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Abstract 
As the gathering of data becomes easier, by for instance using computers and the internet, datasets 
keep becoming larger. This makes it more difficult to find an appropriate way to analyze the data. In 
this thesis I have analyzed the data of de Grote Griepmeting (influenzanet), which is a dataset that 
contains over 300,000 measurements. The goal of this thesis is to find out if weather circumstances 
have an effect on the incidence of influenza. To do this the data of de Grote Griepmeting are 
combined with weather variables gathered from the KNMI.  The data of the Grote Griepmeting 
contains repeated measurements, multicollinearity, the covariates are likely to be nonlinear to the 
response variable and because influenza is a contagious disease most likely there will be dependence 
between the subjects. These issues all need to be accounted for in the analysis. In this thesis several 
possibilities to analyze the data are considered; the Cox proportional hazards model, a logistic 
regression model,  generalized estimating equations and the generalized linear mixed model. Finally, 
it was decided to use a logistic regression, with a lasso penalty to account for multicollinearity and B-
splines for nonlinearity. For using the B-splines a lot of extra variables need to be created, so the data 
expand even more. Computations become bothersome, and a trick from the medical field that is 
used in case-control studies is introduced to reduce computational time.   
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1. De Grote Griepmeting 
 
1.1 Influenza 

Influenza is an acute viral infection that spreads easily from person to person[1].  This happens 
through people coughing, causing infected droplets in the air, which others breath in. Influenza can 
also spread by for instance touching an infected hand. It is a serious public health problem that 
causes severe illness. It can affect anybody in every age group, but it is especially dangerous for high 
risk populations, such as children under 2 years old, the elderly above 65 and people with severe 
medical conditions, in which influenza can cause death. Worldwide the incidence of influenza is 
about 3 to 5 million cases of severe illness and about 250.000 to 500.000 deaths per year. Most 
deaths associated with influenza in industrialized countries occur among people of age 65 or older.  
Influenza also takes an economic toll through lost workforce productivity and overwhelmed hospitals 
during influenza epidemics.   
The symptoms of influenza are a sudden onset of high fever, a dry cough, sore throat, runny nose, 
headache, muscle and joint pain and severe malaise. Most people recover of the fever in a week, but 
the cough can last for over 2 weeks. Medical attention is not needed in most cases. The incubation 
time for influenza is around 2 days[2].  
This thesis will focus on influenza in The Netherlands and its potential to be influenced by weather 
circumstances. The Netherlands has a temperate climate, which means that the changes in weather 
between summer and winter are moderate. In regions with a temperate climate, like The 
Netherlands,  the influenza epidemics will peak during winter[1]. This might indicate a relation 
between weather circumstances and influenza.  
The incidence of influenza in The Netherlands is around  40 per 1000 persons each year [3]. During an 
epidemic this can run up to about 50 to 200 per 1000 persons. The incidence of influenza is greatest 
in children from 0-5 years old. In the Netherlands less than 1 per 100.000 persons die each year from 
influenza. During an epidemic  about 15.000 to 30.000 people are hospitalized. 
Articles have been written on the influence of the weather on the mortality of influenza[4][5] and on 
the relationship between respiratory illnesses and the weather[6][7]. There are also articles on the 
relationship between the incidence of influenza and weather variables [7][8]. However, all studies on 
the relation between influenza and the weather were performed in Northern America, the East of 
Asia and Australia. It seems that similar studies have not yet been conducted in Europe. In all current 
articles on this topic, the subjects were retrieved from clinics. 
In this thesis the data from the Grote Griepmeting[9] will be used. The Grote Griepmeting is an 
internet questionnaire, used in The Netherlands, in which everybody can participate, so not just the 
subjects that report to clinics are used. Because of the large peaks in influenza-like illness during 
autumn and winter time in temperate climates, as can be seen in The Netherlands as well, the 
question rises whether weather circumstances play a part in inducing the onset of influenza.  In this 
thesis I do not want to see if there is just a relation between the incidence of influenza and the 
weather, but if it is possible to predict the incidence of influenza using weather variables, which will 
be retrieved from the Koninklijk Nederlands Meteorologisch Instituut (KNMI)[10]. This thesis will try to 
answer the following question: Can the incidence of influenza-like illness be predicted using weather 
variables? 
 
 

1.2 Introduction to the Grote Griepmeting 
Until recently, the only insight in influenza in the Netherlands came from information obtained by 
general practitioners (GP’s). Not everyone with symptoms of influenza will check in with their GP, so 
this information will not be completely representative.  
In 2003 the Grote Griepmeting kicked off. The Grote Griepmeting tries to get an insight in the 
distributions of colds and influenza in the Netherlands by using an internet questionnaire asking 
“plain” people about their symptoms. Participants are asked to check boxes indicating the symptoms 
they experience. It is not possible to know if the participant has influenza, because there is no simple 
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home test or test the general practitioner can perform to find out if the symptoms experienced are 
caused by influenza. This is why participants are not asked if they suffer from influenza. Experts have 
established criteria regarding which combinations of symptoms are likely to reflect influenza. If a 
participants symptoms fit the criteria we say the participant has “influenza-like illness” (ILI), since we 
cannot be positive whether it really is influenza. For this thesis I have been using the raw data and 
established my own definition of ILI.  
The Grote Griepmeting was founded by Carl Koppeschaar[11], an astronomer, physicist and 
mathematician. The team of the Grote Griepmeting also contains biologists, virologists, medical 
doctors, computer scientists and web hosts.  
The Grote Griepmeting started in the season of 2003/2004 on the 3rd of October and was the first in 
the world to collect data on colds and influenza through the internet[9]. The goal of the Grote 
Griepmeting is to collect as much detailed data as possible on cold- and influenza epidemics. The 
purpose for this data is for researchers to be able to create models on influenza or create simulations 
on for instance the spread of influenza.  A lot of topics could be researched with these data, for 
instance the effectiveness of the flu shot or  the typical geographical distribution of influenza like 
illness. The distribution of ILI can consecutively be compared with for instance transportation 
methods, like public transportation. These are just a few examples.  
In the season of 2004/2005 the project was expanded with additional research on the relation 
between stress and influenza. In the season of 2005/2006 the project became international when 
Portugal joined and in 2008 Italy followed. In collaboration with the Portuguese and Italian 
colleagues the European influenza measurement was founded. This was a central part of the 4-year 
lasting European research program EPIWORK.  This project was funded from 2009 until 2013 by the 
European Commission.  In the past year also Great-Britain, Sweden, France and Spain joined the 
project. The project went worldwide when also Australia and the United States joined.  
Participants of de Grote Griepmeting are recruited in several ways[12]. Articles have been published 
on a regular basis in prominent (and less prominent) newspapers like Sp!ts and Trouw, magazines 
like the Libelle, but also on websites like nu.nl, ziekenhuis.nl and gezondheidsplein.nl. Also several 
television and radio interviews were conducted. Scientific articles have also been published based on 
the Grote Griepmeting, for instance articles of Marquet et al. (2006)[13], Friesema et al. (2009)[14] and 
van Noort (2012)[15]. There are also publications based on the influenzanet, the international version 
of the Grote Griepmeting.  
 
 

1.3 Data obtained from the Grote Griepmeting 
I had access to the data of 8 seasons from the Grote Griepmeting, ranging from season 2003/2004 
until season 2010/2011. The seasons contain over 300.000 measurements each. Therefore it  was 
decided to only use season 2010/2011 to start with.  
 
The Grote Griepmeting is an internet questionnaire consisting of two parts; the intake and the 
weekly questionnaire. In  the intake questionnaire, questions are asked to obtain demographic 
information about the subject, which is not of much interest for this study, except for the postal 
code. Via the postal code, the subject’s hometown can be linked to the nearest KNMI weather 
station. We have chosen this approach, since we expect substantial differences in values for the 
weather variables for places landward and on the coast.  
 For this study, the primary interest is in the weekly questionnaire.  The questionnaire is given 
in Appendix A. The data obtained from the weekly questionnaire contains a maximum of 17 
variables. Not all questions from the questionnaire are filled out when the subject reports no 
symptoms.  
The following variables were selected from the weekly symptoms’ questionnaire (and the postal 
code is added from the intake questionnaire);  
 

- Date         : The calendar date at which the measurement is taken 
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- Uid            : a unique number indicating a subject 
- Feverstart: The date the fever started 
- PChome   : Postal code corresponding to the subjects home address 
- Fever        : Variable indicating the body temperature of the subject at the feverstart date 

 
Since the date of the measurement and the date on which an episode of fever for a subject started 
can be different, the variable feverstart was added to the data. In Table 1 a short extract of the data 
is presented.  
 

 
Table 1. A short extract of the data 
 
The first column “date” is the calendar date at which the measurement is recorded. As can be seen 
from this column the questionnaire was filled out every week. Subjects get a reminder per e-mail 
each week to fill in the questionnaire. Of course participating is free of obligation, so it is possible 
that participants refrain from filling out the questionnaire every week. This can be seen in Table 1 
between the 8th and 9th row, where the measurements for subject 184 are 2 weeks apart. In the 
second column of Table 1, the variable ‘uid’ indicates that the data of subject 182 and 184 are 
shown.   
The variable “feverstart”  shows that subject 184 experienced an episode of ILI, which started at 
2010-12-09, which the subject filled out on the calendar date 2010-12-13. Here, the following 
situation is recognized; the variable “feverstart” indicates when the episode of ILI started, but there 
is no variable indicating when the episode ends. What is known is that subject 184 reports to be 
healthy at the date of the next measurement at 2010-12-20. The ‘fever’ variable from line 9 indicates 
the measured body temperature in case of illness. For example we know that the body temperature 
of subject 184 was 38.0 degrees Celsius. 
 
 

1.4 Data preparation: creating variables 
The definition of ILI in this thesis will be based on body temperature. A subject is affected by ILI if the 
body temperature is equal or higher than 38.0 degrees. This definition is chosen because it is hard to 
define ILI from the symptoms listed by the subjects, especially when one does not know the severity 
of the symptoms and whether or not there are other ways of explaining  them. Therefore the body 
temperature (commonly known as fever) seems the most clear-cut way to define ILI. To enable 
statistical analysis, a dichotomous (0/1) variable for the outcome measure fever needs to be created. 
The variable “feverstart” cannot simply be turned into an indicator variable when a date occurs, since 
it contains dates for which the temperature is lower than 38.0 degrees. Therefore, the variable 
“dumfever” is created,  using information from the ‘fever’ variable, which will be a dichotomous 
variable with value equal to ‘0’ indicating no signs of ILI and value equal to ‘1’ indicating a body 
temperature equal or over 38.0 degrees, hence an episode of ILI.  
 
The original survey data of season 2010/2011 consists of 17 columns and 307,321 rows. The rows 
being the 307,321 measurements obtained from 17,871 subjects. This means there are on average 
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17 measurements per subject. From these 17,871 subjects,  13,496 never experienced an episode of 
influenza-like illness, whereas  4,375 people did experience at least one episode of ILI. 
  
 The weather stations are located in different locations in The Netherlands. To connect the 
subject’s home postal code to the nearest weather station, a variable “ken” is created. The nearest 
weather station will be assigned the same “ken” number, so the “Grote Griepmeting” data and the 
“KNMI” data can be merged by  the “ken” variable. An example of the extended dataset in which 
both the variable “dumfever” and “ken” are added is given in Table 2. 
 

 
Table 2. Two additional variables: dumfever and ken 
 
 

 1.5 Data preparation: cleaning up the data 
The data is checked for large gaps in between the measurements. If subjects have large gaps in 
between their measurements, this could indicate that they do not fill out the questionnaire 
consistently and that they might not be reliable subjects. It is likely that subjects loose interest in the 
Grote Griepmeting when they do not experience ILI and only fill out the questionnaire when they do 
experience symptoms. This would induce bias. Hence, the subjects with gaps between measurement 
larger than 40 days, which would equal missing 5 measurements, are excluded from the study. For 
the smaller gaps it is assumed that no episode of influenza-like illness occurred. Now, 888 subjects 
were excluded (5%), which accounted for a total of 8,620 measurements (2%). 
 The number of measurements per subjects is checked in the data. This is done because 
subjects with only a few measurements have low reliability, because there is no telling whether they 
fill out the questionnaire consistently, which could also induce bias. Decided is to exclude subjects 
with less than 5 measurements.  Another 3,199 subjects were excluded from the study, which 
accounted for 6,066 measurements. In total 4,087 subjects were excluded from the study (23%) 
which represented 14,686 measurements (5%). 
 The prepared data now contains 13,784 subjects and 292,639 measurements.  
 
 

1.6  Data preparation: expanding the data 
In this thesis we are interested whether weather variables are related to the onset of ILI.  In order to 
answer this question, the weather variables need to be matched to the days the subject is at risk of 
experiencing the event.  As can be seen from Table 2, the data at this point contains intervals of a 
week or more. We want to create intervals of one day, so weather variables can be connected to 
each day. What is known is that, if in two consecutive measurements no fever is reported and there 
is no reported ‘feverstart’ date, there will be no incidence of ILI in between these measurements. For 
example, subject 182 reports no fever at 2010-04-18 and 2010-04-25. For this period we can create 7 
intervals of one day, where no fever or feverstartdate is reported and so the dumfever variable is 
zero. If one day intervals are to be created for periods that contain an episode of ILI, it gets more 
complicated, since it is unknown at what date the episode ends. Intervals at which the subjects still 
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experience ILI after the onset date should not be included, since the subject is not at risk to be 
infected with another episode of ILI at this time. Since there is no way of knowing the exact date of 
recovery from the episode of ILI, it was decided to exclude the period after the date of the feverstart 
date. The first interval that will be reported after an episode of ILI, will be the first calendar date at 
which the subject reports healthy after an episode of ILI. For example, for subject 184 (see Table 2), 
for the period between calendar dates 2010-11-29 and 2010-12-20 the following 1 day intervals will 
be created. From 2010-11-29 until 2010-12-08, 1-day intervals will be created with dumfever = 0. The 
1-day interval 2010-12-08 until 2010-12-09 will have dumfever =1. The intervals from 2010-12-10 
until 2010-12-19 will be missing, since it is unknown in this period whether the subject is healthy or 
still experiences ILI, so whether or not the subject is at risk. Table 3 presents an example of what the 
data will look like at this point. In this table it can be seen that at calendar date interval 2010-11-08 
until 2010-11-09 an episode of ILI starts. The next interval  is 2011-11-20 until 2011-11-21, so 11 
intervals are missing, because it is unknown in these intervals if the subject is experiencing ILI.  
 

 
Table 3. Creating 1-day intervals 
 
In Table 4 and 5 an example is shown of how intervals are created when the subject reports 
consecutive episodes of ILI. Probably the subject did not recover from the episode it reported at the 
first measurement and this can be seen as one long episode of ILI. As can be seen in Table 5 all 
intervals after the first interval in which ILI was reported are excluded. The next interval starts when 
the subject report healthy again. In Table 4 it can be seen that only a body temperature of 38.0 
degrees Celcius or more is denoted as an episode of ILI. When subject 73 experienced a body 
temperature of 37.5 the dumfever variable was set to zero.  
 

 
Table 4. Consecutive ILI reported 
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Table 5. Intervals created for the period of consecutive ILI reported 
 
 
 

2. KNMI data 
 

2.1 Koninklijk Nederlands Meteorologisch Instituut (KNMI) 
The data containing the weather variables are obtained from the “Koninklijk Nederlands 
Meteorologisch Instituut” (KNMI)[10]. The obtained data consists of 39 weather variables and a 
variable containing the date of the measurement. In appendix  B the complete list of variables 
obtained from the KNMI is demonstrated. Based on an article of Steven Zhixiang ZHOU (2009)[16] on 
seasonal influenza all around the world several variables are selected. 
 
Motivation for variables:  

 Average temperature:  
1. Cold air inhaled can reduce the respiratory defences such as mucociliary clearance 

and phagocytic activity of leukocytes. 
2. Cooling of the body surface can cause vaso-constriction in the nose, resulting in 

reduced blood flow and leukocyte supply and increased susceptibility to infection.  
3. Cold temperature influences host behaviours by driving people to stay indoors, 

increasing the proximity between susceptible individuals and infected hosts. 

 Change in temperature: 
1. Abrupt change in temperature causes people to develop more influenza-like 

symptoms. 

 Humidity:  
1. Viruses remain longer viable when humidity is low.  
2. In a dry atmosphere, virus carrying particles expelled from infected hosts can remain 

suspended in the air for a longer time, increasing the likelihood for transmission. 
When the air is dry, large drops partially evaporate, creating smaller lighter drops 
that are more likely to remain airborne for extended periods of time. 

3. Inhalation of air with low humidity could dry the mucus, impairing the subject’s 
defences against infection.  

 Dew point: 
1. A strong correlation between influenza activity and low dew point temperature in 

temperate and arctic regions was found. 
2. Dew point is a comprehensive estimator of temperature and humidity with less 

chance for misinterpretation than the effect of pure vapour amount in the air.  

 Solar radiation:  
1. Studies have indicated that the influenza virus is sensitive to the electric magnetic 

spectrum near 254-nm and can be inactivated by solar radiation. 

 Sun hours:  
1. Solar radiation exposure and length of daily photoperiod affect a subject’s vitamin D 

level and emotion. Vitamin D modulates the effectiveness of macrophages and 
induces antimicrobial peptide gene expression. Emotions can affect the susceptibility 
to the common cold.  

 Precipitation: 
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1. Precipitation is usually highly correlated to weak solar radiation, reducing germicidal 
effect and Vitamin D level.  

2. It can affect subject behaviours, mainly the frequency of contact with other hosts. 
3. The grey outside world may induce negative feelings, which can significantly reduce 

natural killer cytotoxicity in the immune system and increase the susceptibility to the 
common cold.  

 
Not all the above mentioned variables are already available from the obtained data from the KNMI. 
The unavailable variables will be created from the KNMI data. This will be described in the data 
preparation. 
 
 

2.2 Data preperation: creating variables  
From the KNMI data we can already extract the following variables (names used in the tables are in 
brackets): 

- Average daily wind speed in 0.1 m/s (wind) 
- Average daily temperature in 0.1 degrees Celsius (temp) 
- Minimum daily temperature in 0.1 degrees Celsius (mintemp) 
- Maximum daily temperature in 0.1 degrees Celsius (maxtemp) 
- Percentage of maximum potential sunshine duration (zonduur) 
- Global radiation in J/cm2 (straling) 
- Precipitation duration in 0.1 hour (neerslagduur) 
- Daily precipitation amount in 0.1 mm (-1 for <0.05 mm) (neerslagsom) 
- Daily average relative atmospheric humidity in percents (vochtigheid) 
- Potential evapotranspiration (Makkink) in 0.1 mm (ref) 

 
The “neerslagsom” variable turns -1 when the daily precipitation amount is less than 0.05 mm. Since 
the precipitation amount cannot be less than zero, the value -1 is turned into zero.  
 
The following variables are created from the KNMI-data: 

- Consecutive days with less than an hour of sun in days (dzz) 
- Consecutive days with precipitation in days (dmn) 
- Maximum difference in temperature per day in  0.1 degrees Celsius (tempdiff) 

 
 
 
         3. Merging of the data 
In general, the incubation period for influenza is estimated to range from 1 to 4 days with an average 
of 2 days[2]. It has to be taken into consideration when  the Grote Griepmeting data is merged with 
the weather variables. To do this 1 (2, 3 or 4) day(s) is added to the dates of the weather variables. In 
this way the weather variables of the day before the measurement are matched to the 
measurement. Table 6 presents the data when just the weather variables of 1 day before the 
measurement are added in addition to the measurements of one day before. For the complete 
dataset, weather variables belonging to respectively 2,3,4 days before the measurement are added. 
The days are indicated by the number behind the variable. The total dataset now contains 57 
columns and 2,137,304 rows.  
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Table 6. Piece of Grote Griepmeting and weather variables 1 day before measurement.  
 
The data of the Grote Griepmeting and the KNMI are combined now. With this dataset it will be tried 
to answer the following question: Can the incidence of influenza-like illness be predicted using 
weather variables? 
 
 
 

4. Points of attention in the data 
 

4.1 Repeated measurements 
The data of the Grote Griepmeting contains repeated measurements on a single individual on 
different occasions, since each individual fills out the questionnaire more than once[17]. The repeated 
measurements for the subjects in the Grote Griepmeting are ordered in time.  
Measurements within a cluster will typically exhibit a positive correlation, which should be accounted 
for in the analysis. The positive correlation violates the assumptions of independence, which is  
crucial in most standard statistical analysis techniques. So it is necessary to find a technique that 
takes into account this correlation between measurements.  
 
 

4.2 Nonlinearity  
It is expected that the relation between the explanatory variables (i.e. the weather variables) and the 
response variable (incidence of ILI) will not be perfectly linear[18]. There are different spline methods, 
but in this thesis I have chosen to use B-splines[19]. First the range of a weather variable X is divided 
into intervals. The endpoints of these intervals are called the knots. The minimum and maximum of 
the range of X are called the boundary knots, and the other points in between the boundary knots, 
are called the inner knots (K). Thus, if for example 4 intervals are chosen, we have K=3 inner knots, 
and two boundary knots. The B-splines are of a chosen degree (q) and this degree defines the degree 
the polynomials the B-splines consist of have. Thus, on each interval the effect of X is modeled by a 
polynomial of the degree q. The polynomials should be smoothly connected, which is done by forcing 
them to be connected in the knots with the same first up to the (q-1)th derivative, which depends on 
the degree chosen for the B-splines. Thus, splines consist of several polynomial pieces, smoothly joint 
in so-called spline knots. The knots are inserted at chosen values of the weather variable.  
In this thesis it was chosen to use cubic B-splines (so degree,  q = 3), because a cubic spline gives a 
curve that appears smooth to the human eye and higher degrees will probably not improve the 
model much. For a cubic spline the first and second derivative of  the polynomials should be equal in 
the knots. If there are no inner knots, 4 regression parameters are needed to model a cubic 
relationship including an intercept. If one inner knot is added, another 4 parameters are added, but 
only one of them is effectively free, because the two third degree polynomials are forced to be 
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connected and to have the same first and second derivative. Thus, the B-spline has 5 regression 
parameters if the model includes an intercept and 1 inner knot, and for each extra inner knot one 
extra parameter is added. In general the number of regression coefficients is q+1+K including the 
intercept, or q+K excluding the intercept. The corresponding q+K covariates are called the spline 
basis functions.  
 
In this thesis I will mostly use cubic B-splines with 5 inner knots, so 8 covariates have to be 
calculated. There are several methods to calculate these covariates, among them the method based 
on the recurrence relation of Carl de Boor[20].  
In Graph 1 an example of 8 B-spline basis functions is shown for the Radiation Day 2 weather 
variable. The grey dotted lines show the positions of the inner knots, the boundary knots are 
indicated by the black dotted lines. As can be seen, 8 B-splines are created, each ranging over 5 
adjacent knots and consisting of 4 intervals, being described by third degree polynomials.  
The R-package ‘splines’ was used to create the B-splines[21]. It creates extra 8 columns for the B-
splines in the dataset per weather variable.  
 

 
Graph 1. Example of B-spline  
 
If a linear combination is made, by multiplying the 8 columns of values for the splines with the 
corresponding value of the weather variable and then add up the results of the multiplication a 
smooth curve appears. This curve can be seen in Graph 2.  
 



10 
 

 
Graph 2. B-spline curve 

4.3 Multicollinearity 
Another issue that needs to be addressed is multicollinearity[22]. Multicollinearity refers to a situation 
in which one or more covariates in the model are highly correlated. If multicollinearity occurs, 
regression coefficients can be determined, but the standard errors will be large, which means that 
the coefficients cannot be estimated with great accuracy. Collinearity can cause unstable estimates 
of covariates, which can mask or amplify the underlying true effect. Also, some covariates may be 
dropped from the model, although they are important in the research. Collinearity can be explored 
by examining the correlation matrix or the eigenvalues.  
The dataset in this thesis contains over 40 variables, mainly weather variables, consisting of a set of 
11 variables, repeatedly measured over 4 consecutive days. These 11 variables, will be highly 
correlated over the different days. Also between different variables on the same day a high 
correlation can be expected, because some weather variables influence each other. For example, 
when there is a great amount of precipitation, the amount of sun hours will be low.  
Bridge regression[23] is a special family of penalized regression methods that deals with collinearity. 
The bridge regression minimizes the negative log-likelihood subject to constraint Ʃ|βj|

ϒ ≤ t with ϒ>0, 
where the βj’s are the regression coefficients corresponding to the weather variables in some chosen 
statistical model.  In this way the estimates are shrunken towards zero. By shrinking the estimates a 
little more bias is introduced in order to reduce the variance of the estimates and reduce the mean 
squared error. The regression model can have better predictor accuracy this way.  
A special case of bridge regression is ridge regression[24], where ϒ=2. Ridge regression shrinks 
variables towards zero, but keeps all the variables in the model. Another special case is the “least 
absolute shrinkage and selection operator” (lasso)[25], where ϒ=1. This method will shrink some 
variables towards zero and set others to zero, in this way performing variable selection. A 
disadvantage of the lasso penalty is that it possibly will select different variables when the dataset is 
slightly changed[26]. Also standard errors cannot be calculated in the conventional way[25] for ridge 
and lasso regression,, so an alternative method like the bootstrap should be used to calculate a 
measure for variability. In this thesis there are a great amount of variables. The lasso selects 
variables, which makes the model more workable and easier to interpret and because of this the 
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lasso method was chosen for this analysis. The lasso solves the problem of finding the estimates for β 
by minimizing the “penalized”negative log-likelihood in the following way[27]:  
 

𝜇̂(𝜆), 𝜷̂(𝜆) = 𝑎𝑟𝑔min𝜇,𝛽(−∑ log⁡(𝑛
𝑖=1 𝑝𝜇,𝜷 (𝒚𝒊|𝑋𝒊) + 𝜆||𝜷||1),  

where 𝑝𝜇,𝛽(𝒚𝒊|𝑋𝑖) is the probability density function through which 𝒚𝒊 depends on 𝑋𝑖,   𝒚𝒊 is the 

observed outcome variable, 𝑋𝑖  is a vector containing the covariates, 𝜷 is a vector of unknown 
regression parameters and 𝜆 is a tuning parameter. Usually the intercept term is not penalized and 
this will also not be done in this thesis. The tuning parameter controls the amount of shrinkage that 
is applied to the estimate. The higher the tuning parameters, the more shrinkage is introduced and 
the more estimates will be set to zero. Determination of the tuning parameter can be done by cross 
validation. The lasso regression can for instance be performed with the R-package ‘penalized’[28].  
 
The splines that will be used in the analysis consist of 8 different columns of values, which are added 
to the design matrix. Since the lasso penalty can set variables, or in this case spline parts of the 
variables, to zero, incomplete spline variables can enter in the model, which was not intended. We 
would want to select all 8 parts the spline consists off or set all of them to zero. The accomplish this 
the group lasso[29] will be used. The group lasso function was originally developed to perform the 
lasso penalty on categorical variables, but it seems suitable for the spline variables too. For the spline 
variables it will select all parts of the spline or it will set the complete spline to zero. The group lasso 
can for instance be performed by the R-package ‘grppenalty’[30]. 
 

 
 
4.4 Independence of subjects 

In the analysis it is assumed that the subjects in the study are independent from each other. 
Influenza-like illness is a contagious disease, so the subjects will probably not be independent. If one 
of the subjects is infected with influenza-like illness, the disease will spread and more people will get 
infected. As long as there is no subject who is infected the disease will not spread. 
This relationship is not modelled in the analysis, since we do not know an appropriate way to model 
the correlation between subjects.  
 
 
 

5. Proposals for analysis and why they were rejected 
 
 5.1  Cox proportional hazards model 
The first analysis that probably comes to mind for this kind of data will be survival analysis, since the 
data contains periods of time until ILI occurs. In this thesis we are not so much interested in the time 
until the episode of ILI occurs, but into the effects the weather circumstances have on the incidence 
of ILI. The Cox proportional hazards model can be used to estimate the hazard rate[31]. The hazard 
rate is the rate with which the subjects at risk of ILI, so the subjects that were healthy the day before,  
are experiencing an episode of ILI at the chosen time point. The time points in this thesis being the 
one-day intervals created earlier. The hazard 𝜆 rate is defined in the following way:  
 

   𝜆(𝑡) = ⁡ limΔ𝑡→0
𝑃(𝑡≤𝑇<𝑡+∆𝑡|𝑇≥𝑡)

∆𝑡
, 

 
where 𝜆(𝑡) is the function giving the hazard rate at time 𝑡 and T is the time at which the episode of 
ILI starts.  



12 
 

With the Cox proportional hazards model one can estimate the hazard rate using the weather 
variables as explanatory variables. The weather variables will change over days, so the model should 
contain time-dependent covariates (covariates that change over time).  
 
The Cox proportional hazards model describes the hazard ratio as dependent on the weather 
variables in the following way:  
  

𝜆(𝑡|𝒙𝒊𝒕) = 𝜆0(𝑡)𝑒
𝒙𝒊𝒕𝜷, 

where 𝜆(𝑡|𝒙𝒊𝒕) is a function giving the hazard rate at time 𝑡 (a one-day interval) given the weather 
variables 𝒙𝒊𝒕, 𝜆0 is a function containing the baseline hazard at time 𝑡, 𝜷 is a vector of unknown 
regression parameters and 𝒙𝒊𝒕 is a vector containing the values of the weather variables at 1,2,3 and 
4 days previous to time 𝑡, but in the design matrix these values are corresponding to time t. By taking 
the values of the covariates at time 𝑡, the covariates are made time-dependent. If 𝒙𝒊𝒕 was replaced 
by 𝒙𝒊,  𝒙𝒊 would not depend on time and the variable would be stationary. Stationary and time-
dependent covariates can simultaneously be included in the model.  
The estimation of the 𝜷-coefficients can be done using the maximum likelihood approach. By 
maximizing the likelihood the values for the coefficients are found that are most “likely” for the data. 
This can be done with for instance R-software package ‘coxph’[32]. 
Subjects participating in the Grote Griepmeting can experience multiple episodes of ILI. The 
correlation introduced by these recurrent events need to be accounted for in the Cox model. This can 
be done in two ways, namely with the Andersen-Gill method (A-G method)[33] or with a frailty 
variable[31]. 
The Andersen-Gill method adds a covariate to the Cox model, which counts the number of events, in 
this case episodes of ILI,  that the subject has yet experienced.  
Another way to account for the recurrent events in a Cox model is to add a frailty variable. A frailty 
variable is a random effect that is added to the model to describe the frailty of the subjects in the 
study, so each subject has its own value for the frailty. The higher the value of the frailty for a 
subject, the higher the chance this subject will be infected with influenza-like illness. In this analysis 
the frailty variable is not used to see which subject is most frail, but to adjust for overdispersion, or 
said otherwise, for the correlation between the outcomes of the same subject. The frailty adjusts for 
effects that are not measured by the other covariates in the model, but which can be important for 
the model. If this is ignored the hazard rate estimates may be biased.  
The difference between the two methods is that the A-G method is a population-averaged method, 
which means it predicts the mean response of the population and the frailty method is subject-
specific, which means that the estimated coefficients describe the changes in the mean response of a 
specific subject. 
 
The Cox proportional hazards model is less appropriate for my goal for the analysis, because of the 
baseline hazard. The baseline hazard changes for each time 𝑡. Because of the different baseline 
hazards for each time 𝑡, the baseline hazard rate contains the effect for the different days. The 𝛽-
coefficients will now only contain the effect caused by the minor differences in weather 
circumstances on a specific day, for instance May 5th 2011 , but at different places in The 
Netherlands. The effects of the much larger weather differences between the days are not picked up 
by the regression coefficients, but disappear in the baseline hazard. What we are aiming for in this 
thesis is to find the effects of the different weather circumstances on all different days of the year, 
since we want to know if subjects would experience ILI more often in for instance low temperatures 
in January instead of high temperatures in June.  
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 5.2 Logistic regression 
The next idea that came to mind is the logistic regression model[17]. In logistic regression the 
observed outcome variable, referred to as 𝑦𝑖𝑡 ⁡here, is binary, which means the variable only contains 
0/1 outcomes. In this thesis the observed outcome variable is whether the subject experiences the 
start of an episode of ILI (𝑦𝑖𝑡 = 1) or not (𝑦𝑖𝑡 = 0) on a specific day. Since there are two possible 
outcomes for 𝑦𝑖𝑡, the probability distribution for 𝑦𝑖𝑡  is Bernouilli, with 𝑃𝑟(𝑦𝑖𝑡 = 1) = 𝑝𝑖𝑡  and 
𝑃𝑟(𝑦𝑖𝑡 = 0) = 1 − 𝑝𝑖𝑡. The logistic regression describes the effect  the covariates have, in this case 
the weather variables measured 1,2,3 and 4 days previously to a specific time day,  on the chance 
that (𝑦𝑖𝑡 = 1), so a case of ILI. In a linear predictor 𝒙𝒊𝒕𝜷⁡the predicted outcomes can range from 
minus infinity to infinity, but the observed outcomes range from 0 to 1. A transformation is needed 
to confine the predicted outcome to the range of 0 to 1. In case of the logistic regression this is done 
by a logit link. The mean of each response 𝐸(𝑦𝑖𝑡|𝒙𝒊𝒕) = 𝑝𝑖𝑡  depends on the covariates in the 
following way:  
   

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑡(𝒙𝒊𝒕)) = log (
𝑝𝑖𝑡(𝒙𝒊𝒕)

1 − 𝑝𝑖𝑡(𝒙𝒊𝒕)
) = ⁡𝒙𝒊𝒕𝜷⁡, 

where 𝜷 is a vector of unknown regression coefficients and 𝒙𝒊𝒕 is a vector containing the covariates. 
If 𝑝𝑖𝑡  is the probability of occurrence of ILI or in general an event, then 𝑝𝑖𝑡/(1 − 𝑝𝑖𝑡) is the odds of an 
event occurring, so log⁡(𝑝𝑖𝑡/(1 − 𝑝𝑖𝑡)) is the log odds of an event occurring.  
The logistic model can be expressed in terms of probability of an event in the following way:  
 

𝑝𝑖𝑡(𝒙𝒊𝒕) =
𝑒𝒙𝒊𝒕𝜷

(1 + 𝑒𝒙𝒊𝒕𝜷)
, 

The estimation of the 𝜷-coefficients is done using the maximum likelihood approach. If outcomes of 
the same subject would be independent, the likelihood for the logistic regression is as following:  
    

𝐿(𝜷, 𝑦) =∏𝑝𝑖𝑡
𝑦𝑖𝑡

𝑖,𝑡

(1 − 𝑝𝑖𝑡)
(1−𝑦𝑖𝑡) 

From which the following log-likelihood can be derived: 
   

𝑙(𝜷, 𝑦) =∑(𝑦𝑖𝑡𝑙𝑜𝑔(𝑝𝑖𝑡) + (1 − 𝑦𝑖𝑡) log(1 − 𝑝𝑖𝑡))

𝑖,𝑡

 

The logistic regression model and the Cox proportional hazards model have a lot of similarities. It is 
actually possible to convert the Cox model into a logistic regression model.  
The formula’s for the models are already described above, but will be written again in a way so the 
resemblance becomes more clear. 
 

Cox proportional hazards model: 𝜆(𝑡|𝑥𝑖𝑡) = 𝜆0(𝑡)𝑒
𝛽1𝑥1+⋯+𝛽𝑝𝑥𝑝, 

where 𝜆(𝑡|𝑥𝑖𝑡) is a function giving the hazard rate at time 𝑡 (a one-day interval) given the covariates 
𝑥𝑖𝑡,  𝜆𝑜  is a function containing the baseline hazard at time 𝑡, (𝛽1…𝛽𝑝) is a vector of unknown 

regression parameters and (𝑥1…𝑥𝑝) is a vector of the covariates. 

 

Logistic regression model: log (
𝑝𝑖𝑡

1−𝑝𝑖𝑡
) = ⁡𝛽0(𝑡) + 𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝  ->  

𝑝𝑖𝑡

1−𝑝𝑖𝑡
= 𝑒𝛽0(𝑡)+𝛽1𝑥1+⋯+𝛽𝑝𝑥𝑝 , 
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where 𝑝𝑖𝑡/(1 − 𝑝𝑖𝑡) is the odds of experiencing ILI, 𝛽0(𝑡) is the intercept which depends on time t, 
which in case of logistic regression are one-day intervals, 𝛽1…𝛽𝑝  is a vector of unknown regression 

parameters and 𝑥1…𝑥𝑝𝑛 is a vector of the covariates. The main difference between the two models, 

is that the Cox model predicts a probability (time is discrete, so the hazard reduces to a conditional 
probability) and the logistic model predicts odds. Influenza-like illness is an event that occurs rarely in 

the Grote Griepmeting. If the event occurs rarely, we have 
𝑝𝑖𝑡

1−𝑝𝑖𝑡
⁡≈ 𝑝𝑖𝑡, since 𝑝𝑖𝑡  will be close to zero. 

The odds that is predicted in the logistic model is now very close to the chance predicted in the Cox 
model, which makes that the models resemble each other very much.  
 
The disadvantage of the logistic regression is that the correlation between repeated measurements 
in an individual is not modelled here.  
 
 

 5.2.1 Generalized Estimating Equations 
The next idea that came to my mind is the marginal modeling approach[17]. The marginal modeling 
approach is a way to extend generalized linear models to handle the repeated measurements, as are 
present in the Grote Griepmeting data. In marginal modeling no assumptions about the distribution 
of the observations are required in general. The specification of a marginal model contains three 
steps. The first step is specifying a model for the mean response. The mean response 𝜇𝑖𝑡  of the 
outcome 𝑦𝑖𝑡  is modeled in a linear way by choosing a known link function and assuming that  
𝑔(𝜇𝑖𝑡) = 𝒙𝒊𝒕𝜷. Since the outcome data of this thesis are binary, the model used here will be the 
logistic model  and the link function used will be the logit link, as were both described in section 5.2. 
The second step is to specify a model for the conditional variance of 𝑦𝑖𝑡  given the covariates, which 
will be done in the form of: 𝑉𝑎𝑟(𝑦𝑖𝑡) = 𝜙𝑣(𝜇𝑖𝑡), where 𝑣(𝜇𝑖𝑡) is a known variance function and 𝜙 is 
a scale parameter that is known or needs to be estimated. As 𝑦𝑖𝑡  is Bernouilli, the variance function 
is:  
 

𝑉𝑎𝑟(𝑦𝑖𝑡) = 𝜇𝑖𝑡(1 − 𝜇𝑖𝑡) 

As can be seen, the first two steps of the marginal model are nearly equal to those of the generalized 
linear model. The difference being that no distributional assumptions need to be made and the 
variance function is not conceived as the true variance for the marginal model, but as the so called 
‘working variance’.  
In the third step the within-subject association among the repeated measurements of the same 
individual is specified. In the marginal model it is only assumed that the relation between the mean 
response and the covariates is modelled correctly. The above mentioned model for the variance and 
the model for the correlation matrix 𝑅 (𝐶𝑜𝑟𝑟(𝑦𝑖𝑡)) are not assumed to be necessarily correct. That is 
why they are called the working variance model and the working correlation model. Together these 

two form the working covariance matrix: 𝑉𝑖 = 𝐴
𝑖

1

2𝑅𝑖𝐴𝑖

1

2 , where 𝐴 is a diagonal matrix with 𝑉𝑎𝑟(𝑦𝑖𝑡) =

𝜇𝑖𝑡(1 − 𝜇𝑖𝑡) along the diagonal and 𝑅 is the correlation matrix of 𝑦𝑖𝑡. It is possible that the working 
correlation depends on unknown parameters. In this case there can be chosen from several popular 
correlation structures, for instance the independence, exchangeable, AR(1) or unstructured. I have 
chosen here to use an exchangeable working correlation structure.  The third step is what 
distinguishes the marginal model for repeated measurements from the ordinary generalized linear 
model.  
Maximum likelihood  requires full specification of the joint distribution of 𝑦𝑖𝑡 . Since this is not done 
for the marginal model an alternative approach is needed to find estimates for the regression 
coefficients for the data. This approach will be the generalized estimating equations (GEE). The GEE 
have the following form:  
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∑(
𝜕𝜇𝑖
𝜕𝜷

)
𝑇

𝑉𝑖
−1(𝒚𝒊 − 𝝁𝒊) = 0

𝑛

𝑖=1

, 

 
where 𝑉𝑖 is the working covariance matrix, 𝜕𝜇𝑖/𝜕𝜷 is the derivative matrix containing the derivative 

of 𝝁𝒊 with respect to the components of 𝜷, 𝝁𝒊⁡⁡is the vector of mean responses for a subject and 
𝒚𝒊⁡is the vector of observed responses for a subject. These estimating equations are the direct 
analogue of the estimating equations for the ordinary generalized linear model. One can prove that  

𝜷̂  is  a consistent estimator of 𝜷, which means that 𝜷̂  is with high probability close to the population 
regression parameters 𝜷 in large samples. For the marginal model it is only required that the mean 

response is correctly specified and 𝜷̂  is a consistent estimator whether or not the within-subject 
association is specified correctly. The sandwich estimator can be used to correctly estimate the 
standard errors. It is useful to choose the within-subject association structure as close as possible to 
the real structure, because this yields more efficiency.  
 
As any regression model, this approach is not resistant to high collinearity due to the high correlation 
between the covariates in the model. Hence, the model can have inaccurate estimation and 
prediction due to collinearity.  Therefore a penalty should be added to the model, for instance a lasso 
penalty. The difficulty for adding a penalty to the GEE model is that the GEE model lacks a joint 
likelihood, which is required for a classical approach to penalty models. Through penalized 
generalized estimating equations[34] the penalty term will be added to the GEE. The next function will 
add the bridge estimator to the GEE function: 
   

−∑𝐷𝑖
𝑇𝑉𝑖

−1(𝒚𝒊 − 𝝁𝒊) + 𝝀𝑑(𝜷, 𝛾) = 0,

𝑛

𝑖=1

 

where 𝝀 is the tuning parameter and 𝑑(𝜷, 𝛾) = 𝛾|𝜷|𝑦−1𝑠𝑖𝑔𝑛(𝜷), is the partial derivative of the 
penalty function with respect to⁡𝜷. 
 
The bridge penalty is reduced to the lasso estimator when 𝛾 = 1.  𝝀 is the tuning parameter of the 
lasso penalty. Due to the lack of joint likelihood in the GEE model, it is impossible to use generalized 
cross validation for the estimation of the tuning parameter. A quasi generalized cross validation 
method was developed for selecting the tuning parameter. 
Unfortunately, to my knowledge no software is yet developed in R, to use the penalized estimating 
equations, so in this case it is not possible to use this method for analysis. Taken a closer look to this 
approach I realized that it might not have been as advantageous as I initially thought. The main 
attraction of the GEE approach is that it could make a population-averaged estimate of the 
coefficients and model the within-subject association separately, so standard errors could be 
properly estimated. Since the data contains covariates which are highly correlated a penalty (in this 
case the lasso) is required, because otherwise the 𝜷-coefficients will not be properly estimated. 
Because of the shrinkage that is introduced by the lasso penalty, the standard errors estimated by 
the GEE will not be valid for these estimates. So the advantage of the GEE of estimating proper 
standard errors disappears when using the lasso penalty.   
 
 

5.2.2 Generalized linear mixed models 
The generalized linear mixed model (GLMM)[17] is, contrary to the generalized estimating equations, a 
subject-specific model. This means that the coefficients of the covariates are the changes in the 
mean response of a specific subject. Since the goal of this thesis was to make a population-averaged 
estimate, the GLMM was my choice after the GEE approach was dismissed. There is a way to 
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transform the subject-specific coefficients into population-averaged estimates. First more about the 
generalized linear mixed models.  
 
The GLMM is an extension of the generalized linear models to longitudinal data, by using variables 
that can vary between individuals. As was mentioned in the section 5.1, the data are binary, so the 
distribution of 𝑦𝑖𝑡  is Bernouilli. The logistic regression model is again used for the GLMM. A known 
link function, in case of the logistic model, the logit link is used to transform the predicted outcomes 
from the unrestricted linear predictor scale into a range between 0 and 1. The mean 𝑦𝑖𝑡  depends 
upon the fixed and random covariates in the following way:  
    

𝑔{𝐸(𝑦𝑖𝑡|𝒃𝒊)} = 𝜂𝑖𝑡 = 𝒙𝒊𝒕𝜷+ 𝒛𝒊𝒕𝒃𝒊, 
 
where 𝒙𝒊𝒕 is a vector containing the fixed covariates, 𝒛𝒊𝒕 is a vector containing q covariates, 𝜷 is a 
vector of unknown regression coefficients for the fixed covariates and 𝒃𝒊 is a subject specific vector 
of random regression parameters, called the random effects. Given 𝒃𝒊, the 𝑦𝑖𝑡’s are assumed to be 
independent within a subject.   
For the random effects some probability distribution is assumed. This can be any kind of multivariate 
distribution, but for computational purposes it is common to use a multivariate normal distribution, 
with zero mean and a 𝑞 ∗ 𝑞 covariance matrix 𝐺.  
The variance function for the logistic model given the random effects is specified as 𝑉𝑎𝑟(𝑦𝑖𝑡|𝒃𝒊) =
𝐸(𝑦𝑖𝑡|𝒃𝒊){1 − 𝐸(𝑦𝑖𝑡|𝒃𝒊)}.                                                            
 
In generalized linear mixed effect models the joint distributions are fully specified (contrary to the 
GEE) so the maximum likelihood approach can be used. The following likelihood equation should be 
maximized to find the estimates for the regression coefficients:  
 

𝐿(𝜷, 𝐺) =∏∫𝑓(𝒚𝒊|𝒃𝒊)𝑓(𝒃𝒊)𝑑𝒃𝒊

𝑛

𝑖=1

, 

 
The GLMM also has trouble with the collinearity caused by the highly correlated covariates. The lasso 
penalty looks like the best solution in this model. Again the difficulty in this model appears when the 
penalty is added for the model. 
GLMM with a lasso penalty is a fairly new way of analyzing data, so it was quite hard to find an article 
in which this was done. The article that was found on the subject was by Groll and Tutz (2014)[35]. The 
analysis in the article is meant for high-dimensional data, which the data of the Grote Griepmeting 
are not, but since the problem of collinearity is similar we tried to apply the method to the data. The 
method in the article of Groll and Tutz (2014) was based on an article of Goeman (2010)[36]. This 
method will be described first. Goeman developed an algorithm using a combination of gradient 
ascent optimization and the Newton-Raphson algorithm. The gradient ascent optimization method 
has great computational simplicity, but needs a lot of steps until convergence, which makes that it 
takes great computation time. The Newton-Raphson algorithm converges faster compared to the 
gradient ascent optimization method. Unfortunately the Newton-Raphson algorithm can only be 
applied when the target function is concave and twice differentiable, which is not the case, because 
of the lasso penalty. The gradient ascent method will be used for starters and when this comes near 
the optimum of the function, the target function will be concave and twice differentiable and the 
Newton-Raphson algorithm will take over.  
Goeman developed his method for generalized linear models, but did not make an application for 
generalized linear mixed models. For this reason the method of Groll and Tutz was used. Groll and 
Tutz based their method on that of Goeman, but used a combination of gradient ascent optimization 
and the Fisher scoring algorithm. The algorithm is implemented in the R-package glmmLasso[37]. The 
first analysis that was tried with this package was done on a small dataset, containing 5000 
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observations and 7 variables (instead of 2,137,304 observations and 44 variables). The application 
has run for 4  days and still did not converge. It was then decided to stop the computations. This 
method already takes a great deal of computation time for a small part of the data set, so will 
probably take great computation time for the whole dataset.  
 
 
 

6. Analysis 
For the final analysis it was decided to use a logistic regression model. B-splines will be used to 
account for the possible non-linearity of the effects of the covariates in the model. The B-splines will 
contain 5 inner knots and 2 boundary knots and no intercept will be included. The positions of the 
inner knots will be chosen in a way that each interval contains an equal amount of observations. 
Because there is high collinearity between the weather variables in the dataset, it will be necessary 
to use a penalty, for which in this case the lasso was chosen . For each weather variable, 8 columns of 
B-spline values were created in the design matrix, which are added to the model. We would want to 
include the complete weather variable, so all 8 B-spline parts, or none of the B-spline parts at all. To 
obtain this the group lasso[29] will be used. The group lasso will have the following form: 
 

𝛽̂(𝜆) = −𝑙(𝜷) + 𝜆∑ 𝑠(𝑑𝑓𝑔)||𝜷𝒈

𝐺

𝑔=1

||2 

 
where 𝑙(𝜷) is the log-likelihood function:  
 

𝑙(𝜷, 𝑦) =∑𝑦𝑖𝑡𝑙𝑜𝑔(𝑝𝑖𝑡) + (1 − 𝑦𝑖𝑡) log(1 − 𝑝𝑖𝑡)

𝑖,𝑡

, 

 
Here 𝝀 is the tuning parameter that controls the amount of penalization, 𝜷 is a vector containing the 
unknown regression coefficients and 𝑠(𝑑𝑓𝑔) is a function used to rescale the penalty with respect to 

the dimensionality of the parameter vector 𝜷𝒈.  

 

The amount of data for the analysis is very large, especially since the splines introduce 352 (44*8) 
covariates to the dataset, instead of the 44 original weather variables available. The number of 
records in the dataset is 2,137,304. Combined with the 352 covariates, the size of the dataset 
becomes so big that computation time becomes bothersome. However, the number of events is 
3,751, which is very small relative to the number of records. An old trick to reduce the computation 
time is found in the medical field of case-control studies. Instead of taking all the records without an 
event, we take a sample of them. It has been proven that the parameters estimated by logistic 
regression on the reduced dataset are the same as for the original dataset, except for the value of 
the intercept[38]. The value of the intercept can be adjusted by a simple formula, shown later, 
depending on the ratio cases/controls and the prevalence of the event in the original dataset.  In 
medical statistics a rule of thumb is that a ratio of 4 controls to 1 case is used. The power of the study 
will not greatly improve if more controls are added. In the medical field it takes time to gather 
control subjects. This is not the case in this thesis, since we have a great amount of data. The trouble 
of this study is that we have too much data. We could have chosen any amount of controls, but we 
decided to use the medical field as a guideline and use the ratio of 4 controls to 1 case, although 
more controls are available.  
 
It might have been noticed, that in the final analysis the correlation introduced by repeated 
measurements has not been accounted for. If in the above likelihood all records after the day of the 
first ILI episode of a subject were ignored, the likelihood would be correct. The data contains 13,784 
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individuals after cleaning up the data. 2,480 of the subjects experienced influenza like illness once 
and 563 subjects experienced ILI more than once, so a total of 3,043 subject experienced ILI. So 
18.5% of the 3,043 subject that experienced ILI, have experienced ILI more than once. Since this is 
only a small percentage it was decided to keep the multiple episodes of ILI in the analysis, since I 
thought the dependence could be safely ignored.  Moreover, the correlation would only effect the 
standard errors of the estimations, which would not be interpretable in any case in the analysis due 
to the shrinkage introduced by the lasso penalty.  
I could have introduced a covariate counting the ILI periods like the Andersen-Gill approach, but I did 
not do that.  
 The distribution of the episodes of ILI is shown in Graph 3. The exact amount of episodes of ILI can 
be found in Table 7. 
As expected, it can be seen from the Graph that at the start of the season, people experience the 
first episode of ILI, while as the season progresses more and more of the ILI infections are a second 
episode of ILI or even more. The greatest amount of ILI is experienced in January. In Table 7 it is 
shown that the maximum number of times that ILI is experienced by the same individual equals 6 
times, which happens twice in the dataset.  
 
 

Table 7. Frequency of times ILI experienced 

1 2 3 4 5 6 

2480 449 90 19 3 2 

 
 

 
Graph 3. Frequency of ILI in different months. 
 
In Table 8 the effects of the weather variables as modeled through the splines are plotted against the 
associated standardized weather variables. 
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Table 8. Plotting variables vs. b-spline variables 
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The rows of Table8 show the different weather variables. The columns of the Table display the 
different days before the day of measurement. As can be seen, not all entrances of the Table are 
filled. The group lasso penalty has selected variables. The blanc entrances are variables that are not 
selected by the lasso penalty and so the coefficients returned by the analysis for these variables are 
zero. If a plot would be created for these variables, it would give a straight line through zero on the x-
axis. These variables are left out of the table to give a clearer representation of the variables that are 
selected by the group lasso.  
The group lasso selected 23 from the 44 variables. 7 different weather variables were selected; 
temperature, wind, humidity, radiation, sun hours, evapotranspiration and temperature difference. 
For all these variables several different days before measurement were selected. The variables 
precipitation hours, sum of precipitation, days without sun and days with rain are never selected. 
Note that, the model on which this table is based, was made  on a subset of the whole dataset.  
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The values of the spline displayed on the Y-axis variables are calculated in the following way:  
 
SplineTemperatureDay1:B-splinevalueTemperatureDay1[column1]*coefficientTemperatureDay1[1] + 
                                        B-splinevalueTemperatureDay1[column2]*coefficientTemperatureDay1[2] + 
                                        B-splinevalueTemperatureDay1[column3]*coefficientTemperatureDay1[3] + 
              B-splinevalueTemperatureDay1[column4]*coefficientTemperatureDay1[4] + 
             B-splinevalueTemperatureDay1[column5]*coefficientTemperatureDay1[5] + 
             B-splinevalueTemperatureDay1[column6]*coefficientTemperatureDay1[6] + 
             B-splinevalueTemperatureDay1[column7]*coefficientTemperatureDay1[7] + 
             B-splinevalueTemperatureDay1[column8]*coefficientTemperatureDay1[8]  
  
Since the coefficients are still on the log odds scale, the spline values are also on the log odds scale.  
In the plots in Table 8 on the x-axis the standardized weather variable is displayed. The x-axis is held 
constant from -5 to 5.2. On the y-axis the B-spline variable is displayed (calculation shown above). 
The length of the y-axis is held constant between -0.25 and 0.25, so it is possible to compare the 
effects the different weather variables have of experiencing ILI on the log odds scale. In each figure 
two vertical, red lines are displayed. Between these red lines lies 95% of the data. To the left and the 
right of the lines a little over 500 points are displayed, so a total of a little over 1000 points are 
outside the red lines. Inside the red lines over 19500 points are presented.  
As can be seen from Table 8 no really large effects are shown, especially the effects between the red 
lines are small. In fact, all effects are smaller than 0.25, except for that of evapotranspiration variable 
on Day 1. For the evapotranspiration variable on Day 1, 4 data points are excluded from the graph, 
because otherwise the scale of all the graph should be changed on the y-axis to -0.5 to 1.5, which 
would make it a lot more difficult to see the effects of the other variables. Also the effects of the 
evapotranspiration Day 1 that were large were corresponding to extreme weather circumstances. No 
large effects were found for weather circumstances that were not as extreme.  
 
The chance for a person to experience influenza-like illness under the given weather circumstances 
has to be calculated. The just described calculations for the variables selected by the group lasso are 
used. The intercept is also added to the formula, but the intercept from the analysis cannot directly 
be used. For the analysis it was decided to use a sample of the whole dataset. This sample contained 
all cases from the whole dataset and a subsample from the controls (ratio: 1 case to 4 controls). 
Because this way of sampling was chosen, the amount of cases will grossly be overrepresented in the 
subsample.  This overrepresentation of the cases will affect only the coefficient of the intercept in 
the analysis, which will be overestimated. To find the intercept for the whole sample data, the 
intercept from the subsample needs to be adjusted in the following way:  
 

𝛽0(𝑤ℎ𝑜𝑙𝑒⁡𝑠𝑎𝑚𝑝𝑙𝑒) =⁡𝛽0(𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒) − log (
𝑛1
𝑛0
) + log (

𝜋

1 − 𝜋
), 

 
Where 𝑛1is the size of the subsample of measurements in which an episode of ILI started, 𝑛0⁡is the 
size of the subsample of measurements in which no episode of ILI started and 𝜋 is an estimate of the 
prevalence of ILI, in this thesis from the whole dataset.  
This gives the following formula for calculating the log odds on ILI: 
 
Out = 𝛽0(𝑤ℎ𝑜𝑙𝑒⁡𝑠𝑎𝑚𝑝𝑙𝑒) + SplineTemperatureDay1 + SplineWindDay1 + SplineRadiationDay1 + 

SplineSunhoursDay1 +  SplineEvapotranspirationDay1 + SplineTemperatureDifferenceDay1 +                                                                                
SplineTemperatureDay2 + SplineRadiationDay2 + SplineSunhoursDay2 + 
SplineEvapotranspirationDay2 + SplineTemperatureDay3 + SplineWindDay3 +  
SplineHumidityDay3 + SplineRadiationDay3 + SplineSunhoursDay3 +  SplineEvapotranspirationDay3 + 
SplineTemperatureDifferenceDay3 + SplineTempDay4  +   SplineWindDay4 + SplineHumidityDay4 + 
SplineRadiationDay4 + SplineSunhoursDay4 + SplineTemperatureDifferenceDay4 
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The out-variable calculated above is still on the log odds scale and will have to be transformed back, 
so it ranges between 0 and 1 again and is an estimate of the chance a subject experiences ILI given 
the weather circumstances. This will be done in the following way:  
 

𝑃(𝑒𝑣𝑒𝑛𝑡 = 1) =
1

1 + 𝑒−𝑜𝑢𝑡
 

 
 
Roc-curve 
The Receiver Operating Characteristic (ROC) curve is used to assess the discriminatory performance 
of the model[39]. The discriminatory performance of the model is good if the covariates discriminate 
between cases and controls. 
From the logistic regression analysis predicted chances are calculated as above describing the chance 
of the measurement being a case.  The cut-off point for the predicted values has to be chosen in such 
a way, that the trade-off between sensitivity and specificity is as high as possible. Sensitivity being 
the true positive rate (TPR = positives/cases) and specificity being the true negative rate (TNR = 
negatives/noncases).  
In the ROC-curve the trade-off between sensitivity and 1-specificity is plotted for a range of cut-off 
points. 1 – specificity gives the false positive rate, which reflects the noncases that are falsely 
predicted to be cases.  We would like 1-specificity to be close to zero and the sensitivity to be close 
to 1. The larger the area under the ROC-curve (AUC)[39], the better the discriminatory performance of 
the model is.  
The AUC can be found by calculating the proportion of all possible case/noncase pairs, where the 
predicted value of the case is higher than the predicted value of the noncase. Because there will be 
ties for the predicted values in the pairs, a so called fair equation is developed, called the c-statistic. 
In this fair equation one half of the ties is added to the proportion where the cases have a higher 
prediction and the other half to the proportion where the noncase has a higher prediction than the 
case. The c-statistic[38]  is given by the following formula:  
 

𝑐 = ⁡
𝑤 + 1/2𝑧

𝑛𝑝
= 𝐴𝑈𝐶 

 
where 𝑛𝑝 is the number of  all possible pairs, 𝑤 is the number of pairs where the prediction of the 

case is higher than the prediction for the noncase, and 𝑧 is the number of pairs where the prediction 
is a tie. Below it is shown how the values of AUC are graded[39].  
 
Grading AUC-values 

- 0.90 – 1.00 = excellent discrimination 
- 0.80 – 0.90 = good discrimination 
- 0.70 – 0.80 = fair discrimination 
- 0.60 – 0.70 = poor discrimination 
- 0.50 – 0.60 = failed discrimination 

 
In Graph 4 the ROC-curve with the AUC-value of the analysis is shown. From the graph we can see 
the ROC-curve is almost a diagonal. The AUC of the model is 0.58, which indicates that the model 
fails to discriminate cases from noncases.  
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Graph 4. ROC-curve with calculated AUC. 
 
Since it is known that a pitfall of the lasso method is, that it can select quite different variables when 
the dataset is slightly changed, I chose to create 3 control groups, so it is possible to see if the same 
weather variables are selected and this is not the case, how much the selections differ.  
The 3 control groups are created in the same way the first sample was created. Table 9 shows the 
variables selected in the first sample, which is named ‘Model 1’ and is the one that was used for the 
analysis shown above. The 3 control samples from the data are named  ‘Model 2’, ‘Model 3’ and 
‘Model 4’. As can be seen in the table, Model 1 is the most elaborate model, in which 23 variables 
were selected. In Model 2,3 and 4 the same 7 variables that were mentioned before were selected, 
although for some variables different days previously to the measurement were selected. So the 
models selected are not exactly the same, but they are pretty similar, since the same weather 
variables were selected.  
 

Table 9: Variables selected for control groups 

Model1 Model2 Model3 Model4 

Temperature Day1 Temperature Day1 Temperature Day1 Temperature Day1 

Wind               Day1    

  Humidity        Day1  

Radiation        Day1    

Sunhours        Day1 Sunhours       Day1 Sunhours        Day1 Sunhours        Day1 

Evaporation   Day1 Evaporation  Day1 Evaporation   Day1 Evaporation   Day1 

Tempdiff         Day1    

Temperature Day2 Temperature Day2 Temperature Day2  

Radiation       Day2 Radiation        Day2 Radiation       Day2 Radiation        Day2 

Sunhours        Day2  Sunhours        Day2 Sunhours        Day2 

Evaporation   Day2 Evaporation   Day2  Evaporation   Day2 

Temperature Day3 Temperature Day3 Temperature Day3 Temperature Day3 

Wind               Day3  Wind               Day3 Wind               Day3 

Humidity        Day3 Humidity         Day3 Humidity        Day3 Humidity        Day3 

Radiation        Day3   Radiation       Day3 

Sunhours       Day3 Sunhours         Day3 Sunhours         Day3 Sunhours       Day3 
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Evaporation  Day3 Evaporation    Day3 Evaporation    Day3  

Tempdiff        Day3   Tempdiff        Day3 

Temperature Day4 Temperature   Day4 Temperature  Day4 Temperature Day4 

Wind               Day4  Wind                Day4 Wind               Day4 

Humidity        Day4 Humidity           Day4 Humidity         Day4 Humidity        Day4 

Radiation       Day4 Radiation           Day4 Radiation         Day4 Radiation        Day4 

Sunhours       Day4  Sunhours         Day4 Sunhours        Day4 

  Evaporation     Day4 Evaporation   Day4 

Tempdiff        Day4  Tempdiff          Day4 Tempdiff         Day4 

 
 
In Graph 5 the ROC-curves are shown with the calculated AUC’s. As can be seen there is barely any 
difference in the AUC for the different models. None of the models has a sufficient AUC to make it a 
satisfactory model. So although the lasso-method selects different variables for different samples of 
the data, the models are evenly efficient.  
 
 

 
Graph 5. ROC-curves and AUC for control groups 
 
Using B-splines with 1 inner knot: 
From Table 8, it seems that overfitting occurs in most of the variables for the model with 5 knots for 
the B-splines.  This can be concluded from the excessive amount of peaks  in the graphs. For the B-
splines with 5 inners knots 8 parameters are used. We wanted to reduce the amount of parameters 
to 4 to decrease the overfitting, so B-splines with 1 inner knot were used.  For the model with 1 inner 
knot the lasso method selected 39 variables. Table 10 displays the variables selected for the 5 and 1 
inner knot models.  



25 
 

 

Table 10. Comparing models  

5 inner knot model 1 inner knot model 

Temperature Day 1 Temperature Day 1 

Wind Day 1 Wind Day 1 

 Humidity Day 1 

Radiation Day 1 Radiation Day 1 

Sunhours Day 1 Sunhours Day 1 

 Precipitationhours Day 1 

 Sum of precipitation Day 1 

Evaporation transpiration Day 1 Evaporation transpiration Day 1 

 Days without sun Day 1 

 Days with precipitation Day 1 

Temperature difference Day 1 Temperature difference Day 1 

Temperature Day 2 Temperature Day 2 

 Humidity Day 2 

Radiation Day 2  

Sunhours Day 2 Sunhours Day 2 

 Sum of precipitation Day 2 

Evaporation transpiration Day 2 Evaporation transpiration Day 2 

 Days without sun Day 2 

 Day with precipitation Day 2 

 Temperature difference Day 2 

Temperature Day 3  

Wind Day 3 Wind Day 3 

Humidity Day 3 Humidity Day 3 

Radiation Day 3  

Sunhours Day 3 Sunhours Day 3 

 Precipitationhours Day 3 

 Sum of precipitation Day 3 

Evaporation transpiration Day 3 Evaporation transpiration Day 3 

 Days without sun Day 3 

 Day with precipitation Day 3 

Temperature difference Day 3 Temperature difference Day 3 

Temperature Day 4 Temperature Day 4 

Wind Day 4 Wind Day 4 

Humidity Day 4 Humidity Day 4 

Radiation Day 4 Radiation Day 4 

Sunhours Day 4 Sunhours Day 4 

 Precipitationhours Day 4 

 Sum of precipitation Day 4 

 Evaporation transpiration Day 4 

 Days without sun Day 4 

 Day with precipitation Day 4 

Temperature difference Day 4 Temperature difference Day 4 

 
A Table comparing the B-splines with 1 and 5 inner knots can be found in Appendix C.  
In Table 10 can be seen that the lasso penalty has not selected the same variables for the model with 
B-splines with 5 inner knots and the model with 1 inner knot. For all variables that can be compared 
for the two models, the variables from the 1 inner knot model seem to be less affected by overfitting. 
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In Graph 6 the ROC-curve with the AUC calculation for the model with 5 inner knots and 1 inner knot 
are shown. The AUC values for the two models are equal, which would not have been expected, 
since the 5 inner knot model is more elaborate, so it would be expected it would discriminate better 
between cases and noncases. The 1 inner knot model has selected 16 more variables (23 compared 
to 39), but even though it has 16 more variables the 5 inner knot model uses more parameters, since 
the 5 inner knots model uses 23 x 8 = 184 parameters and the 1 knot model uses 39*4 = 156 
parameters. The 156 parameters used are still a lot of parameters to use in the model, but it was 
chosen to not further simplify the model.  
Next the model will be validated on another dataset. If overfitting has occurred the 1 inner knot 
model will perform better than the 5 inner knot model on new data.  
 

 
Graph 6. ROC curve and AUC for 5 and 1 inner knots B-spline model 
 
Season 2009-2010  
For validating the model several methods could have been used, like creating a training and test data 
set out of the original data, or using cross-validation or bootstrapping. In this thesis we will validate 
the model by using a new dataset. As mentioned before I had access to 8 seasons of data from the 
Grote Griepmeting, ranging from season 2003/2004 until season 2010/2011. The model will be 
validated using data of the Grote Griepmeting from season 2009/2010. The data of season 
2009/2010 will be constructed in the exact same manner as the data of season 2010/2011. The data 
of season 2009/2010 consists of 545,969 measurements and was filled out by 20,521 subjects. This is 
an average of 26 measurements per subject. After cleaning up the data, it contained 508,870 
measurements and 16,151 subjects. After creating the one day intervals, the data from season 
2009/2010 contain 5,671 cases and 3,886,086 control measurements. The weather variables for this 
season can be collected from the KNMI site.  
The B-splines are reconstructed in exactly the same way, so the knots are at the same values for the 
weather variables. The coefficients that were obtained from the analysis on season 2010/2011 are 
used to fit the data.  This was done for the 5 inner knots model and the 1 inner knot model. From this 
the following ROC curves and AUC- values in Graph 7 are created.  
It was expected that the 1 inner knot model would perform better than the 5 inner knot model, since 
some overfitting was expected for the 5 inner knot model. Graph 7 shows that the 1 inner knot 
performs slightly better than the 5 inner knot model with an AUC of 0.57 compared to 0.56. The 
AUC-values for both the 1 inner knot model and the 5 inner knots model for the validation dataset 
also barely differ from the models for the original dataset. The discriminatory power of the model for 
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the validation dataset is also low, but this was expected, since the discriminatory power of the 
original model was low and the model for the validation dataset will not outperform that of the 
model for the original data.  
 
 

           
Graph 7. ROC curve for season 2009-2010. 
 
 
 

7. Results and discussion 
From the analysis it can be concluded that it was not possible to predict the onset of influenza-like 
illness using the weather variables. Both the model with 5 inner knots and 1 inner knot have poor 
discriminatory performance. Even though low discriminatory performance was found in the premier 
analysis, it was decided to use the data of season 2009/2010 to validate the model. The 
discriminatory performance of the model for the validation dataset is only slightly worse than the 
performance of the model for the original dataset.  
From the results it is clear that there are no variables found that have a great influence on ILI, since 
the values on the Y-axis of Table 8 are very small, so no weather circumstance can be pointed out 
that causes the start of an episode of ILI.  
There could be different reasons why the model fits poorly. The main reason is probably the fact that 
ILI is a contagious disease and this is not taken into account in the model. If a first case of ILI presents 
itself, the amount of cases will probably increase rapidly, but there has to be one subject that infects 
other subjects. The wave-like form this will cause cannot be modelled in the analysis as was 
mentioned in section 4.4, since we do not know how to model this.  
In the analysis no interaction effects have been added. Several interactions would have been 
possible, interactions between variables on the same day, but also interactions between variables on 
different days might be possible. If all the possible interactions would have been added to the model, 
the number of variables would have been a total of more than 20,000 interactions. This would be 
impossible to model. It could have been decided to use only interactions of variables on the same 
day of the measurement or choose the interactions that would be expected to have an effect. It was 
decided to focus on the main effects in this thesis, but possible effects of interactions are not ruled 
out by this thesis.  
A lot of other variables probably have great influence on the incidence of ILI. For instance the 
amount of contact subjects have with other people will greatly influence the chance of infection. If 
weather variables do have an effect on the onset of ILI, it would also depend on how long subjects 



28 
 

are exposed to weather circumstances, but also how well they are prepared for this weather. For 
instance if the weather changes for the worse, do subjects have their warm coat with them?  
The model used here for the analysis was not perfect for the data. The model was unable to model 
the correlation for the repeated measurements. Also the computation time would be very large if the 
complete dataset would be used, instead of 4 controls for each case. Another question raised is how 
reliable the model is using the lasso method, since it possibly chooses different variables every time 
the model is fit on a different data sample.  
Though the analysis may not be perfect, I think it would be reasonable to conclude it is not possible 
to find a model that can predict the incidence of influenza-like illness using weather circumstances 
measured previously to the day of onset, from the data of the Grote Griepmeting.  
There are probably a lot more and stronger influences in play that are not taken into account in the 
analysis. 
It is possible that the way influenza-like illness is determined here is not accurate and because of this 
I was unable to predict the incidence of ILI from the data. The definition chosen here was the 
definition we thought was most straight forward, but other definitions would have been possible.  
A way to possibly improve the model would be by adding a variable indicating time to the model. 
This does could be different indicators of time, for instance the season or the month the 
measurement was taken in.  
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Appendix A: Weekly symptoms’ questionnaire 
 
Every participant is reminded weekly to complete a symptoms questionnaire. The final questions are 
only asked if the participant reported any symptoms. Not all questions were present in every country 
or season. 
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Appendix B: Weather variables 
 
DDVEC  = Vector mean wind direction in degrees (360=north, 90=east, 180=south, 270=west, 
0=calm/variable) 
FHVEC  = Vector mean windspeed (in 0.1 m/s) 
FG  = Daily mean windspeed (in 0.1 m/s)  
FHX  = Maximum hourly mean windspeed (in 0.1 m/s) 
FHXH = Hourly division in which FHX was measured 
FHN  = Minimum hourly mean windspeed (in 0.1 m/s) 
FHNH = Hourly division in which FHN was measured 
FXX  =  Maximum wind gust (in 0.1 m/s) 
FXXH = Hourly division in which FXX was measured 
TG  = Daily mean temperature in (0.1 degrees Celsius) 
TN  = Minimum temperature (in 0.1 degrees Celsius) 
TN   = Hourly division in which TN was measured 
TX   = Maximum temperature (in 0.1 degrees Celsius) 
TXH  = Hourly division in which TX was measured 
T10N = Minimum temperature at 10 cm above surface (in 0.1 degrees Celsius)  
T10NH = 6-hourly division in which T10N was measured; 6=0-6 UT, 12=6-12 UT, 18=12-18 UT, 24=18-     
24 UT  
SQ = Sunshine duration (in 0.1 hour) calculated from global radiation (-1 for <0.05 hour) 
SP = Percentage of maximum potential sunshine duration 
Q  = Global radiation (in J/cm2) 
DR = Precipitation duration (in 0.1 hour) 
RH  = Daily precipitation amount (in 0.1 mm) (-1 for <0.05 mm) 
RHX = Maximum hourly precipitation amount (in 0.1 mm) (-1 for <0.05 mm) 
RHXH = Hourly division in which RHX was measured 
PG = Daily mean sea level pressure (in 0.1 hPa) calculated from 24 hourly values 
PX  = Maximum hourly sea level pressure (in 0.1 hPa) 
PXH = Hourly division in which PX was measured 
PN = Minimum hourly sea level pressure (in 0.1 hPa) 
PNH = Hourly division in which PN was measured 
VVN = Minimum visibility; 0: <100 m, 1:100-200 m, 2:200-300 m,..., 49:4900-5000 m, 50:5-6 km, 
56:6-7 km, 57:7-8 km,..., 79:29-30 km, 80:30-35 km, 81:35-40 km,..., 89: >70 km) 
VVNH = Hourly division in which VVN was measured 
VVX = Maximum visibility; 0: <100 m, 1:100-200 m, 2:200-300 m,..., 49:4900-5000 m, 50:5-6 km, 
56:6-7 km, 57:7-8 km,..., 79:29-30 km, 80:30-35 km, 81:35-40 km,..., 89: >70 km) 
VVXH = Hourly division in which VVX was measured 
NG = Mean daily cloud cover (in octants, 9=sky invisible) 
UG = Daily mean relative atmospheric humidity (in percents) 
UX =  Maximum relative atmospheric humidity (in percents) 
UXH = Hourly division in which UX was measured 
UN  = Minimum relative atmospheric humidity (in percents) 
UNH = Hourly division in which UN was measured 
EV24 = Potential evapotranspiration (Makkink) (in 0.1 mm) 
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Appendix C. Comparing models 
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