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Preface

This work follows - hopefully somewhat coherently - a small journey through hyperbolic
geometry and what I found most interesting in it. It is intended as a spyglass to look at
some aspects of the subject for a student who �nds himself interested, even only in knowing
what's it about.

Hyperbolic geometry is a subject barely mentioned at undergraduate level, and rarely
studied in general �rst- or second-year graduate courses. This comes quite surprisingly since
the sheer simplicity of the geometric intuition - one of two possible negations of Euclid's
parallel postulate - was �rst formalized by Gauss with the notion of curvature around 200
years ago.

One of the reasons is possibly that the di�culty of the questions grows rapidly, and even
at a medium level the study of hyperbolic manifolds borrows tools and techniques from a
vast array of subjects: di�erential and algebraic geometry, complex analysis, representation
theory, homological algebra, just to mention the most important ones. On the other hand,
this same study helps in dealing with many topological questions not directly connected to
it, arising e.g. from the study of knots, and has links to theoretical physics.

Due to my background and inclination I've been more attracted to the algebraic - and
at times combinatorial - aspects of the theory. This is of course re�ected also in the choice
of topics.

It goes without saying that a master thesis is meant to be as useful to its writer as it
is to its readers. My hope is for the present work to prove itself as useful for a reader as it
was for me to write it.
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Introduction

This thesis addresses graduate students without any particular background in the �eld: all
the machinery needed will be developed without much trouble. The prerequisites are no
more than the common theoretical courses of the �rst three years of university. That being
said, a deeper acquaintance with di�erential and Riemannian geometry will be helpful, as
will some familiarity with the theory of representations.

The �rst chapter is devoted not only to laying down the technical basis for the following
work, but also to introduce the reader to a topic possibly new to him. I tried to do this as
gently as possible, given the necessary economy of space and time: almost all the results
presented there will be used or improved in the following. The majority of proofs are
omitted, as they are found in any textbook on hyperbolic geometry. I tried to conserve
some of the clarity of my wonderful references, to which I direct the interested reader: the
�rst chapters of [BP12] and [Mar07] are a clear and stimulating introduction to the subject.

In the second chapter we describe the patching of hyperbolic ideal tetrahedra via isome-
tries in order to obtain hyperbolic 3-manifolds. The formal idea of side-pairing is natural
and we have found it in [Rat06].

Ideal means, basically, without vertices: this is to solve the following issue. Interesting
manifold have "holes". In our situation, though, we cannot consider the natural idea of
(compact) manifold with boundary. This is because every compact metric space is complete,
and in the 3-dimensional case Mostow rigidity holds: all complete hyperbolic structures are
isotopic to the identity.

To bypass this problem we consider the interior of manifolds with boundary. In order
to use our knowledge of the orientation-preserving isometries of the hyperbolic 3-space
I+(H3) ∼= PSL2(C), we restrict to the case of M orientable, and with torus boundary. We
�nd then a space of hyperbolic structures de�ned by polynomial equations in Cn+. We can
then proceed to studying under which conditions these hyperbolic structures are complete.
Following ([BP12], Section E.6) we relate this to the induced euclidean structure on the
boundary. The satisfying conclusion is Proposition 2.4.4, that gives an algebraic answer to
this problem too.

In the third chapter we generalize this last algebraic condition introducing the holonomy
map. This same map turns out to be a powerful tool for describing the space of non-complete
hyperbolic structures. In the end we point out some immediate generalizations to the case
of manifolds with more than one boundary component.

The fourth chapter presents some computations around a well known example of hy-
perbolic 3-manifolds obtained by gluing tetrahedra. It is meant to illustrate how it is
relatively easy to apply the theoretical considerations of the previous chapters; moreover,
we gain some actual insight on the space of hyperbolic structures supported by the given
manifold.
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Notation In addition to the most common mathematical notation, which we don't recall,
we will use the following symbols.
When we de�ne something new, we will use the notation := instead of the normal equal
sign.
We denote in general by k a �eld. We will use R+ for the (strictly) positive real numbers.
We will frequently require a complex number to have positive imaginary part, hence the
notation C+ for such numbers will be used. This is to avoid the use of H2 when not con-
sidering the hyperbolic structure, but only the underlying set. We will also write C− for
−C+.
We write En for Rn if we want to highlight its standard euclidean structure: for the under-
lying set we will still use Rn.
If X is a smooth manifold, we denote by Diff(X) the group of its di�eomorphisms (under
composition).
If G is any group, 1G will denote its identity. For all groups of matrices, In is the identity
n by n matrix, and we denote by [A,B] the commutator AB −BA of A and B.
Sn will denote the symmetric group on n elements.
As it is common, we will write Sn for the n-dimensional sphere, i.e.

Sn :=
{
x ∈ Rn+1 : |x| = 1

}
We will use a similar notation, Sk, for the 2-sphere with k punctures.
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Chapter 1

Preliminaries

We describe here some basic facts about the environment we will be working in. We start
by recalling and collecting de�nitions and results over hyperbolic spaces and their groups
of isometries. We will give then a description of hyperbolic ideal tetrahedra and �nally
introduce the developing map.

1.1 Basic notions

We recall �rst the notion of completeness for a metric space, since we will use it extensively.

De�nition 1.1.1. A metric space X is complete if every Cauchy sequence converges to a
point of X.

We give the customary de�nition of hyperbolic n-space, however we will usually work
with a model of it, described later.

De�nition 1.1.2. The hyperbolic n-dimensional space Hn is a complete, connected, simply
connected real Riemannian manifold with constant sectional curvature -1.

A clear overview of various models for Hn can be found in Chapter A of [BP12]. We
include here a brief description of the 2 and 3-dimensional upper-half-space model which
we will use for understanding the actions of the isometry groups.

De�nition 1.1.3. The algebra H of Hamilton quaternions is the R−algebra generated by
1, i, j with the relations

i2 = j2 = −1; ij = −ji

It contains the real algebra of complex numbers C generated by 1, i, with the only
relation i2 = −1. We can write a general quaternion as ω = z + uj for z ∈ C and u ∈ R.

1
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De�nition 1.1.4. The upper-half-space model for the hyperbolic 3-dimensional space is

H3 := {z + uj ∈ H : z ∈ C, u ∈ R+}

equipped with the so-called Poincaré metric, given at any point (z, u) ∈ H3 by the euclidean
inner product on the tangent space T(z,u)H3 ∼= R3 multiplied by u−2.

It contains the upper-half-plane model for H2 as the space

H2 :=
{
x+ uj ∈ H3 : x ∈ R

}
which inherits an analogous metric.

We will usually imagine H3 as a subset of R3. The algebraic structure inherited as a
subset of H is only useful, actually, to give us some sort of coordinates and to identify H2

in H3.

Remark 1.1.5. The topology induced by the Poincaré metric is the same inherited by H3

as a subset of R3. This comes from the fact that they are at every point a positive multiple
one of each other, so they really look the same when zooming in enough. More formally,
for every w ∈ H3 there is a small enough (open) ball Bw such that the hyperbolic distance
between any two points in Bw is bounded above and below by a �xed positive multiple of
the euclidean distance.

1.1.1 The ball model and the boundary

We recall that X is a locally compact, non-compact topological space, its one-point (or
Alexandro�) compacti�cation X̂ is de�ned as follows. Consider the underlying set

X̂ := X ∪ {∞}

where ∞ is a point, called loosely point at in�nity in view of its geometrical interpretation
in many common examples. Then endow it with the topology given by the (inclusion of
the) opens of X, plus the subsets U of X̂ containing {∞} such that X̂ \ U ⊂ X is closed
and compact in X.

We described H3 as a open subset of R3. We write R̂3 for the one-point compacti�cation
of R3. Recall that R̂3 ∼= S4.

We consider now H3 as an open subset of R̂3. De�ne Ĥ3 to be the closure of H3 in R̂3.
Since H3 was unbounded in R3, ∞ ∈ Ĥ3. Moreover, since H3 is open in R̂3, it doesn't

intersect its boundary in R̂3. So
Ĥ3 = H3 ∪ ∂H3

where the boundary operation ∂ is taken in R̂3, and the union is disjoint.
With the notation of Hamilton quaternions, an explicit description of ∂H3 is straight-

forward. Let
H0 := {z ∈ H : z ∈ C}
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Then

∂H3 = H0 ∪ {∞} ∼= C ∪ {∞} ∼= CP1

Similarly we have ∂H2 ∼= R ∪ {∞} ∼= RP1. In particular, the hyperbolic 3-space is home-
omorphic to a open 3-ball B3, and its boundary as de�ned above �ts in as the boundary
S2 ∼= CP1 of B3.

This topological interpretation allows us a better understanding of the relation between
the hyperbolic space and its boundary.

1.1.2 Geodesics and hyperplanes

We give a little geometric idea of these common objects in the hyperbolic setting. They
will be useful to help our general visualization, but they will also be used directly.

The geodesics in H3 are either vertical lines {z} × R+, or intersections of H3 with
euclidean circles with centre lying in H0 and intersecting it perpendicularly. Thus they
can be identi�ed with unordered pairs of distinct points in CP1, to which we will refer as
"endpoints". The geodesics of H2 are geodesics of H3 lying in H2, thus their endpoints will
be in RP1.

The hyperplanes in H3 are either vertical half-planes, hence qualitatively similar to the
inclusion in H3 of H2, or intersection of H3 with euclidean hemispheres with centre lying
in H0.

1.2 Groups of isometries

First, a bit of notation. For the hyperbolic n-space Hn we denote by I(Hn) the group of its
isometries and by I+(Hn) the subgroup of orientation-preserving isometries. We assume
the reader is familiar with the de�nition of GLn(k), SLn(k) for a �eld k.

Recall that PGLn(k) is de�ned as the quotient of GLn(k) by the action of k∗ given by
the usual scalar multiplication of a matrix. Such a multiplication changes the determinant
of a matrix by λn for any λ ∈ k. So we can de�ne PSLn(k) as the quotient of SLn(k) by
the restriction of the analogous action of {λ ∈ k : λn = 1}.

We describe �rst the isometries of H3, and then relate them to their "restrictions" to the
boundary. Recall that in the de�nition we gave via the quaternion algebra H, we can think
of the boundary ∂H3 as the point at in�nity plus the horizontal plane H0. In particular, it
can be identi�ed with CP1.

Lemma 1.2.1. Then the action of SL2(C) on H(
a b
c d

)
.ω = (a · ω + b) (c · ω + d)−1 (1.1)

factors through PSL2(C), and the resulting action preserves H3.
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Proof. The �rst statement is trivial. The computation needed for the second can be sim-
pli�ed by noting that SL2(C) is generated by shear transformations, i.e. matrices of the
form (

−1 z
0 −1

)
and

(
−1 0
z −1

)
with z ∈ C.

Then, if ω ∈ H3, (
−1 z
0 −1

)
ω = (−ω + z)(−1)−1 = ω − z ∈ H3

since z ∈ C.
The other one is a bit more computational, but similarly easy. #

This action of PSL2(C) on H3 encodes all the orientation-preserving isometries, and an
analogous statement holds for the orientation-preserving isometries of H2, as shown e.g. in
(Theorem A.3.3, [BP12]). In particular

Remark 1.2.2.

I+(H2) ∼= PSL2(R)

I+(H3) ∼= PSL2(C)

For what concerns the orientation-reversing isometries, they are compositions of the al-
ready given orientation-preserving isometries with re�ections about hyperbolic hyperplanes.
We can consider without loss of generality the re�ection about the hyperplane

{z + uj : z ∈ R} = H2 ⊂ H3,

i.e. the conjugation map c : z 7−→ z; this since every hyperbolic hyperplane can be sent to
H2 via an orientation-preserving isometry. Then we can write

I(H3) = I+(H3)⊕ 〈c〉 = I+(H3) t c
(
I+(H3)

)
(1.2)

Thanks to this relation, we can keep our attention on the orientation-preserving isome-
tries. The restriction to CP1 ∼= ∂H3 ⊂ H ∪ {∞} of the action (1.1) gives

PSL2(C)× CP1 −→ CP1(
[A],

[
z0

z1

])
7→
[
A

(
z0

z1

)]
Proposition 1.2.3. The above law de�nes a continuous group action. An analogous state-

ment holds for PSL2(R) and RP1 respectively.
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Proof. We have to prove that the map is well de�ned, and that is an action. It is well
de�ned because [

(λA)

(
µz0

µz1

)]
=

[
λµ ·A

(
z0

z1

)]
=

[
A

(
z0

z1

)]
for every λ, µ 6= 0.

We have the commutative diagram

SL2(C)× C2 \ {(0, 0)} C2 \ {(0, 0)}

PSL2(C)× CP1 CP1

pπ p

where p is the projection C2 \ {(0, 0)} → CP1 ∼= C2 \ {(0, 0)}/C∗ and π is the projection
SL2(C)→ PSL2(C). The upper line is a group action, namely the restriction of the action
of GL2(C) on C2. Moreover, thanks to π being a group homomorphism, the lower line,
de�ned in order to make the diagram commute, is an action too:

[AB][z]
def
= [(AB)(z)] = [A(B(z))]

def
= [A][B(z)] = [A] ([B][z])

The commutative diagram also implies that the action is continuous, since CP1 inherits the
topology from C2 \ {(0, 0)} and the action of SL2(C) on (C∗)2 is continuous.

#

In other words, writing λ for an element of CP1 (resp. RP1), be it a real (resp. complex)
number or ∞, we can write these actions as:(

a b
c d

)
.λ =

aλ+ b

cλ+ d

for every (
a b
c d

)
∈ PSL2(C) (resp. PSL2(R))

We observe that this action is faithful: no matrix A ∈ PSL2(C) acts identically on
every λ ∈ CP1. So we can identify an isometry of H3 with its associated action on the
boundary; and this point of view will be very useful.

We delve now a bit deeper in the structure of the groups of isometries. We will write
GL+

n (R) for the subgroup of GLn(R) consisting of matrices with positive determinant, and
the analogous notion for PGLn(R) is:

PGL+
n (R) := GL+

n (R)/{λ ∈ R : λn > 0}

This means that the subgroup by which we quotient out is R∗ if n is even and R+ if n is
odd.
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Remark 1.2.4. In particular, if n is even, PGL+
n (R) can really be seen as the subgroup

of PGLn(R) containing all classes for which one (and then all) representative has positive
determinant.

This is useful for us in the case n = 2.

Proposition 1.2.5.

PGL+
2 (R) ∼= PSL2(R), PGL2(C) ∼= PSL2(C)

Proof. The map

SL2(R) −→ PGL+
2 (R)

A 7−→ [A]

is a group homomorphism, being composition of the inclusion SL2(R) ↪→ GL+
2 (R) and the

projection GL+
2 (R) � PGL+

2 (R).
It is surjective, because every [A] ∈ PGL+

2 (R) has a positive-determinant representative,
A, and then (

√
detA)−1A is a preimage of [A] in SL2(R). The kernel of the above map is

{±I2}, so we obtain
PGL+

2 (R) ∼= PSL2(R)

The other isomorphism is checked exactly in the same way, for the complex case. #

Thanks to these isomorphisms we can consider matrices in GL+
2 (R) and GL2(C), via

the canonical projections, respectively as elements of PSL2(R) and PSL2(C).

We conclude this section with a more general description of hyperbolic isometries that
gives maybe some geometric insight. It is found in ([BP12], Theorems A.4.2 and A.3.9 (2)).

Proposition 1.2.6. Every isometry of Hn can be written as

z 7−→ λ

(
A 0
0 1

)
i(x) +

(
b
0

)
where λ > 0, A ∈ O(n−1), b ∈ Rn−1 and i is either the identity or an inversion with respect

to a semisphere orthogonal to Rn−1 × {0}. Moreover, i is the identity if and only if the

isometry �xes ∞.

1.3 Hyperbolic manifolds

We de�ne here the main properties of hyperbolic manifolds. We recall that a Riemannian
metric g on a di�erentiable manifold M is a symmetric, positive de�ned 2-form on M . The
couple (M, g) is referred to as a Riemannian manifold.
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De�nition 1.3.1. An hyperbolic manifold is a manifold with atlas of charts whose images
are open subsets of Hn and transition functions are restrictions of hyperbolic isometries.

We don't ask for such a manifold to be complete, as it is commonly done; we will study
later the conditions necessary to impose completeness on the manifolds we will study.

Remark 1.3.2. An equivalent way of de�ning such a manifold, or better such a structure
on a manifold, is as a di�erentiable manifold equipped with a Riemannian metric of constant
sectional curvature equal to -1. In particular, given our de�nition above, one gets such a
Riemannian metric by pull-back of the hyperbolic metric on the open sets of the charts.

De�nition 1.3.3. A hyperbolic manifold with boundary is the data of a manifold with
boundaryM and an embedding ofM into an hyperbolic manifold H, of the same dimension
as M . The hyperbolic metric on M is then the restriction of the hyperbolic metric of H.

De�nition 1.3.4. A n-dimensional manifold M is said to be orientable if it admits a
never-vanishing n-form. In this case, an orientation is the equivalence class of such a form,
modulo multiplication by a function g ∈ C∞(M,R+).

Example 1.3.5. H3 is orientable.

Proof. The form x∗1 ∧ . . .∧ x∗n never vanishes, being dual to the standard basis of TxHn for
each x ∈ Hn. #

Remark 1.3.6. We remark that, given an orientable manifold M and an embedding N ↪→
M , an orientation is induced on N via pull-back of forms. In the previous example, the
n-form given is the pull-back of the analogous "standard" n-form of Rn under the trivial
embedding Hn ↪→ Rn.

De�nition 1.3.7. LetM be an orientable Riemannian manifold. An isometry ofM is said
to be orientation-preserving if its pull back acts trivially on the orientations; orientation-
reversing otherwise.

While this de�nition entails checking that the pull back of a di�eomorphism acts on
the orientations, this fact can be found in a di�erential geometry textbook (e.g. [AT11],
Section 4.2) and we omit it here.

1.4 Hyperbolic polytopes

Armed with this little arsenal we can look at the ideal hyperbolic triangles and tetrahedra.
Ideal means their vertices lie "at in�nity", e.g. an ideal triangle in H2 is identi�ed by 3
distinct point on its boundary, and composed of the geodesics between them. Analogously,
we aim to de�ne an ideal tetrahedron in H3 in such a way that it is uniquely identi�ed by 4
distinct, non-collinear points in ∂H3; in a very natural way it will inherit a own hyperbolic
structure.
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There are a couple of observations to make, if we want to give a good de�nition. First,
each tetrahedron can have 2 orientations. Second, since we are interested in tetrahedra up
to hyperbolic isometries, we have to identify some of the quadruples of vertices. Let we
formalize this.

We write ∆3 for the standard 3-simplex, i.e.

∆3 = {(t1, t2, t3) ∈ R3 :
3∑
i=1

ti ≤ 1, ti ≥ 0}

Its vertices are (0, e1, e2, e3), and its edges are convex hulls of couples of distinct vertices.
To de�ne properly a hyperbolic tetrahedron we need to generalize the concept of con-

vexity to a Riemannian manifold.

De�nition 1.4.1. Let M be a Riemannian manifold and X ⊆ M . We say that X is
geodesically convex, or just convex, if for every couple of its points, there exists a geodesic
arc connecting them which is contained in X.

De�nition 1.4.2. A geodesic hyperplane in H3 is an isometric embedding of H2 into H3.

Because of the isometry requirement, such an embedding sends geodesics of H2 into
geodesics of H3. Recall that in the hyperbolic space every two points are connected by one
and only one geodesic. Therefore geodesic hyperplanes are convex.

De�nition 1.4.3. An ideal hyperbolic tetrahedron is the image of a topological embedding

s : ∆3 −→ Ĥ3

such that it sends

• the vertices of ∆3 to distinct points of ∂H3,

• the edges of ∆3 to geodesics of H3 (plus the endpoints),

• the interior of the faces of ∆3 to suitable subsets of geodesic hyperplanes, bounded
by geodesics above.

We denote the respective images of the vertices 0, e1, e2, e3 by v0, v1, v2, v3.

It is, topologically, the same as ∆3, and it is geodesically convex. Its non-ideal part,

s(∆3) ∩H3

inherits from H3 a hyperbolic structure.
We consider only the image of the embedding, because we are not interested in di�erent

embeddings (complying with the above conditions) with the same image. Actually, the
important remark is
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Remark 1.4.4. An ideal hyperbolic tetrahedron is completely de�ned by the set of its
vertices {v0, v1, v2, v3}, which we will call also "(non-ordered) quadruple".

The idea is that an ideal tetrahedron is a sort of "convex hull" of the 4 vertices: but we
couldn't de�ne it with such a language because the vertices themselves are not in H3, and
Ĥ3 is not a metric space.

We haven't said anything about the orientation: with this de�nition tetrahedra can have
both the orientation inherited from H3 and the opposite one. Such a choice is equivalent
to choosing an ordering of the vertices, modulo even permutations.

Now, we want to give a structure to the set of oriented ideal tetrahedra up to hyperbolic
isometries, and our �nal goal is to associate to each of them a complex number.

De�nition 1.4.5. We denote by R the set of oriented hyperbolic ideal tetrahedra up to
orientation-preserving isometry. We denote by A the set of ordered quadruples of distinct,
non-collinear points of ∂H3.

Our aim is to describe R, to give it some structure. Our �rst remark is that we can
see it as 2 disjoint copies of a set R′ that parametrizes the non-oriented hyperbolic ideal
tetrahedra.

For this reason, we start considering the non-oriented tetrahedra. We use the action
of S4, by permutations, on A. Then R′ is S4\A. Now we take into account the action of
orientation-preserving isometries of H3 on the boundary, and in particular what it does to
the vertices.

Every ordered quadruple (z0, z1, z2, z3) of distinct, non-collinear points in CP1 can be
sent to (∞, 0, 1, φ(z3)) via a single orientation-preserving isometry φ. Then φ(z3) ∈ C \ R.

Remark 1.4.6. It may be useful to have the explicit form for φ. It is

φ(z) =
z − z1

z − z0
· z2 − z0

z2 − z1

Let's consider the composition map

A φ(z3)−→ C \ R −→ D3\ (C \ R) (1.3)

where D3 is the so called dihedral group. D3 has presentation

〈a, b | aba = bab, a2 = b2 = 1〉

and is embedded in PSL2(C) as the subgroup generated by

i

(
0 1
1 0

)
, i

(
1 −1
0 −1

)
(corresponding respectively to a and b in the previous presentation).
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Proposition 1.4.7. The composition map in (1.3) factors through S4\A making the fol-

lowing diagram commutative.

A C \ R

S4\A D3\(C \ R)
?

-
φ(z3)

?
-Φ

Moreover, the map Φ is a bijection.

Remark 1.4.8. We will refer to an element of S4\A either as a tetrahedron T , or as an
equivalence class of a quadruple of points, with the square brackets notation [(z0, z1, z2, z3)].
We have already noted (Remark 1.4.4) the equivalence of these interpretations.
We will use the square brackets notation also for the equivalence classes in D3\(C \ R).

Proof. The map factors through S4\A because the cross-ratio of 4 numbers changes as the
D3-action under permutations of the said numbers. Once we have proved this, the diagram
commutes by construction. Surjectivity follows from the upper side of the square being
surjective. Injectivity: we denote by T1 = [(z0, z1, z2, z3)], T2 = [(w0, w1, w2, w3)] ∈ S4\A
two hyperbolic ideal tetrahedra. Let φ be the orientation-preserving hyperbolic isometry
taking (z0, z1, z2) respectively to (∞, 0, 1), and ψ be the analogous for (w0, w1, w2); so that

Φ(T1) = [φ(z3)] and Φ(T2) = [ψ(w3)]

If we impose Φ(T1) = Φ(T2), then φ(z3) and ψ(w3) are in the same D3-orbit; thus there
exists a g ∈ D3 such that

z3 = (φ−1 ◦ g ◦ ψ)(w3)

Now, elements of D3 act on {∞, 0, 1} by permutations: it is trivial on the generators. So

(φ−1 ◦ g ◦ ψ)(wi) = zσ(i) for a σ ∈ S4

#

Remark 1.4.9. The groupD3 is semidirect product of 〈a〉 and 〈ab〉, respectively isomorphic
to C2 and C3. The C2 action exchanges C+ and C−, while the C3 action preserves both of
them. So we can visualize D3\ (C \ R) as the quotient 〈aba〉\C+.

We have now found a way to associate to each ideal hyperbolic tetrahedron T with
vertices (z0, z1, z2, z3) an equivalence class of complex numbers with positive imaginary

part. We follow the notation above and call it Φ((z0, z1, z2, z3)), more brie�y Φ(T ). We
will also loosely use one of the representatives to refer to it.
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1.4.1 The modulus

We go now further: we want to link to every edge of a tetrahedron a complex number with
positive imaginary part, that we will call the modulus of the tetrahedron with respect to
that edge. We will denote a generic edge by e or by a couple (x, y) of vertices, disregarding
these latter's order.

In the above setting, we de�ne for the tetrahedron T with vertices z0, z1, z2, z3,

mod(T, (z0, z1)) =
z3 − z1

z3 − z0
· z2 − z0

z2 − z1
(1.4)

and the result is required to have positive imaginary part: this can be attained possibly by
inverting the order of the two vertices making up the edge.

For the other edges, the formula is the same after a suitable even permutation of
z1, . . . , z4 that takes to the last two positions the vertices of the edge in question.

We will use the following

Remark 1.4.10. Let P be an ideal tetrahedron. Then we have∏
e

mod(P, e) = 1 (1.5)

where the product is taken over the edges e of P . Indeed, the 6 edges of the tetrahedron
give 2 copies of the triple {

z,
1

1− z
, 1− 1

z

}
for a suitable complex number z; and the product of the three numbers is easily seen to be
−1.

1.5 The developing map

We will need at least the de�nition of an important tool in hyperbolic geometry. We have
no possibility of being complete, and refer the reader to ([Rat06], �8.4). We are interested
mainly in the 2 and 3-dimensional case since we'll need the developing map for the study of
the boundary of 3-manifolds. So, we state the following theorem for an hyperbolic manifold
M of dimension 3.

Theorem 1.5.1. Let U ⊂ M be open, simply connected, ϕ : U −→ H3 be a chart for the

hyperbolic structure. Let M̃
π−→M be the universal covering. Then the map

ϕ ◦ π : π−1(U) −→ H3

extends to a local isometry

D : M̃ −→ H3

unique up to composition with an element of I(H3). This map is called the developing map

associated to the hyperbolic structure.
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Remark 1.5.2. In particular, if M is simply connected, the developing map is a local
isometry D : M −→ H3.

An explicit construction is carried on in the 3-dimensional case in ([Cha], 4.0.7). In the
same section is showed that the developing map is de�ned up to hyperbolic isometry.

The developing map gives rise to another idea of completeness for hyperbolic manifolds:
we would like to say that such a manifold is complete if the associated developing map
covers the whole of H3. A general description, for (X,G)-manifolds, is given in ([BP12],
Section B.1), and we'll explore it in our discussion of completeness, in 2.3.



Chapter 2

Gluing tetrahedra

We describe now how to glue hyperbolic ideal tetrahedra in order to obtain more compli-
cated hyperbolic 3-manifolds.

Since vertices of ideal tetrahedra are not in the hyperbolic space, after the gluing we
expect some "holes" in the resulting manifold, usually referred to as cusps. By expanding
these points we can create a boundary, without changing the topology of the manifold.

We will be interested in the case of all the vertices gluing to the same point. In this
case, the boundary obtained will be homeomorphic to a 2-torus T2.

2.1 Construction of a manifold M with torus boundary

De�nition 2.1.1. A horosphere centred at p ∈ H3 is a hypersurface orthogonal to all
geodesics ending in p.

For every given p the horospheres centred in p are parametrized by their radius r ∈ R+.
Despite their name, horospheres are homeomorphic to a plane, rather than a sphere: this
is because the center, which is an ideal point, remains punctured.

In the upper-half-space model they are euclidean 2-spheres (of radius r) tangent to
p ∈ C, or horizontal planes {z + uj ∈ H : z ∈ C, u > 1

r} when p =∞.

Proposition 2.1.2. The hyperbolic structure of H3 induces on the horospheres the euclidean

structure of R2.

Proof. Without any loss of generality we can consider the horosphere of radius r centred in
∞; as already noted it is a horizontal plane in H3 and thus the hyperbolic metric restricts
on it to a positive multiple of the euclidean one, to which then it is equivalent. #

An horosphere divides the hyperbolic space in two connected components. We will call

horoball the one whose closure in Ĥ3 intersects ∂H3 only in p, the center of the horosphere.

13
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When we intersect an ideal tetrahedron with an horosphere centered at a vertex, we
obtain a triangle with euclidean structure.

Let P = {P1, . . . , Pn} be a �nite family of disjoint ideal hyperbolic tetrahedra. We
identify them with complex numbers z1, . . . , zn ∈ C+ as described previously.

Now we want to glue the tetrahedra on pairs of faces by hyperbolic isometries.

De�nition 2.1.3. A (hyperbolic) side-pairing of P is a collection of (hyperbolic) isometries
Φ = {gS}S∈S indexed by the collection of the faces S satisfying, for each S ∈ S, the following
conditions:

1) there exists S′ ∈ S such that gS(S) = S′

2) g′S = g−1
S

3) if S ⊂ P and S′ ⊂ P ′,
P ∩ gS′(P ′) = S

This last condition is to avoid overlapping of two tetrahedra which are glued on a face. This
makes necessary to use orientation-reversing isometries at times, the most simple example
being the Gieseking manifold.

We de�ne an equivalence relation ∼ on the disjoint union of the tetrahedra qni=1Pi (as
a topological space) by

x ∼ y if and only if x = y or for some face S, gS(x) = y

Now, this is not enough. If we want the quotient topological space

M := (qni=1Pi) / ∼

to be a manifold, we must prove that every point ofM has a neighbourhood homeomorphic
to a small euclidean ball. For points in the interior of the tetrahedra this is already clear.
For points in the faces, the side-pairing only joins two faces at a time, and every face has a
neighbourhood homeomorphic to a half ball. But, for points on the edges, we must impose
conditions. We will do this in the next section. For now, we can just assume M is indeed
a manifold.

De�nition 2.1.4. An edge of M is the image under the quotient map of an edge of a
tetrahedron Pi ∈ P. Analogously, a face of M is the image under the quotient map of a
face of a tetrahedron Pi ∈ P.

Now we want to better study its boundary. If P is a hyperbolic ideal tetrahedron, we
denote by P̂ its closure in Ĥ3, i.e. P plus its vertices. Now, with the above notation, de�ne
as V the set of all vertices of tetrahedra in P. The hyperbolic isometries gS de�ne actions
on ∂H3 which send some of the vertices to others.
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Fix a polyhedron P . We let v vary among its vertices, and we consider pairwise disjoint
horoballs centred in v. Let's denote them Bv. We take them small enough to intersect only
the 3 faces of P ending in v. ClearlyM is homeomorphic to the interior of the manifold with
boundary M̃ obtained taking out, from M , the image of these Bv ∩ P under the quotient
map.In the following we will identify the two manifolds and refer commonly to them as M .
The boundary of M̃ will be then denoted by ∂M .

Remark 2.1.5 (Extension of the hyperbolic structure). From the beginning we have for
free a hyperbolic structure on the image of the interior of the tetrahedra.
Then, since we are working with gluing maps that are hyperbolic isometries, we can extend
this structure to the interior of the gluing, i.e. to the interior of the faces.
Finally, when we will prove that M is indeed a manifold, we will prove indeed that a
neighbourhood of each edge is hyperbolically isometric to a neighbourhood of a vertical
geodesic in H3. In other words, the above hyperbolic structure extends to the edge.

2.2 Edge conditions

By (Lemma E.5.6, [BP12]) the number of edges inM is the same as the number of tetrahedra
we are gluing, n. Fix one of these, call it e. We realize it in the upper-half-space model as
the geodesic (0,∞).
Consider the tetrahedra containing e. Let's call them P1, . . . , Pm, with possibly some
repetition when two or more edges of the same tetrahedron Pi end up glued in e.
We consider their moduli mi := mod(Pi, e) with respect to their edges identi�ed with e.
Now, gluing them, let's say anti-clockwise, around the edge means getting a polygon with
vertices ∞, 0,m1,m1m2, . . .

Figure 2.1: Gluing the tetrahedra P1, . . . , Pn around the edge e

We conclude that the tetrahedra glue well around e if and only if
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•
∏m
i=1mi = 1 (2.1)

•
∑m

i=1 (arg(mi)) = 2π

If the �rst condition holds for all edges e then the second condition holds for all edges e, as
shown in ([BP12], Lemma E.6.1).

De�nition 2.2.1. We call edge equations the collection of (2.1) for the edges e in M .

Now we let the tetrahedra P and the side-pairing vary. The tetrahedra can assume all
values in the space of oriented tetrahedra R, i.e. the moduli mi can assume all values in
C \ R. If all the edge equations hold true, the side-pairing is said to be proper and the
hyperbolic structure on the interior of the tetrahedra extends to the whole manifold M .

De�nition 2.2.2. Let M be a manifold as above. We write H(M) for the space of hyper-
bolic structures supported by M .

We will see H(M) as a subset of Cn, with the interpretation of ideal hyperbolic oriented
tetrahedra as complex (not real) numbers we have seen in Section 1.4: elements of H(M)
in Cn are those n-ples of complex numbers corresponding to n-ples of tetrahedra that glue
well around each edge. Since the conditions de�ning H(M) are algebraic equations, it is
an algebraic set. We can study then its dimension.

Remark 2.2.3. We have, at �rst, n algebraic equations: one for each edge. However,
multiplying all of them we get, on the left-hand side,

n∏
i=1

∏
e∈Pi

mod(Pi, e)

with e ∈ Pi being the 6 edges of Pi. By Remark 1.4.10 this is 1, so the n equations are not
independent.

This implies that the dimension of H(M) as an algebraic set in Cn is at least 1.

2.3 Completeness

We turn now to investigate when the hyperbolic structure is complete.
As we said, the existence of the developing map allows another de�nition of completeness

for a hyperbolic manifold. We refer to ([BP12], B.1) for this new de�nition and for the proof
of its equivalence to our "metric" de�nition 1.1.1.

De�nition 2.3.1. Let M be a hyperbolic 3-manifold. We say that M is a complete

hyperbolic manifold if the developing map of the universal covering M̃ , i.e.

D : M̃ −→ H3

is a homeomorphism.
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Theorem 2.3.2. An hyperbolic 3-manifold is complete as a Riemannian manifold if and

only if it is a complete hyperbolic manifold.

Proof. If M is complete in the metric sense, then it is isometrically isomorphic to the
quotient of H3 by π1(M), identi�ed with a convenient discrete subgroup of isometries of H3

([BP12], Theorem B.1.7). In particular M̃ = H3 and the developing map D is an isometry
of H3, thus a homeomorphism.

Vice versa, let D : M̃ −→ H3 be a homeomorphism. We denote by

π : M̃ −→M ∼= M̃/π1(M)

the usual covering map. Recall that the action of π1(M) on M̃ is free and properly dis-
continuous. By de�nition of developing map, D transports the hyperbolic structure from
H3 to M̃ . So (π ◦ D−1)(H3) ∼= M is the quotient of H3 by an identi�cation of π1(M) as a
discrete subgroup of isometries. #

In the following we can thus use interchangeably these notions of completeness. How-
ever, before going back to our study of completeness, we give an example in dimension 2,
in order to better show the behaviour of non-complete structures.

Example 2.3.3 (Complete and non-complete hyperbolic structures on D2 \ {0}). This
example comes from ([Bon], Section 6.7) and ([BP12], Example B.1.16).

Let D̂ := D2 \ {0} be the unit disk punctured in 0. We didn't introduce the disk model
for the hyperbolic 2-space, so the reader may not know it. However, it is enough to know
that D2 can be equipped with a (complete) hyperbolic structure such that is isometrically
di�eomorphic to H2 via an isometric di�eomorphism ϕ.

Now, a hyperbolic structure on D̂ is clearly inherited from the hyperbolic structure of
D2. Equally clear is the fact that this inherited structure is not complete.

In this case, the developing map is

D : H2 π−→ D̂ ↪→ D2 ϕ−→ H2

i.e. the composition of the covering map

π : H2 −→ D̂

z 7−→ e2πiz

with the inclusion D̂ ↪→ D2 (which is the map giving the hyperbolic structure).
We can actually ignore the last map ϕ, since it changes nothing from the point of view

of hyperbolic metric. We have included it only for consistency with the notation of our
de�nition of developing map.

The developing map D is not an homeomorphism: in fact nothing is sent to 0 ∈ D2,
and then by ϕ to 1 ∈ H2.
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However, the covering map π provides and example of a complete hyperbolic structure
on D̂. In fact, it allows and identi�caton of D̂ with H2/Z, under the action z 7→ z + n. In
other words, we can identify D̂ with a vertical strip I = {z : =(z) ∈ [0, 1]} ⊂ H2 modulo
the gluing on the edges. Since the action is free and properly discontinuous, the hyperbolic
structure on the quotient space is complete.

This can be visualized by the fact that the orbit of the strip I under the action of Z
covers all H2, with intersections only on the edges.

Now, let's go back to our original setting, with M a manifold glued as in Section 2.1,
recall that ∂M ∼= T2. The triangulation T of M in tetrahedra induces a triangulation
T ′ on the boundary. By Proposition 2.1.2 each of the triangles in T ′ has a euclidean
structure. Moreover, the transition maps on the sides of the triangles come from restrictions
of hyperbolic isometries sending ∞ to ∞. We can describe them using Proposition 1.2.6.

Remark 2.3.4. An hyperbolic isometry �xing ∞ is of the form

ϕ

(
z
h0

)
=

(
λAz + w
λh0

)
(2.2)

with A ∈ O2(R). The rule
z 7−→ λAz + w

on C ∼= R2 is a composition of dilations (multiplication by λ), rotations and re�ections
(action of O2(R)) and translations (by w), it is in other words a euclidean similarity in that
it preserves angles but not lengths.

Remark 2.3.5. Euclidean similarities form a subgroup of Diff(Rn), and of course they
include euclidean isometries I(En). It might prove useful to give them their own notation:
S(En).

On the one hand an euclidean structure on a manifold is the data of an atlas of euclidean
isometries with isometric transition maps; this gives a Riemannian structure on M . On
the other hand a similarity structure is the data of an atlas of eulidean isometries with
similarities - a bigger class of maps - as transition maps. This is not enough to de�ne a
Riemannian structure on the manifold.

We will mainly play with two important results. We state the �rst (see [BP12], Propo-
sition E.6.5).

Proposition 2.3.6. The hyperbolic structure on M determined by a proper side-pairing is

complete if and only if the similarity structure induced on ∂M is euclidean.

There is a nice geometric interpretation of this. We call horizontal the hyperbolic
isometries that preserve heights. They necessarily �x ∞.

In general, the isometries of the face-pairing are not horizontal. When we cut the glued
tetrahedra like in Figure 2.1 at a height h, we obtain on each triangle a euclidean structure
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coming from di�erent heights. Remember, the euclidean structure is fully determined by
the height of the horizontal plane in the upper-half-plane. So, they are not the same, they
are related by similarities.

To ask that they patch together to a whole euclidean structure means asking of these
similarities to be actually euclidean isometries. By the above Remark 2.3.4 this amounts
to λ being 1 in (2.2), i.e. the isometries being horizontal.

For the proof of the above proposition we will need the second important result, but
�rst some preparation. We have considered till now gluing of tetrahedra. When we glue
di�erent hyperbolic tetrahedra we can imagine of doing so in successive steps; in particular
gluing �rst all the tetrahedra in a big polyhedron, and then proceeding to the gluing of its
faces. This results in an analogous theory, but with only one geometric object and a less
bulky side-pairing. This point of view is held in the next formulation of Poincaré's Theorem
2.3.11, drawn from ([Rat06], �11.2).

De�nition 2.3.7. A family A of subsets of a topological space X is said locally �nite if
every x ∈ X admits a neighbourhood intersecting a �nite number of elements of A.

A discrete group of isometries is simply a subgroup of I(Hn) that from it inherits the
discrete topology. We recall that

De�nition 2.3.8. The action of a group G on a topological space X is discontinuous if for
every compact subset K of X, the set K ∩ gK is non-empty for �nitely many g ∈ G. An
action is free if g.x = x for some x ∈ X implies that g is the identity.

Proposition 2.3.9. A group Γ of hyperbolic isometries is discrete if and only if it acts

discontinuously on Hn.

Proof. Direct consequence of ([Rat06], Theorem 5.3.5). #

De�nition 2.3.10. A fundamental polyhedron for a discrete group of hyperbolic isometries
Γ is a connected polyhedron P such that:

1) Hn =
⋃
g∈Γ

gP

2)
{
gP̊
}
g∈Γ

are pairwise disjoint and locally �nite

A fundamental polyhedron is said to be exact if for each side S of P there is an element
g ∈ Γ such that

S = P ∩ gP

From the setting of the previous sections - a set P of tetrahedra, and a side-pairing
for them - we can obtain a single ideal hyperbolic polyhedron with a side-pairing, which is
nothing more than a bunch of identi�cation of its faces by hyperbolic isometries. Some edges
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of this polyhedron are identi�ed by these isometries. This translates the edge equations of
the tetrahedra in conditions on the composition of some face-pairings, that describe however
the analogue situation. We follow ([Rat06]) in calling these conditions cycle relations.

And here is

Theorem 2.3.11 (Poincaré's fundamental polyhedron theorem). Let P be a hyperbolic

ideal) polyhedron with a proper hyperbolic side-pairing Φ such that the induced hyperbolic

structure on the manifold M obtained by gluing together the sides of P by Φ is complete.

Then the group Γ ⊆ I(H3) generated by Φ is discrete and acts freely on H3, P is an exact

fundamental polyhedron for Γ and there is an isometry

M ∼= H3/Γ

A presentation for Γ is given in the following way:

• The generators are {gS : S is a face of P}.

• The relations are

gSgS′ = 1; gS1 . . . gSn = 1 (cycle relations)

We can now prove Proposition 2.3.6.

Proof of Proposition 2.3.6. (⇒) Assume that the hyperbolic structure is complete. So it
is a quotient of its universal cover H3 by a discrete group Γ. Its boundary ∂M can be
lifted to a connected triangulated polygon; since every triangle of the triangulation
has, in its interior, an euclidean metric, it will necessarily lie on a horizontal plane.
Being the polygon connected, all of it will lie on a horizontal plane. The sides are
identi�ed by isometries in Γ. Since these isometries act horizontally, they �x∞. Then,
by Remark 2.3.4 they are euclidean similarities. Moreover, since they act horizontally,
they are indeed isometries.

(⇐) We cover M with an (obvious) compact part and the conical neighbourhood of the
vertex given by the union of the horoballs centred in its π-preimages. It is enough to
prove that this last set is complete. Assume that the structure of ∂M is euclidean.
This means that ∂M is a quotient of a triangulated polygon by identi�cation of its
sides by euclidean isometries. Thus the set we are interested in is of the form ∂M ×
[t,∞) modulo identi�cation of the vertical faces operated by horizontal hyperbolic
isometries. It follows that it is actually the quotient of the whole C × [t,∞) by a
discrete subgroup of I(H3) whose elements keep ∞ �xed. Then it is complete.

#
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We proceed now to study the algebraic conditions that provide completeness. The
similarity structure on ∂M induces the holonomy morphism π1(∂M) −→ S(E2).

We restrict to the case of M orientable. Choosing an orientation on ∂M will allow us
to play with the orientation-preserving isometries of the euclidean plane instead of with
all the isometries, avoiding re�ections. Since euclidean re�ections always �x some points,
they cannot be restrictions to the ∂M of hyperbolic isometries: they cannot come from
discrete subgroups of I(H3). However, composition of (an odd number of) re�ection with
non trivial translations leave no �xed point, and we want to avoid this problem (at least
for now). We have

Proposition 2.3.12. An hyperbolic structure on M is complete if and only if the induced

holonomy on the boundary is injective and consists of translations.

Proof. (⇒) If the similarity structure on the boundary is euclidean, the image of the
holonomy is contained in I+(E2) which is generated by translations and rotations.
However, since it comes from a discrete group of isometries of H3 it cannot �x any
point of R2, and thus is generated by translations. Moreover the map has to be
injective, otherwise we can take the image of one of the 2 generators of π1(T2) to be
the identity, and the quotient of R2 by only one translation is not a torus.

(⇐) We have on the torus boundary a similarity structure such that the holonomies of
the two generators a, b of π1(T2) are translations. We cut the torus open along a
longitude-meridian pair obtaining a simply connected open U ⊂ T2. Thus we can lift
it to the universal cover R2 to a open quadrilateral V .

The developing map D sends its closure to R2, which is the model for the similarity
structure. Then, we look at D(V ). The interior is locally isometric to R2, since D
extends the chart of V . On the other hand the images of the sides are identi�ed by a
translation, which is an euclidean isometry. Thus the structure on the torus boundary
is euclidean.

#

Remark 2.3.13. We want to prove that, in the previous proposition, there is no need for
requesting injectivity of the holonomy.

Indeed, if the holonomy consists of translations, the only way it can be not injective,
is one of these translations being trivial. Then, taking the quotien of R2 by only one
translation means that the boundary cannot be a torus. Thus we can restate the previous
proposition.

Proposition 2.3.14. An hyperbolic structure on M is complete if and only if the induced

holonomy on the boundary consists of translations.
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2.4 Computation of the holonomy

Recall that every triangle in the triangulation of ∂M comes from intersecting an ideal
tetrahedron with a horosphere, and then the vertices of such triangles correspond to vertical
geodesics. If ∆ is such a triangle and v is a vertex of ∆, we de�ne the modulus mod(∆, v)
to be the modulus of the only tetrahedron containing ∆ with respect to the edge associated
to v.

Let
π1(∂M) ∼= π1(T2) ∼= Z⊕ Z

and {γ1, γ2} be a set of generators for Z⊕Z: we will loosely refer to any of them as generator
of π−1(∂M).

As we said, our euclidean similarities are composition of dilations, rotations and trans-
lations: identifying R2 to C we can write them as

z 7−→ λz + µ

where λ 6= 0, µ ∈ C, for every z ∈ C.

Remark 2.4.1. In particular, we have the identi�cation

S(E2) ∼= C∗ × C

We will call λ the dilation part of the map; the dilation is trivial when λ = 1. We
compute the dilation part δ(γ) of the holonomy relative to a generator γ of π1(∂M).

We can take γ to be made of consecutive sides of the triangulation T ′. Then we choose
a lift to H3 in order to obtain a curve starting from a �xed point, consisting of a �nite
number of oriented, ordered straight segments. Every segment starts where the previous
ends. We consider the angle comprised between two such segments, on the right side. Since
we had an orientation for the segments, this is painless. This angle encloses a �nite number
of lifts of triangles from T ′, let's call them ∆1, . . . ,∆n.

Remark 2.4.2. The similarity sending every oriented segment to its follower has dilation
component equal to the product of −mod(∆, v) for each of these triangles ∆, and v the
common vertex.

We say that all these triangles, for all the vertices in γ, lie to the right of γ. Then

Proposition 2.4.3. With the above notations,

δ(γ) = (−1)n
∏
∆

mod(∆, v) (2.3)

where the product is taken over all the triangles ∆ ∈ T ′ lying to the right of γ, with no

repetitions.
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Having computed the dilation, we can now restate Proposition 2.3.12 in purely algebraic
terms.

Proposition 2.4.4. Let M be a orientable 3-manifold with torus boundary. Let γ1, γ2 be

two generators of π1(∂M). An hyperbolic structure on M is complete if and only if

δ(γi) = 1 for i = 1, 2 (2.4)
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Chapter 3

Algebraic structure

We look now for some algebraic insight on the structure of hyperbolic structures on a
manifoldM obtained by gluing n tetrahedra as described in the previous chapter; we relate
this structure to the representation variety. We will use the representation varieties of both
the manifold and its boundary as a "projecting screen" and realize the spaces of hyperbolic
structures as "images" on this screen.

The main reference for this chapter is [Cha]. Even though all the main ideas are there,
notation may vary sensibly since we tried to adapt it to our setting. Recall that H(M) is
the space of all hyperbolic structures on a given manifold M , including the non-complete
ones.

3.1 Orientable case, ∂M = T2

If M is orientable, from previous sections we have a fairly clear idea of the situation. Let α
and β be two generators of π1(∂M) ∼= Z2. In 2.2 we described H(M) as an algebraic subset
of Cn+ de�ned by the gluing equations, so it is natural from now on to refer to hyperbolic
structures on M as n-ples z = (z1, . . . , zn) of complex numbers.

The completeness equation tells us how to �nd the complete structures in H(M), but
we also want to study better non-complete structures. Proposition 2.4.4 tells us that the
dilation component of the holonomy is crucial here. We study it nearby the complete
structure. In the following we will refer to the dilation component as the "holonomy" itself,
and consider it as a map

Hol : H(M) −→ C∗ × C∗

z 7−→ (δz(α), δz(β))

Remark 3.1.1. An hyperbolic structure z is complete if and only if

z ∈ Hol−1 ((1, 1))

25
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We will write Hc(M) := Hol−1 ((1, 1)) for the set of complete structures, and H∗(M) :=
H(M) \ ker(Hol). We copy here from ([Rat06], �11.6) a corollary of the celebrated Mostow

Rigidity theorem, which describes the complete structures.

Corollary 3.1.2. The hyperbolic structure on a closed, connected, orientable 3-manifold is

unique up to isometry homotopic to the identity.

The hyperbolic structure on such an hyperbolic 3-manifold M with torus boundary
extends a complete hyperbolic structure on the interior of M .

The map

∆: C∗ × C∗ −→ Rep(π1(∂M), SL2(C))

sending (λ, µ) to the diagonal representation

ρ(α) =

(
λ 0
0 λ−1

)
; ρ(β) =

(
µ 0
0 µ−1

)
is almost everywhere 2-to-1. We can realize it as the quotient map

C∗ × C∗

(λ, µ) ∼ (λ±1, µ±1)

We want to �nd an analogous map giving a PSL2(C) representation instead, but we
need then another identi�cation. Geometrically, the quotient of S1

∼= C∗/(z ∼ z−1) by the
multiplicative action of {±1} is a closed disc with a hole. Algebraically, the map

∆: C∗ × C∗ −→ Rep(π1(∂M), PSL2(C))

such that

∆(λ, µ)(α) =

(
λ1/2 0

0 λ−1/2

)
; ∆(λ, µ)(β) =

(
µ1/2 0

0 µ−1/2

)
is well de�ned, because the two square roots of λ di�er by a factor (−1) which is absorbed
by PSL2(C). And, analogously to the previous case, is generally 2-to-1.

Composing these maps we get

H(M)
Hol−→ C∗ × C∗ ∆−→ Rep(π1(∂M), PSL2(C))

What we are doing is clear: from a hyperbolic structure on M we get a similarity structure
on the torus boundary, which in turn induces an holonomy and thus a representation of its
fundamental group. The similarity structure comes from the restriction of the hyperbolic
structure, and thus the representation is naturally in PSL2(C).



3.1. ORIENTABLE CASE, ∂M = T2 27

In order to streamline notation we write from now on

X(M) := Rep(π1(M), PSL2(C))

X(∂M) := Rep(π1(∂M), PSL2(C))

On the other hand, we could directly look at the holonomy of the hyperbolic structure
as a representation of π1(M). We will need the developing map introduced in 1.5.

The developing map translates the monodromy action of π1(M) on M̃ to a representa-
tion ρ ∈ Hom (π(M), PSL2(C)). Moreover, developing maps which di�er by composition
of hyperbolic isometries yield conjugated representations.

Theorem 3.1.3. Let M be a hyperbolic 3-manifold with a �nite ideal triangulation T =
{T1, . . . , Tm}. Let T̃ be a lifting of T to M̃ . Let x ∈ T1 ⊆ M and �x a lifting x̃ ∈ T̃1. For

any z = (z1, . . . , zm) ∈ H(M) the developing map δz that sends T̃1 to the ideal tetrahedron

with vertices (∞, 0, 1, z1) induces a conjugacy class of representations in PSL2(C) and thus

an element of X(M). The resulting map

D : H(M) −→ X(M)

is algebraic, 2-to-1 onto its image.

For the proof of this theorem and of the following remark we address the reader to
([Cha], �4).

Remark 3.1.4. It follows from the Mostow Rigidity theorem that all discrete faithful
representations of π1(M) in PSL2(C) are conjugate, and their class is D(z0), for a(ny)
complete hyperbolic structure z0.

Writing X0(M) for the connected component of X(M) containing D(z0), the map D
is "almost surjective" onto X0(M), in the sense that

X0(M) \D(H(M))

has dimension 0.

If z ∈ H(M), we will call D(z) the developing representation of z. From e : π1(∂M) →
π1(M) we get, by precomposition, e∗ : X(M)→ X(∂M).

Theorem 3.1.5. The following diagram commutes

H∗(M) X(M)

C∗ × C∗ X(∂M)
?

Hol

-D

?
e∗

-∆

where the maps are the restriction of those de�ned above.
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Proof. We have to prove the commutativity for z not complete. Let l and m be respectively
the dilation component of the holonomy of the two generators α and β of π1(∂M).

Remark 3.1.6. By hypothesis at least one of l and m is not 1. Moreover, if the other
one happens to be 1 too, then the associated similarity is the identity. E.g. see ([BP12],
Lemma E.6.6, (a)⇒(d)).

We compute (e∗ ◦D) (z), which is completely determined byD (z) (e(α)) andD(z) (e(β)).

Recall the notation of Theorem 3.1.3. We can lift e(α) and e(β) to M̃ getting paths

ẽ(α) and ẽ(β) on a lift of ∂M . The hyperbolic structure of M induces on ∂M a similarity
structure. Then the representation induced by the developing map acts on e(α) and e(β)
as euclidean similarities. In particular,

D(z) (e(α)) = [z 7−→ lz + z0]

D(z) (e(β)) = [z 7−→ mz + z1]

We have the natural embedding

S(E2) ∼= C∗×C −→ PSL2(C)

[z 7→ az + b] 7−→ ±
(√

a b/
√
a

0 1/
√
a

)
Hence we obtain (e∗ ◦D) (z) ∈ X(∂M) as the conjugacy class of the following representation

(e∗ ◦D) (z)(α) = ±
(√

l z0/
√
l

0 1/
√
l

)
(e∗ ◦D) (z)(β) = ±

(√
m z1/

√
m

0 1/
√
m

)
However, there is a caveat. If this is to be a representation of π(∂M) ∼= Z2, the matrices

must commute, i.e. it must hold

[(e∗ ◦D) (z)(α), (e∗ ◦D) (z)(β)] = 0

Now, we walk the other side of the square.
Hol(z)(α) = l and Hol(z)(β) = m from our de�nitions. Applying ∆ we obtain

∆ (Hol(z)) (α) = ±
(√

l 0

0 1/
√
l

)
∆ (Hol(z)) (β) = ±

(√
m 0
0 1/

√
m

)
modulo conjugation.
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If one of these matrices is the identity, wlog l = 1, then z0 must be 0 by Remark 3.1.6,
and then we can conjugate (√

m z1/
√
m

0 1/
√
m

)
to (√

m 0
0 1/

√
m

)
with no consequences on the identity matrix.

Otherwise it su�ces to recall that if two diagonalizable complex matrices commute,
then they are simultaneously diagonalizable. #

We will use the notation D∂M := e∗ ◦D = ∆ ◦Hol.
When the hyperbolic structure is complete the map Hol is of no use: in fact the dilation of
the holonomy is trivial. So we cannot recover from it alone the developing representation
of π1(M) on the boundary, which consists in this case of non-trivial translations.

The problem in this case arises from the bad structure of X(∂M) around the trivial
representation.

We can consider as a pseudo-inverse of ∆ the map

t : X(∂M) −→ C∗ × C∗

sending a representation to the square of the maximal eigenvalue of the generators. This
map is invertible - and actually an isomorphism - with inverse ∆ on the regular part of
X(∂M) and is only not injective over (1, 1) ∈ C∗, where it sends all representations made
of translations.

3.2 Dimension of H(M)

In Remark 2.2.3 we observed that, when ∂M ∼= T2, the dimension of H(M) as an algebraic
subset of (C+)n is at least 1.

If now we denote by z0 ∈ Hc(M) a complete structure, we can prove that the dimension
of H(M) in a neighbourhood of z0 is actually 1. Since H(M) is an algebraic set, this shows
that every connected component of H(M) containing a complete structure is an algebraic
curve.

To this end, we need a lemma.

Lemma 3.2.1. Hc(M) ⊆ H(M) is an algebraic set.

Proof. We have seen in Proposition 2.4.4 that Hc(M) is de�ned, in H(M), by the equations
(2.3). The latter are rational equations: for every tetrahedron T and edge e, the modulus
mod (T, e) is rational in Φ(T ), as we have shown in Remark 1.4.10. #
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Now we can prove that

Proposition 3.2.2. Hc(M) as a subset of H(M) is made of isolated points.

Proof. Let z0 ∈ Hc(M). We focus on a neighbourhood of z0. Since both H(M) and
Hc(M) are algebraic sets, if z0 weren't isolated, then the cardinality of Hc(M) would be
uncountable.

We want to show this is not possible. Recall that every element of H(M), in particular
of Hc(M), corresponds to a decomposition ofM in ideal tetrahedra. Let z be in Hc(M) and
consider the corresponding decomposition. Since the hyperbolic structure is complete, we
can realize M as H3/Γ, for a discrete - and then necessarily countable - group of isometries
Γ. The edges of the tetrahedra are projections of geodesic lines of H3 from a to b, with
a, b ∈ ∂H3. InM , they are asymptotic to cusps. By construction the cusps come from �xed
points of the parabolic elements of Γ, i.e. elements with only 1 �xed point in ∂H3. But
there is at most a countable number of these, hence at most a countable number of edges.
So the cardinality of Hc(M) is at most countable. #

We want to show now that

Theorem 3.2.3. If M is a hyperbolic 3-manifold with ∂M ∼= T2, then the dimension of

H(M) in a neighbourhood of a complete structure is 1.

Let Def(z0) denote a neighbourhood of z0 in H(M) containing no other complete struc-
tures: the Deformation space of M equipped with the complete structure z0.

Proof. Lemma E.6.17 in [BP12] applied to our case k = 1 says that the two completeness
conditions, given by the two generators of π1(∂M), are equivalent on Def(z0). So we can
reduce to one equation. The zero-locus of this equation in Def(z0) is a point. Since we are
in C2, the (complex) dimension of Def(z0) must be less or equal than 1. Thanks to Remark
2.2.3, we conclude that dim Def(z0) = 1. #
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Some Examples

A small closed neighbourhood of a knot in R3 is a full torus D2 × S1, this implies that its
complement - homeomorphic to the complement of the knot itself - is a 3-manifold that is
the interior of a 3-manifold with torus boundary. The easy conclusion is that we can �nd
a lot of these manifolds as complement of knots, and then study the (complete) hyperbolic
structures they support.

4.1 The �gure-8 knot complement

There is a nice way to obtain from any knot a triangulation of its complement in ideal
tetrahedra. It is described in ([Rat06], �10.3). We take it for granted and consider the case
of the �gure-8 knot.

Its complement in R3 is homeomorphic to the 3-manifold with torus boundary obtained
by gluing two tetrahedra A,B as in Figure 4.1. Let respectively z and w be the complex
numbers that identify the two tetrahedra: with the language of Section 1.4, z = Φ(A) and
w = Φ(B). We �rst want to obtain, from this triangulation T = {A,B} of the manifold, a
triangulation T ′ of the boundary. Every edge of the two tetrahedra corresponds to a vertex

Figure 4.1: The gluing pattern for the �gure-8 knot complement
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of T ′. We refer to every edge/vertex by its modulus mod(∆, e) even if this may be not so
clear: what we are really interested in is only the modulus.

We draw the triangles of T ′ following the gluing of their sides induced by the gluing of
the faces of A and B. We get a fundamental domain analogous to the one in Figure 4.2,
which is obtained for the only z, w satisfying the completeness condition.

Figure 4.2: Triangulation T ′ of T2 ∼= ∂M for the only complete hyperbolic structure of the
�gure-8 knot complement, with moduli z = w = ζ6. Vertices of T ′ corresponding to the
same point of ∂M are marked with the same symbol.

Gluing and completeness equations We have two gluing equations, but by Remark
2.2.3 they are not independent, so it is enough to �nd one. To this end we realize that the
edges around which the gluing takes place are represented by the 0-cells of the triangulation
T ′. Then it is su�cient to choose one of this points and to multiply the moduli around
it, and to impose the result to be 1. For the one denoted by 4 in the picture, we get the
equation

1

(1− z)2

1

(1− w)2
zw = 1 (4.1)

For what concerns completeness, we follow Section 2.4. Let α and β be the two gener-
ators of π1(T2) corresponding to the "vertical" and "horizontal" sides in the above Figure
4.2. We see that the triangles lying on the right of α are the �rst two from the left, and
the triangles laying on the right of β are all the triangles in T ′.

Remark 4.1.1. In our situation the paths α and β are very particular. The following
argument, made for α, can be restated analogously for β.

For every vertex v in α there are exactly three triangles lying to the right of α which
contain v. We will say also that they are lying to the right of v: this will cause no confusion
as long as the path α we are working with is clear.
It is also worth noting that every such triangle intersects α at most in 1 edge. For each
vertex v, we can order these three triangles, from 1 to 3, since we have for α both a starting
vertex and a orientation. (A formal de�nition of this order would be a bit heavy: one can
give a parametrization of α and use intersections of neighbourhoods of points of α with the
triangles )

Of these three triangles, the �rst and the last share with α an edge touching v. Moreover,
if we denote by s(v) the vertex in α which comes right after v, according to α's orientation,
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then the last triangle to the right of v is the same that is �rst to the right of s(v). When we
multiply moduli according to (2.3) we will then �nd the product of two moduli for every
such triangle. Recalling that the product z(1 − z)−1(1 − z−1) of the moduli of a triangle
sums up to −1, this product equals (−1) times the inverse of the modulus with respect to
the opposite vertex.

Hence for any such path γ it is su�cient to multiply alternatively, for each triangle T
lying at the right of a vertex v, either mod(T, v) or −mod(T, e)−1, where e is the vertex of
T opposite to the edge of γ contained in T .

The equations (2.4) become in our case of α and β:{
1 = − (1− z)

(
1− w−1

)
1 = −z−1 (1− w)−1 (z − 1)w

(
−z−1

)
(1− w)−1 (z − 1)w

⇐⇒

{
z − zw − 1 = 0

(w − z) (w + z − 2zw) = 0

⇐⇒

{
z − zw − 1 = 0

(w − z) (w − z + 2) = 0
(4.2)

Complete hyperbolic structure It is easy to solve (4.2), since from the second equation
we have only the two possibilities w = z or w = z − 2. Substituting in the �rst equation
they imply respectively

z2 − z + 1 = 0

and

z2 − 3z + 1 = 0

The second has real solutions, thus degenerate. Solving the �rst we get

z = w = ζ6 =
1 + i

√
3

2

as the positive imaginary part solution. This is easily checked to satisfy (4.1), so is the only
complete hyperbolic structure supported by the �gure-8 knot complement.

Holonomy representation We compute explicitly the map D∂M of Section 3.1 in the
case of our example. We have

Hol(z) = (δz(α), δz(β)) =

=

(
(z − 1)

w − 1

w
,

(z − 1)2

(w − 1)2 ·
w2

z2

)



34 CHAPTER 4. SOME EXAMPLES

by (2.3). We get then the representation

D∂M (α) =

(√
(z − 1)(w − 1)w−1 0

0
√

(z − 1)−1(w − 1)−1w

)
D∂M (β) =

(
(z − 1)(w − 1)−1wz−1 0

0 (z − 1)−1(w − 1)w−1z

)
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