c}) = 0 gives rise to a contradiction.
Now we use the fact that Q(X = a|Y = {a, b}) < Q(X = b|Y = {a, b}) and Q(X = a|Y =
{a, b, c}) < Q(X = b|Y = {a, b, c}) to conclude P (X = a|Y = {a, b}) < P (X = b|Y = {a, b})
and P (X = a|Y = {a, b, c}) < P (X = b|Y = {a, b, c}). This is impossible using that pa = pb
and the only sets containing a or b are {a, b} and {a, b, c}. We conclude that this Q cannot
be obtained by a P in P.

2.2 Finiteness, convexity and continuity

In this section we prove several properties of conditional predictions. Firstly, we show
that there is a conditional prediction with finite expected loss. Secondly, the problem has
a concave-convex optimisation structure. Thirdly, we show that the loss we use is semi-
continuous. These lemmata are needed in Section 2.3, where we will prove a minimax theorem.

The first lemma shows that there is always a conditional prediction which even in the
worst case has a finite expected loss.

Lemma 1. There exists a Q ∈ Q such that maxP∈P EP [− logQ(X|Y )] <∞.

Proof. Denote for every x ∈ X by nx the number of sets in S which contain x. By our
requirements above we know that nx > 0. Now define Q in the following way: for ev-
ery x ∈ X and y ∈ S let Q(X = x|Y = y) = px/nx if x ∈ y and 0 otherwise. Note
that this Q satisfies the ‘no lie’-axiom and

∑
y∈S Q(X = x|Y = y) = px for every x.

We conclude that Q ∈ Q. Moreover we see that Q(X = x|Y = y) = 0 only if x /∈ y
and no P ∈ P can assign nonzero probability to such events by the ‘no lie’-axiom. Hence
EP [− logQ(X|Y )] ≤ maxx∈X − log px/nx ≤ maxx∈X log nx for every P ∈ P. So for this Q we
have that maxP∈P EP [− logQ(X|Y )] ≤ maxx∈X log nx <∞.

9



The next lemma shows that P is a convex set.

Lemma 2. P is a convex set.

Proof. Suppose P 1 and P 2 ∈ P. Let t ∈ [0, 1]. Denote P = tP 1 + (1 − t)P 2. Clearly P is a
probability distribution on X × S. Moreover we have for all x ∈ X :

P (X = x) = tP 1(X = x) + (1− t)P 2(X = x) = tpx + (1− t)px = px. (2.3)

Also P satisfies the ‘no lie’-axiom, because P 1 and P 2 do. So we find that P ∈ P. This
proves that P is a convex set.

For completeness we also give the nearly identical proof that Q is a convex set.

Lemma 3. Q is a convex set.

Proof. Suppose Q1 and Q2 ∈ Q. Let t ∈ [0, 1]. Define Q = tQ1 + (1− t)Q2. We have for all
x ∈ y:∑
x∈y

Q(X = x|Y = y) = t
∑
x∈y

Q1(X = x|Y = y)+(1−t)
∑
x∈y

Q2(X = x|Y = y) = t+(1−t) = 1.

(2.4)
Also Q satisfies the ‘no lie’-axiom, because Q1 and Q2 do. So we find that Q ∈ Q. This
proves that Q is a convex set.

Let us now investigate the function f : P ×Q → [0,∞] given by f(P,Q) =
EP [− logQ(X|Y )] which is part of equation (2.2). In the following two lemmata we show
that this function f has the required properties,to apply a minimax theorem.

Lemma 4. The function f(P,Q) is concave in P for every Q and convex in Q for every P ,
but neither strictly concave nor strictly convex.

Proof. The function is linear in P , as it is just an expectation, which directly shows that
it is concave but not strictly concave. Also convexity is clear as − log is convex. To
show that it is not strictly convex we give a counterexample. Let X = {1, 2, 3} and S =
{{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} and px = 1/3 for every x. We define P , Q1 and Q2 using a
table where each column is an element and each row a set in S, where we give the joint
probability for the set and element for P and the conditional probability for Q1 and Q2. For
example, the upper left entry in the second table means that Q1(X = 1|Y = 1, 2) = 1. Note
that the columns of the table for P sum to the marginal distribution of X. Moreover the
rows of the table for Q sum to 1.

P 1 2 3

{1, 2} 0 0 0
{1, 3} 0 0 0
{2, 3} 0 0 0
{1, 2, 3} 1/3 1/3 1/3

Q1 1 2 3

{1, 2} 1 0 0
{1, 3} 0 0 1
{2, 3} 0 1 0
{1, 2, 3} 1/3 1/3 1/3
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Q2 1 2 3

{1, 2} 0 1 0
{1, 3} 1 0 0
{2, 3} 0 0 1
{1, 2, 3} 1/3 1/3 1/3

.

We constructed P such that it assigns all probability to the set {1, 2, 3}. Note that Q1 and
Q2 assign equal probabilities on this set, hence the same holds for all convex combinations of
the two. Therefore f(P,Q) has the same value for each Q which is a convex combination of
Q1 and Q2. We conclude that the function is not strictly convex.

Next we investigate the continuity of f(P,Q). The definition of convergence we use is the
convergence in Euclidean space, where a distribution function is regarded as a vector. The
length of this vector is the number of elements in X multiplied by the number of elements in
S. Because all spaces we consider are finite, this convergence is equivalent to convergence in
distribution or almost surely convergence. Note that P and Q are compact, since they are
closed and bounded in Euclidean space. Boundedness is clear from the fact that all elements
are between zero and one. Closedness follows from the fact that all conditions on the elements
are equalities.

Lemma 5. The function f(P,Q) is lower semi-continuous in P , but not continuous. It is
continuous in Q. The discontinuities can only occur if P (X = x, Y = y) = 0 for some x ∈ y.

Proof. First fix Q and let Pn → P . Now suppose that P is such that P (X = x, Y = y) > 0
for all x ∈ y. We show that in this case no discontinuities occur. From the above assumption
we know that there is an N such that for all n > N , we have that Pn(X = x, Y = y) > 0
for all x ∈ y. With this condition we have that EPn [− logQ(X|Y )]→ EP [− logQ(X|Y )]. So
discontinuities can only occur if P (X = x, Y = y) = 0 for some x ∈ y.

So suppose that P (X = x, Y = y) = 0 for some x ∈ y. If Q(X = x|Y = y) > 0,
there are no problems: Pn(X = x, Y = y) (− logQ(X = x|Y = y)) → 0 = P (X = x|Y =
y) (− logQ(X = x|Y = y)). Let now Q(X = x|Y = y) = 0. In this case we have that
for all n EPn [− logQ(X|Y )] ≥ 0 = EP [− logQ(X|Y )]. We conclude that f(P,Q) is lower
semi-continuous in P .

Fix now P and let Qn → Q. As above there are no problems if P (X = x|Y = y) > 0
for all x ∈ y. Suppose that P (X = x, Y = y) = 0 for some x ∈ y. If Q(X = x|Y = y) > 0,
there are no problems: P (X = x, Y = y) (− logQn(X = x|Y = y)) → 0 = P (X = x|Y =
y) (− logQ(X = x|Y = y)). Let now Q(X = x|Y = y) = 0. Then the term P (X = x|Y =
y)(−log(Qn(X = x|Y = y)) is zero for all n and also P (X = x|Y = y)(−log(Q(X = x|Y = y))
is zero. So f(P,Q) is continuous in Q.

With a counterexample we show that f(P,Q) does not have to be continuous in P . Let
X = {1, 2} and S = {{1}, {1, 2}} and the marginal distribution of X is (1/2, 1/2). Let Pn
be given by Pn(X = 1, Y = {1, 2}) = 1/(2n) for n = 1, 2, . . .. Let the conditional prediction
be given by Q(X = 1|Y = {1, 2}) = 0. Then we have that EPn [− logQ(X|Y )] = ∞ for all
n. However Pn → P in distribution (and hence almost surely, as X is finite) for P given by
P (X = 1, Y = {1, 2}) = 0 and EP [− logQ(X|Y )] = 0 <∞. We conclude that f(P,Q) is not
continuous.
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2.3 Characterising the Solution in terms of Conditional En-
tropy

The problem as stated in equation (2.2) has two variables P and Q. One must find the best
conditional prediction Q, so one must investigate all conditional predictions. Moreover, for
each conditional prediction all probability distributions P must be considered. This makes
the problem difficult to solve. In the remainder of this chapter we simplify equation (2.2), by
using a minimax theorem. With this minimax theorem the problem is restated as maximising
conditional entropy. To this end we use the lemmata of Section 2.2.

First we prove that there always exists a best solution.

Theorem 1. There exists a condition prediction Q ∈ Q that is a best conditional prediction
having a finite expected loss.

Proof. The function maxP∈P EP [− logQ′(X|Y )] is bounded from below, since the function
cannot be negative. It is moreover semi-continuous by Lemma 5. We conclude that it obtains
it minimum, i.e. there exists a Q ∈ Q that is a best conditional prediction. By Lemma 1 this
Q has a finite expected loss.

This enables us to switch the order of minimisation and maximisation:

Theorem 2. The minimax theorem holds, i.e.

min
Q∈Q

max
P∈P

EP [− logQ(X|Y )] = max
P∈P

min
Q∈Q

EP [− logQ(X|Y )] . (2.5)

Proof. First we give an overview of the proof. We cannot directly use a standard minimax
theorem, since the function can attain the value ∞. Standard minimax theorems either can
not deal with that or require stronger continuity assumptions (see [Fan, 1953] and [Grünwald
and Dawid, 2004]). Therefore we have to use a trick.
One inequality always holds, that is

min
Q∈Q

max
P∈P

EP [− logQ(X|Y )] ≥ max
P∈P

min
Q∈Q

EP [− logQ(X|Y )] . (2.6)

On the left hand side the maximising player reacts on the minimising player and on the right
hand side the other way around. Therefore it is clear that the left hand has a higher value
than the right hand side.
We will prove the theorem by showing that for all ε ≥ 0, we have

min
Q∈Q

max
P∈P

EP [− logQ(X|Y )] ≤ max
P∈P

min
Q∈Q

EP [− logQ(X|Y )]− ε. (2.7)

We do this by considering not our set of conditional predictionsQ, but an appropriateQ′ ⊂ Q,
in which no conditional prediction can be 0. Using this Q′ enables us to use an ordinary min-
imax theorem. We finalise the proof by arguing that the maximin loss using Q′ is not much
different from the maximin loss using Q′. This finishes the overview of the proof.

First we prove the following claim: for all ε > 0, we can find a δ > 0 such that for all
P ∈ P

min
Q∈Q

EP [− logQ(X|Y )] ≥ min
Q′∈Q′

EP
[
− logQ′(X|Y )

]
− ε, (2.8)
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where Q′ is defined below and Q ∈ Q′ ⊂ Q satisfies Q(x|y) ≥ δ, if x ∈ y. In words this means
that a conditional prediction in Q′ cannot be on the boundary of Q.

Let ε > 0 be given. We define for a conditional prediction Q ∈ Q a conditional prediction
Q′ ∈ Q′ in the following way. Let Q′(x|y) = δ, if Q(x|y) < δ and x ∈ y. For each y ∈ S, find
an x ∈ y such that Q(x|y) is maximal and define Q′(x|y) = Q(x|y) −

∑
x′∈y(δ − Q(x′|y))+.

All other values remain unchanged. In words the Q′ we constructed increased the value of
all predictions that are too small to the cut-off value δ and takes the required mass from the
largest prediction. Note that for δ small enough this Q′ lies in Q′.

Now we find that − logQ′(x|y) is only greater than − logQ(x|y) for the x ∈ y that now
have a smaller predictive probability. Let n be the number of elements in X . We have that

− logQ′(x|y)−− logQ(x|y) = − log

(
1−

∑
x′∈y(δ −Q(x′|y))+

Q(x|y)

)
(2.9)

< − log

(
1− δn

Q(x|y)

)
(2.10)

≤ − log
(
1− δn2

)
, (2.11)

since Q(x|y) ≥ 1/n, because Q(x|y) is maximal at x. Now the difference in (2.9) is smaller
than ε for δ = (1−e−ε)/n2. This proves also that EP [− logQ(X|Y )] ≥ EP [− logQ′(X|Y )]−ε,
since P (x|y) ≤ 1. Since this holds for all Q ∈ Q, we have proved the claim.

This claim enables us to prove the minimax theorem:

min
Q∈Q

max
P∈P

EP [− logQ(X|Y )] = min
Q′∈Q′

max
P∈P

EP
[
− logQ′(X|Y )

]
(2.12)

= max
P∈P

min
Q′∈Q′

EP
[
− logQ′(X|Y )

]
(2.13)

≤ max
P∈P

min
Q∈Q

EP [− logQ(X|Y )]− ε. (2.14)

Equation (2.12) holds, because the minimiser Q ∈ Q cannot assign a value 0 to any (x, y)
with supP∈P P (x, y) > 0. If that would be the case, then the P -expected loss is infinitely
large, contradicting Theorem 1. So for δ small enough Equation (2.12) holds.

Equation (2.13) is an application of Fan’s minimax theorem [Fan, 1953]. Indeed, as stated
before, P and Q′ are compact and convex, as proved in Lemmata 2 and 3. Moreover on
Q′ our function EP [− logQ(X|Y )] is real-valued. This function is concave on P and lower
semi-continuous and convex on Q′, see Lemmata 4 and 5.

Equation (2.14) is the result of our claim. Since this holds for all ε > 0, we conclude that
the minimax theorem holds.

Now that we have the minimax theorem, we can simplify equation (2.2) and restate it
as maximising conditional entropy [Cover and Thomas, 1991]. Conditional entropy can be
interpreted as the average number of bits needed to code the outcome given that the subset
is known in the optimal way using lossless coding. To be precise, the number of bits does not
need to be integer, so it is a generalised notion of bits. Concretely, by Theorem 2 we have
that for each P ∈ P the minimum is attained with a Q generated by P :

max
P∈P

min
Q∈Q

EP [− logQ(X|Y )] = max
P∈P

EP [− logP (X|Y )] = max
P∈P

H(X|Y ). (2.15)
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Here H(X|Y ) is the conditional entropy when (X,Y ) ∼ P (x, y). And we use constantly

H(X|Y ) =
∑

x∈X ,y∈S
P (X = x, Y = y) log

P (Y = y)

P (X = x, Y = y)
(2.16)

We need some useful convention when we encounter in this some terms of the type 0 log 0
0 .

Given that lima→0 a log a = limb→∞ 1/b log(1/b) = limb→∞−1/b log(b) = 0, we use 0 log 0
0 =

0 log 0− 0 log 0 = 0.

This characterisation of the solution in terms of conditional entropy is used extensively in
the next chapters. Instead of solving the minimax question, we can solely focus on finding the
maximiser of the conditional entropy P . This is the optimal selection procedure for Nature.
Then the best prediction for the Decision Maker is a conditional prediction generated by this
P . In the next section we discuss why it is convenient to use the conditional entropy.

2.4 Discussion of the Model

In this section the model proposed in this chapter is discussed. In Subsection 2.1.3 we dis-
cussed the game theoretic interpretation and focused on the minimax approach. Here we
discuss the choice of the logarithmic loss function, the minimax theorem of Section 2.3 and
the equivalence with the rate-distortion problem.

Why do we choose to use the logarithmic loss function? The main reason that we choose
the logarithmic loss function is a practical one. In Section 2.3 it is shown that the minimax of
the conditional logarithmic loss is equivalent to maximising the conditional entropy. Entropy
maximisation has a long tradition in information theory, cf. Jaynes [1957]. Entropy can be
viewed as the expected number of bits needed to code the outcome of a random variable,
when you use the best code. So using the logarithmic loss function enables us to use entropy
maximisation. For the maximisation it is convenient that entropy and conditional entropy is
concave [Cover and Thomas, 1991].

We want to give another interpretation of a conditional prediction, following Chapter 6
of Cover and Thomas [1991]. A good way to view a conditional prediction Q is the following.
Suppose the setting is known and the set containing the outcome of the random variable is re-
vealed. Then a third person independent from Nature shows up. This person, a bookmaker,
offers you a bet on each outcome of the random variable. To decide how you spend your
money, you just look at your conditional prediction.
This interpretation is different from a more frequentist view. The Decision Maker is not guar-
antied that the conditional prediction is the result of the true selection procedure. As in the
example of the fair die (Example 3), the best conditional prediction assigns probability 1/6
to the outcome 4, after observing the set {1, 2, 3, 4}. However, the true selection procedure
could be that this set is never shown, when the outcome is 4. The true frequency of outcome
4, after observing the set {1, 2, 3, 4}, is then 0, which differs from the prediction 1/6. So the
best prediction does not predict the true frequency.

As stated above the reason for choosing the logarithmic loss function is the resulting con-
ditional entropy maximisation. To get this result the minimax Theorem 2 is essential. The
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first occurrence of a minimax theorem that equaled maximising conditional entropy and the
minimax conditional log loss is found in Harremoës and Topsøe [2002]. We tried to use one of
the general minimax theorems described in Grünwald and Dawid [2004], but they were not
applicable in this setting.

Finally, we note that, interestingly, our problem is equivalent to the rate-distortion prob-
lem, a central problem in information theory. See chapter 10 of Cover and Thomas [1991] for
a discussion of the rate-distortion problem and the associated definitions. The conditional
prediction problem is equivalent to the rate-distortion problem with the following distortion
measure: d(x, y) = 0 if x ∈ y and d(x, y) = 1 if x /∈ y, and maximum distortion D = 0. This
models our ’no lie’-axiom.

The mutual information between two random variables X and Y , I(X;Y ), is given by∑
x∈X ,y∈S P (x, y) log P (x,y)

P (x)P (y) . Theorem 2.4.1 of Cover & Thomas gives that I(X;Y ) =

H(X)−H(Y |X). H(X) is a constant so we find that

arg max
P∈P

H(X|Y ) = arg min
P∈P

H(X)−H(X|Y ) = arg min
P∈P

I(X;Y ). (2.17)

And this is precisely the definition of the rate-distortion problem. Unfortunately, the known
solutions in finding the rate distortion function do not work well in our situation. Interestingly,
this thesis can therefore also be read as finding the rate distortion function for a specific
distortion measure.
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Chapter 3

Examples and their Generalisations

In this chapter we give several examples of solutions to the conditional prediction problem.
We focus on the set S, which contains all subsets that can be revealed. Interesting features
of the solutions appear to depend on characteristics of S. In the second section we generalise
the features of the solutions we see in the examples. Section 3.1 can be read as an informal
introduction to Section 3.2.

3.1 Examples

In this section three cases of interesting sets S are investigated by means of an example:

1. The case that S is a partition of X . This is done in Example 6. We see that when S is
a partition, then standard conditioning gives the best prediction.

2. The case that S contains subsets consisting of one element is treated in Example 7. An
intuitive result is found: Nature does not choose subsets consisting of one element.

3. The case in which S is not a partition of X nor does it contain subsets consisting of
one element. We investigate the simplest example of such a set S in Example 8. The
result is surprising. The conditional predictive probability of an outcome is lower than
the predictive probability for another outcome, although the unconditional probability
is higher.

We use two techniques to solve the problem of finding the best conditional prediction. Some-
times we use the first formulation of our problem as given in equation (2.2), solving the
minimax of the logarithmic loss. Other times we use equation (2.15) to solve our problem,
maximising the conditional entropy. At the end of the section we return to the Monty Hall
problem mentioned in the introduction. We restate the problem in this chapter formally and
give our solution.

Example 6. [S is partition] In this example we investigate the solution if S is a partition
of X .
For example, let X = {1, 2, 3, 4} and S = {{1, 2}, {3, 4}} and let the marginal distribution of
X be given by p1, p2, p3 and p4. The requirements on P imply that P contains only one dis-
tribution P . By the ‘no lie’ axiom it must hold that P (X = 1, Y = {3, 4}) = 0. The marginal
distribution of P must be equal to the distribution of X, hence P (X = 1, Y = {1, 2}) = p1.
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For the other elements of X the same reasoning holds. So we see that we have a unique
distribution P in P. Using the notation of the first chapter, we represent this P with the
table

P 1 2 3 4

{1, 2} p1 p2 0 0
{3, 4} 0 0 p3 p4

The best conditional prediction Q must satisfy equation (2.2). We must solve

arg min
Q∈Q

EP [− logQ(X|Y )] . (3.1)

Q is characterized by two variables a := Q(X = 1|Y = {1, 2}) and b := Q(X = 3|Y = {3, 4}).
With this notation we must solve

arg min
0≤a≤1,0≤b≤1

−p1 log a− p2 log (1− a)− p3 log b− p4 log (1− b). (3.2)

Solving this for a and b yields a = p1/(p1 + p2) and b = p3/(p3 + p4). This is standard
conditioning. The best conditional prediction Q is given by

Q 1 2 3 4

{1, 2} p1/(p1 + p2) p2/(p1 + p2) 0 0
{3, 4} 0 0 p3/(p3 + p4) p4/(p3 + p4)

In Example 6 we studied the solution if S is a partition of X . The best conditional
prediction is just normal conditioning. This holds in general and is proved in Lemma 6. In
the next example we investigate the case that S contains subsets with one element.

Example 7. [S contains singletons] Let X = {1, 2, 3} and S = {{1}, {1, 2}, {3}} and let
the marginal distribution of X be given by p1, p2 and p3. So we have two subsets in S with
one element: {1} and {3}. Note that if the true value is 1, also the subset {1,2} can be
revealed, whereas there is no choice if the true value of X is 3.
First we determine what distributions are in P. By our two constraints on P, the ‘no lie’-
axiom and the marginal consistency, we have that P (X = 2, Y = {1, 2}) = 1 and P (X =
3, Y = {3}) = 1. We denote a := P (X = 1, Y = {1, 2}). It must hold that P (X = 1, Y =
{1}) + P (X = 1, Y = {1, 2}) = p1, so P (X = 1, Y = {1}) = 1 − a. Now we want to solve
equation (2.15) using a:

arg max
P∈P

EP [− logP (X|Y )] =

arg max
0≤a≤p1

(1− a) log 1 + a log
a+ p2
a

+ p2 log
a+ p2
p2

+ p3 log 1 =

arg max
0≤a≤p1

a log
a+ p2
a

+ p2 log (a+ p2).

The function is strictly increasing in a. The maximum is therefore obtained by a = p1. So
the conditional entropy maximising P is given by

P 1 2 3

{1} 0 0 0
{1, 2} p1 p2 0
{3} 0 0 p3.
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Now we calculate the best conditional prediction Q. By the two requirements on Q
we have that Q(X = 1|Y = {1}) = 1 and Q(X = 3|Y = {3}) = 1. Furthermore the
distribution given Y = {1, 2} is determined by P : Q(X = 1|Y = {1, 2}) = p1/(p1 + p2) and
Q(X = 2|Y = {1, 2}) = p2/(p1 + p2). The best conditional prediction Q is given by

Q 1 2 3

{1} 1 0 0
{1, 2} p1/(p1 + p2) p2/(p1 + p2) 0
{3} 0 0 1.

In Example 7 we see that it is possible to assign probability 0 to the combination X =
1, Y = {1} for the maximum conditional entropy distribution P . This means that when the
Decision Maker gives her best prediction, in the worst case if X = 1 the subset {1} is never
revealed. This is not the case for the combination X = 3, Y = {3}, since there is no other
subset in S containing 3. In general it holds that subsets containing only one element are
always assigned probability 0 by the maximiser of the conditional entropy, if there is another
subset in S containing that element. This is shown in Lemma 7. In the next example we
consider an example, in which S is not a partition of X and does not contain subsets with
one element.

Example 8. [S not a partition and without singletons] Let X = {1, 2, 3} and S =
{{1, 2}, {2, 3}} and the marginal distribution of X is (p1, p2, p3) = (1/6, 1/3, 1/2). First we
look at the possible distributions in P. By the two requirements on a distribution P in P, the
‘no lie’-axiom and the marginal consistency, we have that P (X = 1, Y = {1, 2}) = 1 and also
P (X = 3, Y = {2, 3}) = 1. So we can identify a distribution P in P with just one number a.
Denote a := P (X = 2, Y = {1, 2}), consequently P (X = 2, Y = {2, 3}) = 1− a.
To find the distribution that maximises the conditional entropy we use again equation (2.15):

arg max
P∈P

EP [− logP (X|Y )] =

arg max
0≤a≤1/3

(1/6) log
1/6 + a

1/6
+ a log

1/6 + a

a
+ (1/3− a) log

5/6− a
1/3− a

+ (1/2) log
5/6− a

1/2
.

This can be solved by taking the first derivative with respect to a, setting it equal to 0 and
solving for a. We find that a = 1/12. So the conditional entropy maximising P is given by:

P 1 2 3

{1, 2} 1/6 1/12 0
{2, 3} 0 1/4 1/2.

We see that the best conditional prediction Q is given by:

Q 1 2 3

{1, 2} 2/3 1/3 0
{2, 3} 0 1/3 2/3.

We make two observations, which, taken together, are rather surprising. First, interestingly,
we get that Q(X = 2|Y = {1, 2}) = 1/3 = Q(X = 2|Y = {2, 3}). The best conditional
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prediction for the outcome 2 is independent of the revealed subset. Second, we note that the
marginal probability of X = 2 is larger than the marginal probability of X = 1. Despite this
fact, in the best conditional prediction, given you see the subset {1, 2}, you think it is more
likely that the true value is 1 than that it is 2. Of course, once you realise that the outcome
2 occurs in both sets that can be revealed, it may not be so surprising any more.

In Example 8 we see that the best conditional prediction of the outcome that lies in two
subsets is equal for both subsets. We show this in the general case (under some conditions)
in Theorem 4 in Chapter 4. In the following example we show how the Monty Hall problem
(see also Example 2) can be formally restated in the context of our problem.

Example 9. [Monty Hall] The set X is {1, 2, 3}, where the three numbers are associated
with the three doors. The random variable X gives the door with the prize. The standing
assumption is that the prize is equally likely to be behind any of the three doors. This means
that the marginal distribution of X is (1/3, 1/3, 1/3). The host opening a door is equivalent
with telling us the subset consisting of the other two doors. Indeed, by the rules of the game,
it is impossible that the prize is behind the opened door. So it must be behind one of the
other two doors.
Without loss of generality we can assume that door 1 is the first pick of the candidate. This
gives that the host will open the door numbered 2 or 3. The host opening door 2 is equivalent
with telling us the subset {1, 3} and in the same way opening door 3 is equivalent with telling
us the subset {1, 2}. So S = {{1, 2}, {1, 3}}. This concludes our restating of the Monty Hall
problem and enables us to give a solution.
The solution we are after is the maximiser of the conditional entropy, i.e. we will solve
equation (2.15). Note that the host is forced to open door 3 if the prize is behind door 2.
This means that P (X = 2, Y = {1, 2}) = P (X = 2) = 1/3. The same argument gives that
P (X = 3, Y = {1, 3}) = P (X = 2) = 1/3. Denote a = P (X = 1, Y = {1, 2}) and observe
that a lies between 0 and 1/3 as a + P (X = 1, Y = {1, 3}) = P (X = 1) = 1/3. It is clear
that P ({1, 2}) = 1/3 + a and P ({1, 3}) = 2/3 − a. The conditional entropy is hence only
dependent on the variable a and the maximising problem is

arg max
P∈P

EP [− logP (X|Y )] =

arg max
0≤a≤1/3

(1/3) log
1/3 + a

1/3
+ a log

1/3 + a

a
+ (1/3− a) log

2/3− a
1/3− a

+ (1/3) log
2/3− a

1/3
.

This can be solved by taking the first derivative with respect to a, setting equal to 0 and solving
for a. We find that a = 1/6. This means that if you predict that P (X = 1, Y = {1, 2}) = 1/6
and also P (X = 1, Y = {1, 3}) = 1/6 the worst case is that the host indeed opens doors in
this way. The P ∈ P that maximises the conditional entropy is given by:

P 1 2 3

{1, 2} 1/6 1/3 0
{1, 3} 1/6 0 1/3.

The best conditional prediction is then given by Q(1|{1, 2}) = 1/3 and Q(1|{1, 3}) = 1/3:

P 1 2 3

{1, 2} 1/3 2/3 0
{1, 3} 1/3 0 2/3.
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This solution to the Monty Hall problem has some similarities to the solution proposed by
Gill [2011]. His modelling of the Monty Hall problem uses also a game theoretic approach. He
uses the model of a zero-sum game of the game host against the contestant. If the contestant
finds the prize he receives a payoff of one, otherwise a payoff of zero. The game consists
of four steps. We explain each step and directly give the optimal strategy in that step and
compare that strategy with our solution.
In the first step the game host can select a distribution of the prize behind the three doors.
In Gill’s solution this is the uniform distribution (1/3, 1/3, 1/3). In contrast to Gill, we
assumed from the start that this is the true unconditional distribution. In the second step
the contestant can choose a door. The best he can do is choosing uniformly. In contrast to
Gill, we did not model this step either, but remodeled the problem so that the contestant can
pick door one without loss of generality. In the third step the game host has to choose which
door to open. The optimal strategy dictates that, if there is a choice, the game host should
open a door uniformly at random. This is exactly the strategy we found. In the final step
the contestant can choose to switch. In the solution of Gill he does best to switch. Again
this is implied by our solution, which gives a conditional prediction of (1/3, 2/3) with 1/3
the probability of the prize behind the original door.

We have seen via examples that interesting features of the solution depend on the structure
of S. In the next section we prove that these dependencies hold in general.

3.2 General Features of the Best Prediction depend on S
In this section we prove that the assertions made in the section Examples hold in general. We
focus on S, the collection of subsets. We prove that certain features of the best prediction
depend on the structure of S. The structure of this section is as follows. First we present
three lemmata:

1. Lemma 6 gives the solution when S forms a partition of X . This generalises Example
6.

2. Lemma 7 gives the probability the conditional entropy maximiser assigns to subsets
consisting of one element. This is a generalisation of Example 7

3. Lemma 8 gives the solution when S contains X .

Then we prove Theorem 3 generalising the above lemmata. It demonstrates a feature of the
conditional entropy maximiser when S contains sets A and B, where A ⊂ B. This theorem
makes the lemmata of point 2 and 3 obsolete. We choose to give the lemmata anyway to
highlight these special cases. Moreover the proofs of these lemmata make the proof of the
theorem easier to grasp.

When we state our problem as generally as possible, it boils down to the question what
the best prediction is of a random variable given that we only know a subset in which the
variable lies. This problem has been studied centuries ago in the case of S forming a partition
of X . The solution is simply to use the standard conditional probabilities.

Lemma 6. If S forms a partition of X , then the solution to (2.2) is given by Q(x|y) =
px/
∑

x′∈y px′ if x ∈ y and 0 otherwise.
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Proof. Suppose that S is a partition of X . We will proof that the above Q is the only one in
Q generated by a P ∈ P. Then it is clear that it is the solution to equation (2.15).

Let P ∈ P. The ‘no lie’-axiom gives that P (x, y) = 0 if x /∈ y. Because S forms a
partition, we have that for every x there is only one y ∈ S such that x ∈ y. The conditional
distribution on X has to be equal to X and combining this yields that P (x, y) = px if x ∈ y.
This uniquely defines P and we find that P = {P}. The conditional prediction Q is then
Q(x|y) = px/

∑
x′∈y px′ if x ∈ y.

An important point we want to stress is the following. Except in the case that S forms
a partition, the best conditional prediction is in general not found by standard conditioning.
However, standard conditioning is at least better than forgetting the received information
altogether. It is not rational to predict an outcome outside the revealed set of possible
outcomes.

Proposition 1. Standard conditioning yields a lower or equal loss than forgetting the received
information.

Proof. Let Q be the conditional prediction obtained by standard conditioning, i.e. ∀x ∈ y :
Q(X = x|Y = y) = px/

∑
x′∈y px′ . Not using the received information yields a prediction Q′

with Q′(X = x|Y = y) = px. Note that this Q′ does not satisfy the definition of a conditional
prediction. We have for all P ∈ P that EP [− logQ(X|Y )] ≤ EP [− logQ′(X|Y )]. So standard
conditioning yields a lower or equal loss than forgetting the received information.

The following lemma proves that our observation in Example 7 holds in general. The
conditional entropy maximiser assigns probability 0 to any subset consisting of only one
outcome.

Lemma 7. A subset consisting of only one element will be assigned probability 0 by the
conditional entropy maximiser, if there is another subset containing this element.

Proof. Without loss of generality assume that the element is 1. Let us look at the terms
in equation (2.15) containing a = P (1, {1}). Suppose the maximum conditional entropy
distribution has a > 0. The only term with a is a log a

a = 0. So any probability assigned to a
will not contribute to the conditional entropy. If there is another subset S containing 1, the
entropy will increase if P (1, {1}) is set to 0 and P (1, S) to the original value with a added.

Hence a subset consisting of only one element will be assigned probability 0, if there is
another subset containing this element.

Another case is the case where S contains the whole set X . For example this is the case
in a statistical setting with missing data, and missing data does not rule out any outcome.
Then the conditional entropy maximiser assigns all probability to this set X .

Lemma 8. If X ∈ S, then the conditional entropy maximiser P has P (X ) = 1. Or equiva-
lently, for all x ∈ X : P (x,X ) = px.

Proof. Note that the distribution characterized by x ∈ X : P (x,X ) = px is an element of P.
For this P we have that H(X|Y ) = H(X). So we find that maxP ∗∈P H(X|Y ) ≥ H(X).

On the other hand, per definition of this P , we have that maxP ∗∈P EP ∗ [− logP (x|y)] =
H(X). Now we find maxP ∗∈P H(X|Y ) = minQ∈P maxP ∗∈P EP ∗ [− logQ(x|y)] ≤ H(X).
Combining these two observations we find that P is the unique maximum conditional entropy
distribution.
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The above lemma enables us to show by example that the best conditional solution is not
unique.

Example 10. [Not unique] Let X = {1, 2, 3} and S = {{1, 2}, {1, 2, 3}} and the marginal
distribution of X is (p1, p2, p3) = (1/3, 1/3, 1/3). By Lemma 8 the conditional entropy max-
imiser P is given by:

P 1 2 3

{1, 2} 0 0 0
{1, 2, 3} 1/3 1/3 1/3.

The best conditional prediction is then given by Q(1|{1, 2, 3}) = Q(2|{1, 2, 3}) = 1/3. But
there is some freedom to Q(1|{1, 2}). The most intuitive choice is Q(1|{1, 2}) = Q(2|{1, 2} =
1/2, since 1 and 2 are interchangeable. If the Decision Maker uses this conditional prediction,
Nature will play the above defined maximiser P . If the Decision Maker, however, predicts
Q(1|{1, 2}) = 0, Nature does choose an other selection procedure, since it can cause an
infinitely large loss. A small deviation from Q(1|{1, 2}) = Q(2|{1, 2} = 1/2 does not cause
Nature to choose an other selection procedure. So for example Q(1|{1, 2}) = 0.51 is still a best
conditional prediction. Verification of this result can easily be done by using mathematical
software to find maxP∈P EP [− logQ(X|Y )] . So in this example the best conditional solution
is not unique.

The preceding lemmata are superseded by the following general theorem.

Theorem 3. Suppose there are sets A,B in S with A ⊂ B. Then all maximum conditional
entropy distributions will assign probability 0 to the set A.

Proof. In the proof we will show that if all probability initially assigned to set A is assigned
to set B, then the conditional entropy will not drop.

Let P ∈ P with P (x,A) > 0 for some x ∈ A. Define P ∗ in the following way: take P ∗

equal to P , but set P ∗(x,A) = 0 and P ∗(x,B) = P (x,B) +P (x,A). Note that P ∗ ∈ P. Now
we need to prove that∑

x∈X ,y∈S
P (x, y) log

P (y)

P (x, y)
<

∑
x∈X ,y∈S

P ∗(x, y) log
P ∗(y)

P ∗(x, y)
. (3.3)

Using the definition of P ∗ we only need that

(3.4)

∑
x ∈A

P (x,A) log
P (A)

P (x,A)
+
∑
x ∈B

P (x,B) log
P (B)

P (x,B)

<
∑
x∈B

(P (x,A) + P (x,B)) log
P (A) + P (B)

P (x,A) + P (x,B)
.

The terms with x in B but not in A are clearly higher on the right-hand side. So we
concentrate on x ∈ A.

Please note that

P (A) + P (B)

P (x,A) + P (x,B)
=

P (x,A)

P (x,A) + P (x,B)
· P (A)

P (x,A)
+

P (x,B)

P (x,A) + P (x,B)
· P (B)

P (x,B)
. (3.5)
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This tells us that (P (A)+P (B))/(P (x,A)+P (x,B)) is the weighted average of P (A)/P (x,A)
and P (B)/P (x,B). The concavity of the logarithm gives then for every x ∈ A

P (x,A) log
P (A)

P (x,A)
+ P (x,B) log

P (B)

P (x,B)
≤ (P (x,A) + P (x,B)) log

P (A) + P (B)

P (x,A) + P (x,B)
.

(3.6)
We conclude that indeed equation (3.4) and hence equation (3.3) hold. The maximum con-
ditional entropy distribution cannot assign any positive probability to the set A.

One can interpret this theorem in the following way. The maximum conditional entropy
is such that the uncertainty is highest for the Decision Maker, cf. the game theoretic inter-
prestation in Section 2.1.3.

In this chapter we have seen several lemmata giving features of the maximum conditional
entropy distribution already shown in examples. These features depend on the collection of
sets S. In the next chapter a complex characterisation of the best conditional prediction is
given. That does not mean that our lemmata of this chapter can be discarded. The method
in the next chapter only gives a recipe to find the best conditional prediction, but it does not
highlight the features of the solution as we have done in this chapter.
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Chapter 4

General Characterisation of a
Solution to the Conditional
Prediction Problem

In this chapter we give a general recipe to find a best conditional prediction. We need three
steps to find this method. First we give a general characterisation of a solution to the pre-
diction problem. The class of solutions for which the characterisation holds, consists of those
solutions where the conditional entropy maximiser does not assign zero probability to any
outcome. This characterisation is given in the first section. In the second section we conclude
that there is not always such a conditional entropy maximiser. But, more importantly, we
find a sufficient condition under which there exists such a maximiser. In the third section we
describe the recipe to find the best conditional prediction. The trick is to extend the original
structure in such a way that the sufficient condition holds. In the extended structure there is
an appropriate conditional entropy maximiser, so that we can use the characterisation of the
first section. Finally, the extended structure is again reduced to the original structure and we
find a best conditional prediction for the original prediction problem.

4.1 Characterisation in the Non-Degenerate Case

In this first section we give a complete characterisation of the solution. However, it is only
valid if the conditional entropy maximiser does not assign zero probability to an element and
a set containing this element.This may be viewed as the non-degenerate case for which the
solution does not lie on the boundary of all possible selection procedures. The characterisation
shows some similarities with the Coarsening at Random condition, mentioned in Chapter 1.
The next theorem gives the characterisation.

Theorem 4. Suppose that the solution of equation (2.15) has ∀y ∀x ∈ y : P (x, y) > 0. Then
the solution satisfies P (x|y) = P (x|y′), if x ∈ y and x ∈ y′.

Proof. Overview of the proof: We will assume an interior solution, which means ∀y ∀x ∈
y : P (x, y) > 0. The first order conditions, which sets the first derivative of the objective
function with respect to a variable P (x, y) equal to zero, then give the result.
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Let us look again at equation (2.15) in the following form:

arg max
P∈P

∑
x∈X ,y∈S

P (x, y) log
P (y)

P (x, y)
. (4.1)

We use the constraints giving by the fact that P ∈ P. P (x, y) = 0 for any pair (x, y) with
x /∈ y. So this is no longer a variable in our maximisation problem. Moreover we have that
for all x

∑
y∈S P (x, y) = px. When there are at least two sets containing x, we can eliminate

one variable by writing P (x, y′) = px −
∑

y∈S,y 6=y′ P (x, y). The last step before we can use
the first order condition is to rewrite P (y). P (y) is equal to

∑
x∈y P (x, y), keeping in mind

that P (x, y) is zero when x is not in y.
Now fix one x ∈ X , which is contained in more than two sets. Mark y′ as the special

set, for which we eliminate P (x, y′) as above. Let y be any other set containing x. We are
going to calculate the first derivative of the objective function with respect to P (x, y). Let
us extract the part of the objective function depending on P (x, y).∑

x′∈y
P (x′, y) log

P (y)

P (x′, y)
+
∑
x′∈y′

P (x′, y′) log
P (y′)

P (x′, y′)
(4.2)

This holds, because P (y) depends on P (x, y). Also P (y′) depends on P (x, y′), which depends
on P (x, y).

Now we give some much-needed derivatives, where x′ 6= x.

∂P (x, y) log P (y)
P (x,y)

∂P (x, y)
=

P (x, y)

P (y)
− 1 + log

P (y)

P (x, y)

∂P (x′, y) log P (y)
P (x′,y)

∂P (x, y)
=

P (x′, y)

P (y)

∂P (x, y′) log P (y′)
P (x,y′)

∂P (x, y)
= −P (x, y′)

P (y′)
+ 1− log

P (y′)

P (x, y′)

∂P (x′, y′) log P (y′)
P (x′,y′)

∂P (x, y)
= −P (x′, y′)

P (y′)

Finally we are able to take the derivative of the objective function with respect to P (x, y).

∂
∑

x′ ∈X ,y∗∈S P (x′, y∗) log P (y∗)
P (x′,y∗)

∂P (x, y)
=
∑
x′∈y

P (x′, y)

P (y)
− 1 + log

P (y)

P (x, y)

−
∑
x′∈y′

P (x′, y′)

P (y′)
+ 1− log

P (y′)

P (x, y′)

= log
P (y)

P (x, y)
− log

P (y′)

P (x, y′)
.

Suppose that the solution has ∀y ∀x ∈ y : P (x, y) > 0. This means it is an interior
solution and, by the first order condition, this implies that the above is equal to zero. This

gives us directly the result that P (x|y) = P (x,y)
P (y) = P (x,y′)

P (y′) = P (x|y′).
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This is an important result as it gives a full characterisation of some solutions to our
problem. Remarkable is the fact that it actually assigns a single probability to each element
x, independent of the set one observes, excluding the case where x is not in the observed set,
when the assigned probability is zero. This is quite similar to the Coarsening at Random
(CAR) condition mentioned in the introduction. The selection procedure is coarsening at
random if the probabilities P (y|x) and P (y|x′) are equal for x, x′ ∈ y. As seen in Theorem 4
the conditional entropy maximising selection procedure must satisfy a reverse CAR condition:
P (x|y) and P (x|y′) are equal for x ∈ y and x ∈ y′. We provide more comparison with CAR
in Chapter 5.

Another appealing feature of this type of solution is that it is a so-called equaliser strategy.
For a detailed discussion of equaliser strategies see Ferguson [1967]. An equaliser strategy P
has the property that EQ [− logP (x|y)] is equal for all Q ∈ P. This means that the expected
loss is independent of the procedure (or the way Nature plays this game).

It is clear that to make the result interesting, we need to find out in what situations
the precondition holds. When are we in the non-degenerate case? We now investigate that
question.

4.2 Existence of Degenerate Case

In this section we prove an important lemma, which gives a condition that assures the maxi-
mum conditional entropy distribution assigns all feasible combinations a positive probability
mass. The lemma tells us that if a set is assigned positive probability mass, then all combina-
tions of this set and an element in the set must have positive probability mass. In the second
part of the chapter we show by example that there are situations in which the conditional
maximiser assigns zero probability.

The next lemma seems innocent, but is really important.

Lemma 9. Let S ∈ S be a set containing more than one element and let x, x∗ ∈ S. If the
maximum conditional entropy distribution has P (x, S) > 0, then also P (x∗, S) > 0.

Proof. We give a proof by contradiction. Suppose that we have a maximum conditional
entropy distribution P with P (x, S) > 0, but P (x∗, S) = 0. Let us look at the problem
in the original form using equation (1). There exists a R ∈ P with R(x∗, S) > 0 (An
example is the distribution used in the proof of Lemma 2.2). For this P and R we have that
ER [− logP (x′|y)] = ∞, as − logP (x∗|S) = ∞ and this has positive probability under R.
Invoking Lemma 1 yields the contradiction: P cannot be the solution.

Lemma 9 has a major implication in the case that each set in S contains a unique element,
i.e. for each set S ∈ S there exists an xs ∈ S such that xs is not contained in any other set.
In that case the lemma assures us that the maximum conditional entropy distribution assigns
all feasible combinations a positive probability mass.

The strength of Theorem 4 is discerned when the theorem is combined with Lemma 9.
Suppose S is such that in every set y ∈ S there are one or more elements which are not in
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any other set, i.e. y *
⋃
y′ 6=y∈S y

′. By Lemma 9 we have for all y, x ∈ y P (x, y) > 0 for P
the maximum conditional entropy distribution. So the condition in Theorem 4 is met, and
the maximum conditional entropy distribution has to satisfy P (x|y) = P (x|y′), if x ∈ y and
x ∈ y′. In the next section we use this principle to provide a way of obtaining a best solution
for the prediction problem.

To show that the precondition of Lemma 9 is sometimes really needed for a non-degenerate
solution, we construct a nontrivial example where the result of Theorem 4, which is P (x|y) =
P (x|y′) if x ∈ y and x ∈ y′, cannot hold. Theorem 4 then implies that one or more subsets
will be assigned probability 0, i.e. the solution is not in the interior but on the boundary:

Example 11. [No reverse CAR condition] Let X = {1, 2, 3} and S = {{1, 2}, {1, 3}, {2, 3}}
and p1 = 1/2, p2 = 1/3, p3 = 1/6. The implied solution given by Theorem 4 requires
P (x|S) = 1/2 for each x ∈ S. This is easily seen by noting that P (1|{1, 2}) = P (1|{1, 3}) =
1−P (3|{1, 3}) = 1−P (3|{2, 3}) = P (2|{2, 3}) = P (2|{1, 2}), where we used P (x|y) = P (x|y′)
in the first, middle and last equation.

Now this implies that P (1, {1, 2}) = P (2, {1, 2}), 1/2 − P (1, {1, 2}) = P (3, {1, 3}) and
1/3 − P (2, {1, 2}) = 1/6 − P (3, {1, 3}). We use the first and third equation to find that
1/3 − P (1, {1, 2}) = 1/6 − P (3, {1, 3}) and this yields that P (3, {1, 3}) = P (1, {1, 2}) − 1/6.
We find that P (1, {1, 2}) = 1/3, P (2, {1, 2}) = 1/3, P (3, {1, 3}) = 1/6. This is however no
interior solution as P (2, {2, 3}) = 0.

Thus the solution has to assign probability 0 to one of the sets (See Lemma 9). There are
three candidates which, after removing a subset, can actually be calculated using Theorem 4:

P 1 1 2 3

{1, 2} 1/3 1/3 0
{1, 3} 1/6 0 1/6
{2, 3} 0 0 0

P 2 1 2 3

{1, 2} 1/2 1/4 0
{1, 3} 0 0 0
{2, 3} 0 1/12 1/6

P 3 1 2 3

{1, 2} 0 0 0
{1, 3} 1/2 0 1/10
{2, 3} 0 1/3 1/15

.

One can calculate the conditional entropy of the three given distributions and find that P 1

has the maximum conditional entropy. In this case it is actually quite intuitive why P 1 should
have the maximum conditional entropy. It seems best for Nature to split the probability of
the element x with the highest px, which is in this case 1, in order to keep the Decision Maker
in the dark.

Let us calculate what the best conditional prediction is generated by this P 1. We find
directly that Q(1|{1, 2}) = Q(2|{1, 2}) = Q(1|{1, 3}) = Q(3|{1, 3}) = 1/2. For Q to be the
best conditional prediction one needs that Q(2|{2, 3}) ≥ 1/2 and also Q(3|{2, 3}) ≥ 1/2.
Hence there is only one best conditional prediction, given by Q(2|{2, 3}) = Q(3|{2, 3}) = 1/2.

27



In this section we have seen by example that the characterisation in Section 4.1 is not
valid in all cases. However, Lemma 9 shows in which case the characterisation in Section 4.1
does hold. The recipe we describe in Section 4.3 modifies the problem so that we can use
Lemma 9.

4.3 Recipe to find the Best Conditional Prediction

The idea of finding the best solution is to extend the structure of X and S to sets we call
X ′ and S ′, defined below. For each set y in S we create a unique new element zy. We
define X ′ = X ∪ {zy : y ∈ S} and S ′ = {y′ : y′ = y ∪ {zy} for all y ∈ S}. Thus, for
the extended structure the new element is added to the original set, i.e. y′ := y ∪ {zy} is
the new set. All these new elements are given a marginal probability mass of ε. Let #S
be the number of sets in S. The probability of all the original elements are proportionally
reduced, i.e. p′x = px (1− ε ·#S). For each ε we find a conditional entropy maximiser via
Theorem 4. Note that the precondition of Theorem 4 holds, because of Lemma 9 in the pre-
vious section. Each set contains a unique element, hence we are in the non-degenerate case.
These conditional predictions go to a best prediction in the original problem when ε goes to 0.

We prove this idea rigorously and for this we need more notation. Let Pε be our set of
probability distributions satisfying the ‘no lie’-axiom and that are marginal consistent with
the new probability distribution given by p′x for an original element x and ε for a new element.
Let P ε be the conditional entropy maximiser, i.e. arg maxP∈Pε EP [− logP (X|Y )]. We now
define Qε(x | y) := P ε(x, y′)/P ε(y) for all original elements x and original sets y. Note that
Qε is a conditional prediction on the original structure, so Qε ∈ Q. We would like to take the
limit of these conditional predictions as ε→ 0, however the limit does not always exist, since
there could be several best conditional predictions (see Example 5). Therefore the following
trick is needed. Note that (P ε, Qε) can be viewed as a vector in Rm, as explained in the
paragraph before Lemma 5. This vector takes values in a bounded, closed subset, hence there
exists a sequence ε1, ε2, ... such that εn → 0 and (P εn , Qεn)→ (P ∗, Q∗). Here P ∗ and Q∗ are
some accumulation points. Their existence is an application of Bolzano-Weierstrass. With all
these definitions we can now prove that such Q∗ are a solution to the prediction problem in
the original problem.

Theorem 5. Every conditional prediction Q∗, defined as above, is a best conditional predic-
tion in the original problem.

Proof. First note that P ∗ ∈ P and Q∗ ∈ Q. The structure of the proof is as follows: first we
make two observations on the conditional entropy of the probability distributions P εn ; second
we use these two observations to find that

max
P∈P

EP [− logQ∗(X|Y )] ≤ min
Q∈Q

max
P∈P

EP [− logQ(X|Y )] . (4.3)

From this we conclude that Q∗ is a best conditional prediction.

The first observation is that the conditional entropy is continuous, so

max
P∈Pεn

EP [− logP (X|Y )]→ EP ∗ [− logP ∗(X|Y )] as n→∞. (4.4)
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The second observation uses the indicator function 1x original, which is 1 if x is an original
element and 0 if x is added, i.e. x ∈ X ′\X . We prove via a series of inequalities a lower
bound of the maximum conditional entropy for each ε:

max
P∈Pε

EP [− logP (X|Y )] = max
P∈Pε

EP [− logP (X|Y )1x original] +
∑
y′∈S

ε

(
− log

ε

P (y′)

)
(4.5)

≥ max
P∈Pε

EP [− logP (X|Y )1x original] (4.6)

≥ max
P∈Pε

EP [− logQε(X|Y )1x original] (4.7)

→ max
P∈P

EP [− logQ∗(X|Y )] , as ε→ 0. (4.8)

Equation (4.5) holds, since for any x ∈ X ′\X we have P (X = x, Y = y′) = ε. Equation
(4.7) holds, because Qε(x|y) > P ε(x|y) by definition. Equation (4.8) holds, since we have the
indicator function in the expectation, which reduces it to the original problem.

Now we are ready to prove equation (4.4):

max
P∈P

EP [− logQ∗(X|Y )] ≤ lim
n→∞

max
P∈Pε

EP [− logP (X|Y )] (4.9)

= EP ∗ [− logP ∗(X|Y )] (4.10)

≤ max
P∈P

EP [− logP (X|Y )] (4.11)

= min
Q∈Q

max
P∈P

EP [− logQ(X|Y )] . (4.12)

Equation (4.9) holds by the second observation and Equation (4.10) by the first observa-
tion. Because P ∗ ∈ P, Equation (4.11) holds. The final Equation (4.12) holds by the minimax
theorem (Theorem 2 in Chapter 2).

We conclude that Q∗ is a best conditional prediction.

In this chapter we showed a recipe to find the best conditional prediction in the general
case. The first step was a characterisation of the best conditional prediction in the case that
the solution is not on the boundary. This characterisation is reminiscent of the Coarsening
at Random condition. This is discussed further in the next chapter. For each outcome
x ∈ X there must be a single probability that is the conditional prediction for every possible
subset. Moreover we found that this solution is an equaliser strategy. A problem is that this
characterisation can be invalid if the solution is on the boundary. However, we discovered a
method to use the characterisation of the first step in the general case. In the second step one
must extend the problem with a unique new outcome per subset and give each new outcome
a small probability. In the extended problem the characterisation can be used and gives us a
best conditional prediction. Taking the small probabilities all to zero gives actually the best
conditional prediction for the original conditional prediction problem.
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Chapter 5

Conclusion - Discussion - Future
Work

5.1 Conclusion

The goal of this thesis was to find the best prediction of a random variable conditional
on a revealed subset containing the true value of the random variable. We first cast this
problem in a mathematical framework. We chose to work with a minimax approach with
the expected log loss function. The best conditional prediction minimises the maximum loss
among all possible predictions. The conditional prediction problem can be viewed as a game
between the Decision Maker, i.e. the statistician, and Nature. First the Decision Maker gives
her conditional prediction, then Nature can choose a selection procedure to maximise the
expected log loss.

In Chapter 2 we showed that the minimax theorem also holds in our case, where the
loss can become infinitely large. Therefore we can restrict the problem to maximising the
conditional entropy. If the conditional entropy maximiser P does assigns positive probability
to each feasible combination of outcome and subset, then the best conditional prediction is
just the conditional distribution of P . This is a major step to reduce the complexity of finding
the best conditional prediction.

In Chapter 3 we discovered the best conditional prediction in certain special cases and
we found properties of the conditional entropy maximiser. As an example of the former, the
best conditional prediction is easily found if the set S is a partition: one only needs to use
ordinary conditioning. As an example of the latter, the maximiser does not assign positive
probability to a set y ∈ S, if there is another set y′ such that y ⊂ y′ ∈ S.

We discovered a recipe to find the best conditional prediction in the general case in Chapter
5. First we found a characterisation for the best conditional prediction if the conditional
entropy maximiser does not lie on the boundary. The solution is such that the conditional
probability of an outcome should not depend on the observed set. This characterisation
reminds us of the Coarsening at Random condition, where the conditional probability of the
set should not depend on the outcome.
The most important lemma, also features a property of the conditional entropy maximiser.
The main implication of this lemma concerns the case that each set y ∈ S contains a unique
element, i.e. an element that is not part of any other set in S. In that case the conditional
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entropy maximiser does assign positive probability to each feasible combination of outcome
and subset.

A combination of the lemma and the characterisation gives a method to find the best
conditional prediction in the general case. First one extends the structure of the original
problem with a unique element for each set y ∈ S and assigns each a small probability. For
this case the above characterisation gives the solution. Upon taking the small probability to
zero, one obtains the best conditional prediction of the original problem.

5.2 Discussion and Future Work regarding the loss function

An area of possible further research is the question whether the results in this thesis depend
crucially on the chosen loss function. Another possible loss function is the 0/1 function. In
this case, one has to predict exactly one element for each set. The loss is 0, if indeed this
element was the true value of the random variable. The loss is 1, if the prediction was wrong.
The notation δ is used for the point prediction and it plays a role similar to the probabilistic
prediction Q. The expected loss in this case is given by

∑
x,y P (X = x, Y = y)(1 − δ(X =

x|Y = y)). But now δ(X = x|Y = y) ∈ {0, 1}. Maximising this for a fixed δ is equal
to minimising

∑
x,y P (X = x, Y = y)δ(X = x|Y = y). Intuitively, it seems true that the

minimising P assigns as much probability as possible to sets with δ(X = x|Y = y) = 0.
Therefore the best conditional prediction should try to set δ(X = x|Y = y) = 1 for the
elements that must be assigned the most probability. This leads to the following conjecture.

Conjecture 1. We hypothesize that the best conditional prediction under the 0/1 loss function
is based on the best conditional prediction under the log loss function in the following way:
For each y ∈ S we predict the element that has the highest conditional predictive probability
under the log loss function.

This hypothesis is supported by the fact that it works on all examples considered in this
thesis.

A second possibility is to look at expected variational distance. The expected loss in this
case is given by

∑
x,y P (X = x, Y = y) | P (X = x|Y = y) − Q(X = x|Y = y) |. It is not

directly clear what the maximising P is for a fixed conditional prediction. A small example
shows that it is not equal to the best prediction using log loss found in this thesis. We repeat
the setting of Example 8:

Example 12. [Expected variational distance] Let X = {1, 2, 3} and S = {{1, 2}, {2, 3}}
and the marginal distribution of X is (p1, p2, p3) = (1/6, 1/3, 1/2). As shown in Example 8,
the best conditional prediction is given by:

Q 1 2 3

{1, 2} 2/3 1/3 0
{2, 3} 0 1/3 2/3.

The maximising probability P under the expected variational distance is given by P (X =
2, Y = {1, 2}) = 0. This can be easily computed using mathematical software. With the
maximising probability an expected loss of 1/3 is found.
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Now another conditional prediction in this example is given by:

Q 1 2 3

{1, 2} 5/6 1/6 0
{2, 3} 0 1/2 1/2.

For this conditional prediction we find that the maximising probability P under the expected
variational distance is given by P (X = 2, Y = {1, 2}) = 1/3, yielding an expected loss of
5/18. This expected loss is lower than 1/3, hence the best conditional prediction under
relative entropy, is not best using the expected variational distance.

In Section 2.4 our general model was discussed. There it is mentioned that one should
view Q as a prediction and that it has no direct frequentist interpretation. Therefore a
distance measure such as the expected variational distance is perhaps not such a good tool to
evaluate your prediction. At least we know that it does not result in the same best conditional
prediction. This shows that the results of this thesis do not hold directly in such a different
setting.

5.3 Discussion and Future Work on the Comparison with CAR

In Section 4.1 we found a characterisation of the best conditional prediction in certain cases.
The best prediction satisfies P (x|y) = P (x|y′), if x ∈ y and x ∈ y′. As mentioned in Chapter
4 this reminds us of the CAR condition. The selection procedure is Coarsening at Random if
the probabilities P (y|x) and P (y|x′) are equal for x, x′ ∈ y. Because of this similarity we call
our characterisation reverse CAR. The CAR condition has been studied extensively [Heitjan
and Rubin, 1991, Gill, van der Laan, and Robins, 1997, Gill and Grünwald, 2008].

The paper by Grünwald and Halpern [2003] contains several results we can use. They
study CAR via a 0/1 matrix, which they call the CARacterizing matrix. The definition of
this matrix M is as follows. Each row is identified with an outcome x ∈ X . Each column is
identified with a set y ∈ S. The entries of the matrix are 1 if the corresponding outcome is
part of the corresponding set and zero otherwise.

Example 13. [CARacterising matrix] The CARacterising matrix in the Monty Hall prob-
lem (see Example 2) is given by

M {1, 2} {1, 3}
1 1 1
2 1 0
3 0 1

.

Grünwald and Halpern use this matrix in two ways. First, a condition is given to check
whether CAR may hold. Second, there are easy to check conditions on this matrix, which
guarantee that CAR can not hold. The latter one we can put to use in our setting of con-
ditional prediction. We are interested if the reverse CAR condition can hold. Note that the
CAR and reverse CAR condition switch the role of outcome and subset. That means that
we should look at the transpose of the CARacterising matrix. If it is impossible that CAR
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can hold for this transposed matrix, that implies that it is impossible that the reverse CAR
formula may hold in the original problem.

Further research could focus on the first way Grünwald and Halpern use this matrix. If
CAR can hold for the transpose of the CARacterising matrix, does that imply that the inverse
CAR condition holds in the original problem?

We state one more open question for future research: In Theorem 4 in Section 4.1 we
show that if the best conditional prediction does not lie on the boundary, then it satisfies the
reverse CAR condition. An important question then is: If there exists a P ∈ P satisfying the
reverse CAR condition and also lying in the interior, does that imply that the best prediction
also lies in the interior? If this question could be answered affirmative, then the strength of
Theorem 4 is increased significantly.
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