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Introduction

In this thesis we will study ordered Banach algebras. Ordered Banach algebras
are quite natural objects in analysis. Examples are algebras of spaces of func-
tions and algebras of operators on ordered Banach spaces. Yet despite their
natural occurrence, their general theory is relatively new and the results are
scattered in the literature. The goal of this thesis is to give one a good insight
in what is known about these functional analytic objects. We give a short in-
troduction to the theory studied in each chapter.

In Chapter 1, which contains the preparatory material, we define an algebra
cone C of a real or complex Banach algebra A. It induces on A an ordering
that is compatible with the algebraic structure of A, and the pair (A,C) is then
called an ordered Banach algebra (OBA). We also define some properties of C,
of which normality is the most important one. The algebra cone C is said to be
normal if there exists a constant β ≥ 1 such that for all a, b in A with 0 ≤ a ≤ b,
we have that ‖a‖ ≤ β‖b‖.

In Chapter 2 we will establish properties of the spectral radius in an OBA. The
spectral radius r is said to be monotone if 0 ≤ a ≤ b implies that r(a) ≤ r(b). We
prove that, if the algebra cone C is normal, then the spectral radius is monotone.
Also we will answer the question under which conditions the spectral radius of
a positive element a is contained in the spectrum σ(a) of that element. It turns
out that monotonicity of the spectral radius implies this property.

In Chapter 3 we look at poles of the resolvent function and investigate what
role they play in spectral theory in OBA’s. First we prove several versions of
the Krein-Rutman Theorem, which is originally in terms of operators, in the
context of OBA’s. These theorems describe conditions under which the spectral
radius of a positive element will be an eigenvalue of that element, with a positive
eigenvector.

After that we look at the structure of the spectrum σ(a) and what proper-
ties this structure forces on a. One of these properties is whether positivity of a
implies that a ≥ 1. More general, for a function f that is holomorphic on some
open neighborhood of σ(a), under what conditions of σ(a) does a ≥ 0 implies
that f(a) ≥ 0 ?

In Chapter 4 we prove several representation theorems for OBA’s. In these
theorems we show that an OBA satisfying certain conditions is isomorphic to
the space of real-valued continuous functions C0(X) for a suitable locally com-
pact Hausdorff space X, so that, in particular, the algebra is commutative. We
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will make precise which space this is.

In Chapter 5 we define the boundary spectrum. We discuss several proper-
ties of this set and investigate its relation with the spectral radius.

In Chapter 6 we turn our attention to the continuity of the spectrum and the
spectral radius. If a Banach algebra A is commutative, the spectrum and spec-
tral radius are uniformly continuous on A. If A is not commutative, this need
not be the case, but in OBA’s we can define subsets on which the spectral radius
is always continuous.

In the last section we will prove several convergence properties for specific
points in the spectrum.

In Chapter 7 we deal with domination properties related to the spectrum. That
is, we provide conditions under which certain spectral properties of a positive
element b will be inherited by positive elements dominated by b. Some of the
results rely on subharmonic analysis.
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Chapter 1

Preliminaries

1.1 Banach algebras

With F we will denote the field R or C. Let A be a Banach algebra over F. If
A has a unit element, e, then it is assumed that ‖e‖ = 1. If A has an identity,
the map α 7→ αe is an isomorphism of F into A and ‖αe‖ = |α|. So it will be
assumed that F ⊂ A via this identification. Thus the identity will be denoted
by 1 and αe just by α.

If A contains a unit element 1, we call it a unital algebra. If it does not have
an unit element we can take the direct sum of A with the field F, which gives
us a unital algebra A⊕ F over F :

Proposition 1.1 If A is a Banach algebra without an identity, let Ae = A⊕F.
Define algebraic operations on Ae by

(i) (a, α) + (b, β) = (a+ b, α+ β).

(ii) β(a, α) = (βa, βα), β ∈ F.

(iii) (a, α)(b, β) = (ab+ αb+ βa, αβ).

Define ‖(a, α)‖ = ‖a‖+|α|. Then Ae with this norm and the algebraic operations
defined in (i),(ii) and (iii) is a Banach algebra with identity (0, 1) and a 7→ (a, 0)
is an isometric isomorphism of A into Ae.

Proof: We will only show that the given norm is compatible with the mul-
tiplication, it is easy to verify that the other Banach algebra axioms hold
and a 7→ (a, 0) is an isometric isomorphism. If (a, α), (b, β) ∈ Ae, then
‖(a, α)(b, β)‖ = ‖(ab+ βa+ αb, αβ)‖ = ‖ab+ βa+ αb‖ + |αβ| ≤ ‖a‖‖b‖ +
|β|‖a‖+ |α|‖b‖+ |α||β| = ‖(a, α)‖‖(b, β)‖. �

So we can always adjoin a unit element. If A is unital, then we let Ae = A.

If A has an identity, we call an element a ∈ A left invertible if there exists an
element x ∈ A such that xa = e. Similarly, a is right invertible if there exists an
element x ∈ A such that ax = 1. We call a invertible if there exists an element
x ∈ A such that xa = ax = e. If there are x, y ∈ A such that xa = e = ay, then
y = ey = (xa)y = x(ay) = xe = x. In particular, if a is invertible there exists a
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unique element a−1 such that aa−1 = a−1a = e, called the inverse of a.

All the Banach algebras we use will be over F, unless stated otherwise.

Lemma 1.2 If A is a Banach algebra with identity and x ∈ A such that
‖x− a‖ < 1, then x is invertible.

Proof: This is Lemma 7.2.1. in [10] �

Theorem 1.3 Let A be a Banach algebra with identity, Gl = {a ∈ A :
a is left invertible}, Gr = {a ∈ A : a is right invertible}, G = {a ∈ A :
a is invertible}, then Gl, Gr and G are open subsets of A. Also, the map
a 7→ a−1 of G→ G is continuous.

Proof: This is Lemma 7.2.2. in [10] �

Now we define a very important concept, the spectrum:

Definition 1.4 If A is a Banach algebra with identity over F and a ∈ A, the
spectrum of a, denoted by σ(a,A), is defined by

σ(a,A) = {α ∈ F : a− α is not invertible}.

The resolvent set of a is defined by ρ(a,A) = F \ σ(a,A).

We will omit A in above definitions if it is clear what algebra is meant, writing
σ(a) and ρ(a).

Theorem 1.5 If A is a Banach algebra over C with an identity, then for each a
in A, σ(a) is a nonempty compact subset of C. Moreover, if |α| > ‖a‖, α /∈ σ(a).

Proof: This is Theorem 3.6 in [10]. �

From this theorem it follows that the resolvent set contains one unbounded
connected component. The boundary of this component will be denoted by
∂∞σ(a).

Definition 1.6 If A is a Banach algebra with identity and a ∈ A, then we
define the distance δ : A→ R≥0, by δ(a) := d(0, σ(a)).

Theorem 1.7 Let A be a Banach algebra and suppose that (an) is a sequence
in A such that an → a ∈ A. If (αn) is a sequence such that αn ∈ σ(an) for all
n ∈ N and αn → α, then α ∈ σ(a).

Proof: Suppose that (αn) is a sequence such that αn ∈ σ(an) for all n ∈ N and
αn → α. Then (an −αn) is not invertible, and (an −αn)→ (a−α). The set of
invertible elements in A is open [[10] theorem 7.2.2], so the set of non-invertible
elements is closed and therefore (a− α) is not invertible. �

We will call the function z → (z−a)−1 from ρ(a) to A the resolvent (function)
of a and denoted it with R(z, a).

Theorem 1.8 The resolvent is an analytic function defined on ρ(a).
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Proof: This is Theorem 7.3.8 in [10]. �

Definition 1.9 If A is a Banach algebra with identity and α ∈ A, the spectral
radius, r(a), of a is defined by

r(a,A) = sup{|α| : α ∈ σ(a)}.

Because σ is a nonempty and compact subset of R or C, r(a) is well defined,
finite and the supremum is attained. From Theorem 1.5 it follows that r(a) ≤
‖a‖.

Theorem 1.10 If A is a Banach algebra over C with identity and a ∈ A, then
lim
n→∞

‖an‖1/n exists and

r(a) = lim
n→∞

‖an‖1/n

.

Proof: This is Theorem 3.8 in [10]. �

Definition 1.11 If A is a Banach algebra with identity and α ∈ A, the periph-
eral spectrum, psp(a,A), of a is defined by

psp(a,A) = σ(a,A) ∩ {λ ∈ C : |λ| = r(a,A)}.

We introduce an important Banach algebra and state the Stone-Weierstrass
Theorem.

Let X be any Hausdorff space. Let f, g : X → F be continuous functions.
Define the operations (f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x) and
(αf)(x) = αf(x). Define the map ‖f‖ := sup{|f(x)| : x ∈ X}. Then the
space Cb(X) of all continuous functions f : X → F with ‖f‖ < ∞ is a Banach
algebra with the defined operations and ‖·‖ as norm. If X is locally compact,
let C0(X) be the space consisting of all continuous functions f : X → F such
that for all ε > 0, the set {x ∈ X : |f(x)| ≥ ε} is compact. Then C0(X) is a
closed subalgebra of Cb(X) and thus a Banach algebra. If X is compact, we
denote with C(X) the space of all continuous functions f : X → F, and we have
C0(X) = Cb(X) = C(X).

Theorem 1.12 (The Stone-Weierstrass Theorem) IfX is a compact Haus-
dorff space and A is a closed subalgebra of C(X) such that

(i) 1 ∈ A;

(ii) A separates the points of X;

(iii) if f ∈ A, then f ∈ A.

Then A = C(X).

Proof: This is Theorem 5.8.1 in [10]. �

From this theorem, it can be shown that

9



Corollary 1.13 If X is a locally compact Hausdorff space and A is a closed
subalgebra of C0(X) such that

(i) for each x in X there is an f in A such that f(x) 6= 0;

(ii) A separates the points of X;

(iii) if f ∈ A, then f ∈ A.

Then A = C0(X).

Proof: This is Corollary 5.8.3 in [10]. �

Another important theorem is the Hahn-Banach Theorem.

Definition 1.14 If X is a vector space, a sublinear functional is a function
q : X → R such that

1. q(x+ y) ≤ q(x) + q(y) for all x, y in X;

2. q(ax) = αq(x) for x in X and α > 0.

Theorem 1.15 (Hahn-Banach) Let X be a vector space over R and let q be
a sublinear functional on X. If M is a linear manifold in X and f : M → R is
a linear functional such that f(x) ≤ q(x) for all x in M , then there is a linear
functional F : X → R such that F |M = f and F (x) ≤ q(x) for all x in X.

Proof: This is theorem 3.6.2 in [10]. �

Later on we will use some consequences of this theorem, namely 4.1 and 4.17

1.2 The Riesz Functional Calculus

We will discuss the Riesz Functional Calculus. We will only state the theorems,
the proofs can be found in ([10], p199-p205). We assume the reader is familiar
with the definition of a positively oriented system of curves in an open subset
G of C. If not, see ([10], p199-p205).

Let A be a Banach algebra over C with identity. Let G be an open subset of
C, γ a rectifiable curve in G and f a continuous function defined in a neighbour-
hood of {γ} with values in A. Then we can define the integral

∫
γ
f(z)dz as for a

scalar-valued f in the following way. For every k ∈ N, let {(tk)0, · · · , (tk)nk
} be

a partition of [0, 1] such that |(tk)j+1 − (tk)j | → 0 as k →∞ for all 0 ≤ j < nk.
Then we define∫

γ

f(z)dz = lim
k→∞

∑
j

(γ((tk)j)− γ((tk)j−1))f(γ((tk)j)),

Hence
∫
γ
f(z)dz =

∫ 1

0
f(γ(t))dγ(t) ∈ A.

Proposition 1.16 If G is an open subset of C and K is a compact subset of G,
then there is a positively oriented system of curves Γ = {γ1, . . . , γm} in G \K
such that K ⊆ ins Γ and C \ G ⊆ out Γ. The curves γ1, . . . , γm can be found
such that they are infinitely differentiable.
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If Γ = {γ1, . . . , γm} is a positively oriented system of curves, define∫
Γ

f(z)dz =
m∑
j=1

∫
γj

f(z)dz

whenever f is a continuous function in a neighborhood of {Γ} with values in A.
Let a ∈ A. If f : G → C is analytic and σ(a) ⊆ G, we define an element

f(a) in A by

f(a) =
1

2πi

∫
Γ

f(z)(z − a)−1dz

where Γ is as in Proposition 1.16 with K = σ(a). The following proposition
tells us that f(a) is well defined.

Proposition 1.17 Let A be a Banach algebra with identity, let a ∈ A, and
let G be an open subset of C such that σ(a) ⊆ G. If Γ = {γ1, . . . , γm} and
Λ = {λ1, . . . , λk} are two positively oriented collections of curves in G such that
σ(a) ⊆ ins Γ ⊆ G and σ(a) ⊆ ins Λ ⊆ G and if f : G→ C is analytic, then∫

Γ

f(z)(z − a)−1dz =
∫

Λ

f(z)(z − a)−1dz.

Let Hol(a) be the set of all the functions that are analytic in a neighborhood
of σ(a). We have the usual sum and product for functions. If f, g ∈ Hol(a) have
domains D(f) and D(g), then fg and f + g have domain D(f) ∩D(g). From
this it follows that Hol(a) is not an algebra. The domain of the zero function
is C, but if we have a function f ∈ Hol(a) with smaller domain, it follows that
0 = f − f , has a smaller domain, thus a contradiction. We can however define
an equivalence relation on Hol(a) such that the set of equivalence classes forms
an algebra. We say that two functions are equivalent if they are equal on some
open neighbourhood of σ(a) and then Hol(a)/ ∼ is an algebra. We will denote
this algebra also with Hol(a).

Theorem 1.18 (The Riesz Functional Calculus) Let A be a Banach alge-
bra with identity and let a ∈ A.

1. The map f 7→ f(a) from Hol(a) to A is an algebra homomorphism.

2. If f(z) =
∑∞
k=0 αkz

k has radius of convergence strictly larger than r(a),
then f ∈ Hol(a) and f(a) =

∑∞
k=0 αka

k.

3. If f(z) ≡ 1, then f(a) = 1.

4. If f(z) = z for all z, then f(a) = a.

5. If f, f1, f2, . . . are all analytic onG, σ(a) ⊆ G, and fn(z)→ f(z) uniformly
on compact subsets of G, then ‖fn(a)− f(a)‖ → 0 as n→∞.

The following proposition tells us that the functional calculus is unique.

Proposition 1.19 Let A be a Banach algebra with identity and let a ∈ A. Let
τ : Hol(a)→ A be a homomorphism such that (1) τ(1) = 1, (2) τ(z) = a, (3) if
{fn} is a sequence of analytic functions on an open set G such that σ(a) ⊆ G
and fn(z)→ f(z) uniformly on compact subsets of G, then τ(fn)→ τ(f). Then
τ(f) = f(a) for every f in Hol(a).
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Let τ : Hol(a) → A be the algebra homomorphism given by τ(f) = f(a).
Then we have f(a)g(a) = τ(fg) = τ(gf) = g(a)f(a). So for all f, g ∈ Hol(a),
f(a) and g(a) commute. Still more can be said.

Proposition 1.20 If a, b ∈ A, ab = ba, and f ∈ Hol(a), the f(a)b = bf(a).

Theorem 1.21 (The Spectral Mapping Theorem) If a ∈ A and f ∈ Hol (a),
then

σ(f(a)) = f(σ(a)).

If λ is an isolated point in the spectrum of a, we can define the associated
spectral projection:

Definition 1.22 If λ0 is an isolated point in σ(a), then there is an open subset
G1 of C with G1 ∩ σ(a) = λ0. Let G ⊂ C be open with σ(a) ⊂ G and let
G′ = G \ G1. Define f : G1 ∪ G′ → C to be 1 on G1 and 0 on G′, then
f ∈ Hol(a). Now we define the the spectral projection associated to a and λ0 as
p(a, λ0) := f(a).

From the definition of the functional calculus we see that

p(a, λ0) =
1

2πi

∫
Γ

(λ− x)−1dλ

with Γ any circle centered at λ0 separating λ0 from the rest of the spectrum.

Now we use the functional calculus to prove a lemma about the distance to
a spectrum.

Lemma 1.23 Let A be a Banach algebra. Suppose that x ∈ A and that α /∈
σ(x). Then we have

d(α, σ(x)) =
1

r((α− x)−1)
.

Proof: Let G be an open set containing σ(x), but not α. Let f(λ) = 1/(α−λ),
then f is holomorphic on G and the Spectral Mapping Theorem gives us

σ((α− x)−1) =
{

1
α− λ

: λ ∈ σ(x)
}
.

So in particular,

r((α− x)−1) = sup
{

1
|α− λ|

: λ ∈ σ(x)
}

= 1/ inf{|α− λ| : λ ∈ σ(x)} = 1/d(α, σ(x)).

�

1.3 The radical

Before we define the radical of a Banach algebra, we first say what ideals are.
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Definition 1.24 If A is an algebra, a left ideal of A is a subalgebra M of A
such that ax ∈ M whenever a ∈ A, x ∈ M . A right ideal of A is a subalgebra
M of A such that xa ∈ M whenever a ∈ A, x ∈ M . A (bilateral) ideal is a
subalgebra of A that is both a left ideal and a right ideal.

We call an ideal proper if it is neither 0 or A. If an ideal is contained in
no larger proper ideal and is not equal to A, then it is a maximal ideal. If an
ideal is not equal to A and the only ideals it contains are the zero ideal and
itself, it is a minimal ideal . Every proper ideal of a unital algebra is contained
in a maximal ideal (this is an application of Zorn’s Lemma), but it does not
necessarily have minimal ideals.

Proposition 1.25 If A is a Banach algebra with identity, then

1. The closure of a proper left, right, or bilateral ideal is a proper left, right,
or bilateral ideal,

2. A maximal left, right, or bilateral ideal is closed.

Proof: This is Corollary 7.2.5. in [10] �

To define the radical, we need the following Theorem by N. Jacobson.

Theorem 1.26 (N. Jacobson) Let A be an algebra with unit 1 and let x, y ∈
A, λ ∈ C, with λ 6= 0. Then λ − xy is invertible in A if and only if λ − yx is
invertible in A.

Proof: Suppose that λ− xy has an inverse z ∈ A: (λ− xy)z = z(λ− xy) = 1.
Hence

(λ− yx)(yzx+ 1) = λyzx+ λ− y(xyz)x− yx
= λyzx+ λ− y(λz − 1)x− yx = λ,

and

(yzx+ 1)(λ− yx) = λyzx+ λ− y(zxy)x− yx
= λyzx+ λ− y(λz − 1)x− yx = λ.

Thus λ− yx is invertible in A. �

Theorem 1.27 Let A be a ring with unit 1. Then the following sets are iden-
tical:

1. The intersection of all maximal left ideals A.

2. The intersection of all maximal right ideals of A.

3. {x ∈ A : 1− zx is invertible for all z ∈ A}.

4. {x ∈ A : 1− xz is invertible for all z ∈ A}.
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Proof: By the preceding lemma, the sets in (3) and (4) are identical. We will
prove that the sets in (1) and (3) are identical. With a similar argument we can
prove that the sets in (2) and (4) are identical.

Let x be in the intersection of all maximal left ideals. Suppose there is a
z ∈ A such that 1 − zx is not invertible. We show that there exists a z′ ∈ A
such that 1− z′x is not left invertible. Suppose 1− z′x is left invertible for all
z′ ∈ A. Then this is in particular true for z, so there exists a y ∈ A such that
(1 − y)(1 − zx) = 1, from which it follows that y = (−z + yz)x. So by our
assumption 1− y = 1− (−z+ yz)x is left invertible. Since (1− y)(1− zx) = 1 it
is also right invertible, thus invertible. But this means that 1− zx = (1− y)−1

is invertible, which is a contradiction. Let z′ ∈ A be such that 1− z′x is not left
invertible. Then 1− z′x is contained in a maximal left ideal M . But x ∈M , so
1 ∈M which is a contradiction.

Conversely, let x ∈ A such that 1 − zx is invertible for all z ∈ A. Sup-
pose x is not in the intersection of all maximal left ideals. Then there is a
maximal left ideal M such that x /∈ M . So M + Ax = A, thus 1− zx ∈ M for
some z in A. But this is a contradiction since 1−zx is invertible for all z in A. �

Definition 1.28 If A is a Banach algebra with identity then the set having
properties (1)-(4) is called the radical, Rad(A), of A. If Rad(A) = 0, we say
that A is semi-simple.

It is clear that Rad(A) is a two-sided ideal of A.

Definition 1.29 If a ∈ A, then a is called quasinilpotent if σ(a) = {0}. The
set of quasinilpotent elements in A will be denoted by QN(A).

Theorem 1.30 Rad(A) ⊂ QN(A).

Proof: From Theorem 1.27 we see that if a ∈ Rad(A), then 1−az is invertible
for all z ∈ A. So λ− a is invertible for λ 6= 0 in C, which implies that r(a) = 0.
Thus a ∈ QN(A). �

Theorem 1.31 Rad(A) = {a ∈ A : aA ⊂ QN(A)} = {a ∈ A : Aa ⊂ QN(A)}.

Proof: For the first equality, let a ∈ {a ∈ A : aA ⊂ QN(A)}. Then σ(az) = 0
for all z ∈ A. So 1−az is invertible for all z ∈ A, which implies that a ∈ Rad(A)
by Theorem 1.27. The other inclusion follows from the previous theorem. The
second equality follows in the same way. �

1.4 Inessential ideals

Let A be a Banach algebra and X a complex vector space of dimension greater
than or equal to one. A representation of A on X is a non-zero algebra ho-
momorphism π from A into the algebra L(X) of linear operators on X. Let
Y ⊂ X, then Y is invariant under π if for all x ∈ A we have π(x)Y ⊂ Y . A
representation is irreducible if the only linear subspaces of X invariant under π
are {0} and X. A representation is called bounded if X is a Banach space and
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if π(x) is a bounded linear operator for all x ∈ A. Moreover it is continuous
if there exists a constant C > 0 such that ‖π(x)‖ ≤ C‖x‖ for all x ∈ A, so
continuous implies bounded. It is easy to see that the kernel of a continuous
representation is closed.
Let I be a not necessarily closed two-sided ideal of a Banach algebra A. We say
that I is inessential if the spectrum of every element in the ideal is either finite
or a sequence converging to zero. Given a two-sided ideal I of A we denote by
kh(I) the intersection of all kernels of continuous irreducible representations π
of A such that I ⊂ ker(π). Since ker(π) is closed, we see that I ⊂ I ⊂ kh(I).
It can be shown, ([5],theorem 4.2.1), that the radical of A is the intersection
of the kernels of all continuous irreducible representations of A. From this one
can quite easily deduce that kh(I) is the inverse image of Rad(A/I). We call
an element a in A inessential relative to I if a ∈ kh(I), i.e. if a ∈ Rad(A/I).

Theorem 1.32 Let I be a two-sided ideal of A and let x ∈ kh(I). Suppose
that α 6= 0 is isolated in σ(x). Then the spectral projection p(x, α) is in I.

Proof: Let Γ be a circle centered at α, separating α from 0 and from the rest
of the spectrum. For λ ∈ Γ we have

(λ− x)−1 =
1
λ

+
1
λ
x(λ− x)−1.

So
p(x, α) =

1
2πi

∫
Γ

dλ

λ
+

x

2πi

∫
Γ

1
λ

(λ− x)−1dλ.

The first term is zero and since x ∈ kh(I), the second term is in kh(I). So
p ∈ kh(I) and we have that p ∈ Rad(A/I). Therefore r(p) = 0 and in par-
ticular (1 − p) is invertible. Since p is a projection, p is a projection and we
have p(1 − p) = 0, so p = 0. Hence p ∈ I. Moreover pIp is a closed subal-
gebra of A, hence a Banach algebra with identity p. In this subalgebra pIp
is a dense two-sided ideal. The closure of a proper two-sided ideal is again
proper by Proposition 1.25, so pIp is not proper, thus pIp = pIp. Therefore
p = p3 ∈ pIp = pIp ⊂ I. �

Corollary 1.33 Let I be a two-sided ideal of A. Then I and kh(I) have the
same set of idempotents.

Proof: The corollary follows from the last part of the proof of Theorem 1.32. �

If A has minimal left ideals (resp. right ideals), then its socle, soc(A), is
defined as the sum of the minimal left ideals. It is also equal to the sum of
the minimal right ideals ([5], p110) and therefore is a two-sided ideal. If A is
semisimple, then soc(A) exists and is inessential (see [6]). For more information
on the socle we refer to ([2], p78-p87)

An element a in A is called Riesz relative to a closed ideal J if the spectrum of
the element a in the quotient algebra A/J consists of zero. We denote the set of
Riesz elements in A relative to J by R(A, J) or R(J) if it is clear what is meant.
From Theorem 1.30 it follows that kh(J) ⊂ R(A, J). We call an isolated point
λ ∈ σ(a) a Riesz point of σ(a) relative to an ideal J (not necessarily closed) if
the corresponding spectral projection p(a, λ) belongs to J .
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Let J be a two-sided not necessarily closed inessential ideal of A. Following
[4] we define for an element a ∈ A the set D(a,A, J) as follows:

Definition 1.34 Let A be a Banach algebra, J an inessential ideal in A and
a ∈ A, then

D(a,A, J) = σ(a) \ {λ ∈ σ(a) : λ is a Riesz point of σ(a) relative to J} .

If it is clear what is meant, we shall just write D(a) and say that λ is a
Riesz point of σ(a). It is easy to verify that D(a,A, J) is compact and that
σ(a) \D(a) is discrete and hence countable.

Definition 1.35 If A is a set and f : A→ C, define

‖f‖A := sup{|f(z)| : z ∈ A}.

If K is a compact subset of C, define the polynomially convex hull of K to be
the set K∧, given by

K∧ := {z ∈ C : |p(z)| ≤ ‖p‖K for every polynomial p}.

The set K is polynomially convex if K = K∧.

If K is a compact set, then C \K has a countable number of components, only
one of which is unbounded. The bounded components are called the holes of K.
The connected hull ηK of K has as its complement the unbounded component
of C\K. Thus ηK is the union ofK and its holes and thus ηK = K∧ ([10], 7.5.3).

From now on, if we speak of an ideal we mean a two-sided ideal.

Theorem 1.36 (Perturbation by Inessential Elements) Let I be an inessen-
tial ideal of a Banach algebra A. For x ∈ A and y ∈ I we have the following
properties:

1. if G is a connected component of C \D(x) intersecting C \ σ(x+ y) then
it is a connected component of C \D(x+ y),

2. the unbounded connected components of C\D(x) and C\D(x+y) coincide,
in particular D(x) and D(x+ y) have the same external boundaries,

3. if x denotes the class of x in A/I then we have σ(x) ⊂ D(x) and D(x)∧ =
σ(x)∧.

Proof: This is Theorem 2.4 in [4]. �

When B ⊂ A is a subalgebra of A and I an ideal in both A and B, it is not
clear what is meant with the closure of I. Therefore we introduce the following
notation: the closure of I in B is denoted by IB and the closure of I in A by
IA.

Theorem 1.37 Let A en B be Banach algebras such that B ⊂ A is a subalgebra
of A and such that 1 ∈ B. Suppose that I is an inessential ideal both in A and
in B such that IB ⊂ IA. For arbitrary a ∈ B consider the following statements.

(a) σ(a,A/IA) = σ(a,B/IB).
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(b) σ(a+ b, A) = σ(a+ b, B) for every b ∈ IB .

(c) σ(a,A) = σ(a,B).

(d) D(a,A, I) = D(a,B, I).

Then the following implications are valid:

(a) ⇒ (b) ⇒ (c) ⇔ (d)

The implications (b) ⇒ (a) and (c) ⇒ (b) are false.

Proof: This is Theorem 5.4 in [11]. �

Corollary 1.38 Let I be an inessential ideal of a Banach algebra A. Let a ∈
A and suppose that r(a,A/I) = 0. Then σ(a) is either finite or a sequence
converging to zero and for every non-zero value of σ(a) the associated spectral
projection is in I.

Proof: If r(a) = 0, by Theorem 1.36.3 we have D(a)∧ = {0}, so D(a) = {0}.
�

Corollary 1.39 Let I be a two-sided inessential ideal of a Banach algebra A.
Then kh(I) is inessential, so in particular I is inessential.

Proof: If x ∈ kh(I) then x ∈ Rad(A/I), so r(x) = 0. We apply the previous
corollary. �

Theorem 1.40 (Ruston characterisation) Let A be a Banach algebra, a ∈
A and I a closed inessential ideal of A. Then a ∈ R(A, I) if and only if σ(a)
is finite or a sequence converging to zero and all non-zero elements of σ(a) are
Riesz points relative to I.

Proof: If a ∈ R(A, I) then σ(a) = 0 and the required properties follow from
Corollary 1.38.

Conversely, let σ(a) be finite or a sequence converging to zero, and suppose
that for every 0 6= α ∈ σ(a) the spectral projection p(a, α) lies in I. We have
to prove that σ(a) = {0}. Let 0 6= α ∈ σ(a), then p := p(a, α) ∈ I, so
that p = 0. Let G1, G2 be disjoint open subsets of C such that α ∈ G1 and
σ(a) \ {α} ⊂ G2. If f is the characteristic function of G1, then f ∈ Hol(a)
and f(a) = p. Because σ(a) ⊂ σ(a), f ∈ Hol(a) and f(a) = f(a) = 0. The
spectral mapping theorem yields f(σ(a)) = σ(f(a)) = {0}. This holds for every
0 6= α ∈ σ(a), so σ(a) = {0} and therefore a ∈ R(A, I).

�

1.5 Ordered Banach algebras

In this section, following [26], we will define an algebra cone C of a real or
complex Banach algebra A and show that C induces on A an ordering which
is compatible with the algebraic structure of A. The Banach algebra A is then
called an ordered Banach algebra (OBA). We also define certain additional
properties of C.
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Definition 1.41 Let A be a real or complex Banach algebra with unit 1. We
call a nonempty subset C of A a cone if it satisfies the following:

1. C + C ⊂ C,

2. λC ⊂ C for all λ ≥ 0.

If in addition C satisfies C ∩ −C = {0}, then C is called a proper cone.

Any cone C on A induces a relation ’≤’ on A, called an ordering, in the
following way:

a ≤ b if and only if b− a ∈ C, (a, b ∈ A).

It can be shown that for every a, b ∈ A this ordering satisfies

1. a ≤ a (≤ is reflexive),

2. if a ≤ b and b ≤ c, then a ≤ c (≤ is transitive).

The ordering does not have to be antisymmetric.

Proposition 1.42 The cone C is proper if and only if the ordering is antisym-
metric, i.e. a ≤ b and b ≤ a implies that a = b.

Proof: Let C be a proper cone, a ≤ b and b ≤ a. Then a − b ∈ C and
b− a = −(a− b) ∈ C, so a− b ∈ C ∩ −C = {0} and we have a = b.

Conversely, let the ordering be antisymmetric and suppose the cone C is not
proper. Then there exists an x ∈ C with x 6= 0 such that there is an a ∈ C with
x = −a. Now we have x− a = 2x ∈ C and a−x = 2a ∈ C. So x ≤ a and a ≤ x
and the antisymmetric property gives us x = a, which is a contradiction. �

So the ordering induced by C is a partial ordering if and only if C is proper.

Considering the ordering that C induces, we find that C = {a ∈ A : a ≥ 0},
and therefore we call the elements of C positive.

Definition 1.43 A cone C of a Banach algebra A is called an algebra cone if
C satisfies the following conditions:

1. C · C ⊂ C,

2. 1 ∈ C.

Definition 1.44 A real or complex Banach algebra A with unit 1 is called an
ordered Banach algebra (OBA) if A is ordered by a relation ’≤’ in such a manner
that for every a, b, c ∈ A and λ ∈ C we have:

1’. a, b ≥ 0⇒ a+ b ≥ 0,

2’. a ≥ 0, λ ≥ 0⇒ λa ≥ 0,

3’. a, b ≥ 0⇒ ab ≥ 0,

4’. 1 ≥ 0.
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Therefore, if A is ordered by an algebra cone C, then A, or more specifically
(A,C) is an OBA. Conversely, if A is an OBA the set C = {a ∈ A : a ≥ 0} is
an algebra cone that induces the ordering on A.

Definition 1.45 An algebra cone C is called normal if there exists a constant
β ≥ 1 such that for a, b ∈ A we have

0 ≤ a ≤ b ⇒ ‖a‖ ≤ β‖b‖

An alternative definition of normality is,

Definition 1.46 An algebra cone C is called α-normal if there exists a constant
α ≥ 1 such that for a, b, c ∈ A we have

a ≤ b ≤ c ⇒ ‖b‖ ≤ α(max ‖a‖, ‖c‖).

If the normality constant α is equal to 1 we say that the C is 1-normal.

It is not hard to prove that the two definitions are equivalent, but the con-
stants β and α from the definitions need not be the same. If C is normal with
constant α, C does not have to be α-normal.

Proposition 1.47 If C is a normal algebra cone, then it is a proper algebra
cone.

Proof: Let C be a normal algebra cone. Let x ∈ C be such that there
exists an a ∈ C with x = −a. Then for all scalars k > 0 we have a − ka =
a+k(−a) = a+kx ∈ C, so ka ≤ a. Because C is normal there exists a constant
α > 0 such that for all k > 0 we have k‖a‖ = ‖ka‖ ≤ α‖a‖, so ‖a‖ = 0. This
means that a = 0 and therefore C ∩ −C = {0}. �

If C has the property that if a ∈ C and a is invertible, then a−1 ∈ C, then
C is said to be inverse-closed. The following lemma is immediate.

Lemma 1.48 Let (A,C) be an OBA, and let x, y ∈ A be such that xy ≤ yx.

1. If x is invertible and x−1 ∈ C, then yx−1 ≤ x−1y.

2. If y is invertible with y−1 ∈ C, then y−1x ≤ xy−1.

The following lemma follows with induction.

Lemma 1.49 Let (A,C) be an OBA, and let x, y ∈ C. If yx ≤ xy, then

(x+ y)n ≤
n∑
k=0

(
n

k

)
xn−kyk

for every n ∈ N ∪ {0}.

Proof: The statement clearly is true for n = 0. Now let m > 0 and suppose
the statement is true for all n < m. We have that yx ≤ xy implies yxm−k−1yk ≤
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xm−k−1yk+1, and it follows that

(x+ y)m ≤ (x+ y)
m−1∑
k=0

(
m− 1
k

)
xm−k−1yk

≤
m−1∑
k=0

(
m− 1
k

)
xm−kyk +

m−1∑
k=0

(
m− 1
k

)
xm−k−1yk+1

= xm +
m−1∑
k=1

((
m− 1
k

)
+
(
m− 1
k − 1

))
xm−kyk + ym

=
m∑
k=0

(
m

k

)
xm−kyk.

�

Let A and B be Banach algebras such that 1 ∈ B ⊂ A, then we have a few
easy to prove facts.

(i) If C is an algebra cone in A, then C ∩B is an algebra cone in B and if C
is proper, then C ∩B is proper.

(ii) In the case where B has a finer norm then A, (i.e ‖b‖A ≤ ‖b‖B for all
b ∈ B) if C is closed in A, then C ∩B is closed in B.

(iii) If B is a closed subalgebra of A (containing the unit of A), then the
normality of C in A implies normality of C ∩B in B.

(iv) If T : A → B is a homomorphism and if C is an algebra cone of A, then
TC = {Tc : c ∈ C} is an algebra cone in B. In particular, if F is a
closed ideal in the OBA (A,C) and if π : A → A/F is the canonical
homomorphism, then πC is an algebra cone of A/F . We cannot deduce
normality or closedness of πC from the corresponding properties of C.

Now we give some examples of OBA’s.

Example 1.50 Let A = C be the Banach algebra with standard norm and
C = R+. Then (A,C) is an OBA and C is normal.

Proof: Trivial. �

Example 1.51 Let C2 be equipped with ‖·‖∞ and let A be the set of upper
triangular 2×2 complex matrices with the operator norm for bounded operators.
Let C the subset of A of matrices with only nonnegative entries. Then (A,C)
is an OBA and C is normal.

Proof: It follows from simple calculations that (A,C) is an OBA. From the
definition of the operator norm for bounded operators we have for M ∈ A,

‖M‖ = max{‖Mx‖∞ : x ∈ C2 with ‖x‖∞ ≤ 1}
= max{|m11|+ |m12|, |m21|+ |m22|}.
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Let M,N ∈ A with 0 ≤ M ≤ N , then mij ≤ nij for all i, j ∈ {1, 2}. Thus we
see from the definition of the norm that ‖M‖ ≤ ‖N‖. �

Now an example of an infinite-dimensional and semisimple OBA, l∞, con-
sisting of all bounded sequences of complex numbers.

Example 1.52 Let A = l∞ with multiplication defined coordinatewise and
C = {(c1, c2, · · · ) ∈ l∞ : ci ≥ 0 for all i ∈ N}. Then (A,C) is an OBA, A is
semisimple and C is normal.

Proof: From the coordinatewise multiplication it follows easily that A is a Ba-
nach algebra, with unit (1, 1, · · · ). Direct calculation shows that C is an algebra
cone. Now we show that C is normal. Suppose that (0, 0, · · · ) ≤ (x1, x2, · · · ) ≤
(y1, y2, · · · ) in A. By definition of C this means that 0 ≤ xk ≤ yk for all k ∈ N.
Hence ‖(x1, x2, · · · )‖ ≤ ‖(y1, y2, · · · )‖, thus C is normal.

We have σ((x1, x2, · · · )) = {x1, x2, · · · } for (x1, x2, · · · ) ∈ l∞, so QN(l∞) =
{0}. It follows form Theorem 1.30 that Rad(l∞) = {0}, i.e. l∞ is semisimple.
�

Now we look at the set consisting of all bounded sequences of upper trian-
gular 2 × 2 complex matrices to get an example of an infinite-dimensional and
not semisimple OBA.

Example 1.53 Let A be the set of upper triangular 2× 2 matrices, l∞(A) the
set

{x = (x1, x2, · · · ) : xi ∈ A and ‖xi‖A ≤ Kx for some Kx ∈ R, for all i ∈ N},

and C the set

{(c1, c2, · · · ) ∈ l∞(A) : ci has only nonnegative entries for all i ∈ N}.

Then (l∞(A), C) is an OBA, C is closed and normal and l∞(A) is not semisim-
ple.

Proof: By defining addition, scalar multiplication and multiplication coordi-
natewise and the norm to be ‖(x1, x2, · · · )‖ = supj∈N ‖xj‖A it is not hard to

show that l∞(A) is an Banach algebra with unit
((

1 0
0 1

)
,

(
1 0
0 1

)
, · · ·

)
.

Direct calculation also show that C is an algebra cone of l∞(A). Now we will
prove normality. Suppose 0 ≤ x ≤ y, where

0 =
((

0 0
0 0

)
,

(
0 0
0 0

)
, · · ·

)
, x =

((
x11 x12

0 x14

)
,

(
x21 x22

0 x24

)
, · · ·

)
and

y =
((

y11 y12

0 y14

)
,

(
y21 y22

0 y24

)
, · · ·

)
From the definition of C we see that 0 ≤ xjk ≤ yjk for all j ∈ N and k = 1, 2, 4.
Therefore max{|xj1|+ |xj2|, |xj4|} ≤ max{|yj1|+ |yj2|, |yj4|}, i.e.∥∥∥∥( xj1 xj2

0 xj4

)∥∥∥∥ ≤ ∥∥∥∥( yj1 yj2
0 yj4

)∥∥∥∥ ,
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for all j ∈ N. It follows that

sup
j∈N

∥∥∥∥( xj1 xj2
0 xj4

)∥∥∥∥ ≤ sup
j∈N

∥∥∥∥( yj1 yj2
0 yj4

)∥∥∥∥ ,
i.e. ‖x‖ ≤ ‖y‖. Thus C is normal. The closedness of C follows easily from the
definition of C.

Since
((

0 1
0 0

)
,

(
0 1
0 0

)
, · · ·

)
is an element of the radical, l∞(A) is

not semisimple. �

22



Chapter 2

Spectral properties in
OBA’s

In this chapter we will establish properties of the spectral radius in an OBA.
We will follow [26] and [19].

Definition 2.1 Let (A,C) be an OBA. If 0 ≤ a ≤ b relative to C implies
r(a) ≤ r(b), then we say that the spectral radius (function) is monotone w.r.t.
the algebra cone C.

Theorem 2.2 Let (A,C) be an OBA with a normal algebra cone C. Then the
spectral radius is monotone w.r.t. C.

Proof: Let 0 ≤ a ≤ b, then we see with induction that 0 ≤ an ≤ bn. Let
α be the normality constant, then ‖an‖ ≤ α‖bn‖ for all n ∈ N, so r(a) =
limn→∞ ‖an‖1/n ≤ limn→∞(α‖bn‖)1/n = limn→∞ α1/n ·limn→∞ ‖bn‖1/n = r(b).
�

Theorem 2.3 Let (A,C) be an OBA with algebra cone C such that the spec-
tral radius is monotone. Let a, b ∈ A be such that 0 ≤ a ≤ b relative to C.
Then

1. if b is quasinilpotent then a is quasinilpotent,

2. if b is in the radical of A then a is quasinilpotent,

3. if b is in the radical of A and a in the center of A then a is in the radical
of A.

Proof:

1. r(b) = 0, so from Theorem 2.2 we have 0 ≤ r(a) ≤ 0 wich gives σ(a) = 0.

2. From 1. and Theorem 1.30 we have b ∈ Rad A ⇒ b ∈ QN(A) ⇒ a is
quasinilpotent.

3. By 2. r(a) = 0. Let x be any element of A. Then, since a commutes with
x, r(ax) ≤ r(a)r(x) = 0, so aA ⊂ QN(A). This implies that a is in the
radical of A, by Theorem 1.31.
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The converse of theorem 2.2 is in general not true. Also if the algebra cone is
not normal, the spectral radius may not be monotone. Examples of both cases
can be found in [26].

Proposition 2.4 Let (A,C) be an OBA with normal algebra cone C and a, b ∈
C. If ab ≤ ba then r(ba) ≤ r(b)r(a), r(ab) ≤ r(a)r(b) and r(a+ b) ≤ r(a) + r(b).

Proof: If a, b ∈ C with ab ≤ ba, then 0 ≤ (ba)k ≤ bkak (k ∈ N). The normality
of C implies that ‖(ba)k‖ ≤ α‖bk‖‖ak‖. As in the proof of 2.2 it follows that
r(ba) ≤ r(b)r(a).

The second inequality follows in the same way as in the first part, from the
observation that (ab)k ≤ (ba)k ≤ bkak for every k ∈ N.

The last inequality will be proved in Theorem 6.14. �

Now we will discuss some results on the connection between the monotonicity
of the spectral radius relative to algebra cones of different Banach algebras.

Proposition 2.5 Let (A,C) be an OBA and B a Banach algebra with 1 ∈
B ⊂ A and such that the spectral radius function in the OBA (B,C ∩ B) is
monotone. If a, b ∈ B such that 0 ≤ a ≤ b relative to C and r(b, B) = r(b, A)
then r(a,A) ≤ r(b, A).

Proof: Let a, b ∈ B with 0 ≤ a ≤ b relative to C. Since the spectral radius
in (B,C ∩ B) is monotone, r(a,B) ≤ r(b, B). Because B is a subalgebra of
A we have σ(a,A) ⊂ σ(a,B) and therefore r(a,A) ≤ r(a,B). We assumed
r(b, A) = r(b, B) and we get r(a,A) ≤ r(a,B) ≤ r(b, B) = r(b, A). �

If we restrict ourselves to inessential ideals, we can prove a quite similar
result in quotient algebras.

Theorem 2.6 Let (A,C) be an OBA and B a Banach algebra such that 1 ∈
B ⊂ A. Suppose that I is an inessential ideal of bothA andB such that IB ⊂ IA,
and such that the spectral radius function in the OBA (B/IB , π(C ∩ B)) is
monotone. If a, b ∈ B with 0 ≤ a ≤ b relative to C and σ(b, B) = σ(b, A), then
r(a,B/IB) ≤ r(b, B/IB) and r(a,A/IA) ≤ r(b, A/IA).

Proof: Let a, b ∈ B with 0 ≤ a ≤ b relative to C. Then 0 ≤ a ≤ b
w.r.t. the algebra cone π(C ∩ B) of B/IB . Because the spectral radius in
(B/IB , π(C ∩ B)) is monotone, r(a,B/IB) ≤ r(b, B/IB). Let a ∈ B/IB be
invertible, then there exists a c ∈ B/IB such that a · c = 1. Since IB ⊂ IA,
we have a · c = 1 in A/IA as well, so σ(a,A/IA) ⊂ σ(a,B/IB) and therefore
r(a,A/IA) ≤ r(a,B/IB). Theorem 1.37 and the assumption σ(b, B) = σ(b, A)
imply that D(b, B, I) = D(b, A, I). The ideals IA and IB are inessential by
Corollary 1.39, so Theorem 1.36.3 now tells us that σ(b, B/IB)∧ = D(b, B, I)∧ =
D(b, A, I)∧ = σ(b, A/IA)∧. So, r(b, B/IB) = r(b, A/IA). Combining the results,
it follows that r(a,A/IA) ≤ r(b, A/IA). �

Theorem 2.7 Let (A,C) be an OBA with a closed algebra cone C such that
the spectral radius function is monotone. If a ∈ C then r(a) ∈ σ(a).
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Proof: Let a ≥ 0 and assume r(a) = 1. Suppose 1 /∈ σ(a). Choose 0 < α < 1
such that σ(a) ⊂ {λ ∈ C : Re λ ≤ α}. Let t be a positive real number and
let f(z) := etz. By the spectral mapping theorem σ(eta) = etσ(a) ⊂ {λ ∈ C
: |λ| ≤ etα} and so r(eta) ≤ etα for all t ≥ 0. Since a ∈ C, t ≥ 0 and C is
a closed algebra cone, we have eta = 1 + ta + ((ta)2)/(2!) + · · · ∈ C so that
0 ≤ (tn)/(n!)an ≤ eta, for all n ∈ N and t ≥ 0. By the monotonicity of the
spectral radius and r(a) = 1 we get, 0 ≤ r((tn)/(n!)an) = (tn)/(n!) ≤ etα. Sub-
stituting t = n/α in this inequality yields a contradiction to Stirling’s formula.
Hence 1 ∈ σ(a). �

This theorem is a stronger version of the following well known theorem:

Theorem 2.8 Let (A,C) be an OBA with a closed normal algebra cone C and
a ∈ C. Then r(a) ∈ σ(a).

Proof: Because C is normal, the spectral radius is monotone by Theorem 2.2
and the result follows from Theorem 2.7. �

Theorem 2.9 Let (A,C) be an OBA with a closed cone C and let F be a closed
ideal of A such that the spectral radius function in (A/F, πC) is monotone. If
a ∈ C then r(a,A/F ) ∈ σ(a,A/F ).

Proof: Since we cannot deduce from the closedness of C that πC is closed,
Theorem 2.9 does not just follow from Theorem 2.7, but the proof is almost the
same as that of theorem 2.7. There is just one difference to get to the conclusion
that eta ∈ πC. Let a ∈ C, then we have π(eta) = 1+ ta+((ta)2)/(2!)+ · · · = eta

and eta ∈ C because C is closed, so eta ∈ πC. �

Theorem 2.10 Let (A,C) be an OBA and B a Banach algebra with 1 ∈ B ⊂ A
such that C ∩B is closed in B. Suppose that I is an inessential ideal of both A
and B such that IB ⊂ IA and suppose the spectral radius function in the OBA
(B/IB , π(C ∩ B)) is monotone. If a ∈ C ∩ B is such that σ(a,A) = σ(a,B),
then r(a,B/IB) ∈ σ(a,B/IB) and r(a,A/IA) ∈ σ(a,A/IA).

Proof: It follows from Theorem 2.9 that r(a,B/IB) ∈ σ(a,B/IB). The-
orem 1.37, Theorem 1.39 and the assumption σ(a,B) = σ(a,A) imply that
D(a,B, I) = D(a,A, I). So D(a,B, I)∧ = D(a,A, I)∧ and by Theorem 1.36.3
we have σ(a,A/IA)∧ = σ(a,B/IB)∧. Hence r(a,A/IA) = r(a,B/IB). Combin-
ing the results it follows that r(a,A/IA) ∈ σ(a,A/IA)∧. Consider the polyno-
mial x+r(a,A/IA), then we have that |2r(a,A/IA)| ≤ ‖x+ r(a,A/IA)‖σ(a,A/IA),
and we conclude that r(a,A/IA) ∈ σ(a,A/IA). �

Theorem 2.11 Let (A,C) be an ordered Banach algebra with C closed, normal
and inverse-closed. If a ∈ C, then δ(a) ∈ σ(a).

Proof: If a is not invertible then δ(a) = 0 ∈ σ(a). Suppose a is invertible.
Since a ∈ C and C is inverse-closed we have a−1 ∈ C. Also, because C is
normal and closed, it follows from Theorem 2.8 that r(a−1) ∈ σ(a−1). So using
the spectral mapping theorem we see that r(a−1) = 1/λ0, for some λ0 ∈ σ(a).
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We have that r(a−1) = 1/δ(a) by Lemma 1.23, which implies δ(a) = λ0 ∈ σ(a).
�

Lemma 2.12 Let (A,C) be an OBA with C closed and I a closed inessential
ideal of A such that the spectral radius in (A/I, πC) is monotone. Let a ∈ C.

1. If r(a) is a Riesz point of σ(a), then r(a) < r(a).

2. If, in addition, the spectral radius in (A,C) is also monotone, then r(a) is
a Riesz point of σ(a) if and only if r(a) < r(a).

Proof: (1) If r(a) = r(a), then, by Theorem 2.9, r(a) ∈ σ(a). Therefore by
Theorem 1.36.3 r(a) ∈ D(a), so that r(a) is not a Riesz point of σ(a).

(2) Conversely, if r(a) ≤ r(a) and r(a) is not a Riesz point of σ(a), then by
Theorem 2.7 we have r(a) ∈ D(a), so by Theorem 1.36 r(a) ∈ σ(a)∧. Therefore
r(a) ≤ r(a). �

Lemma 2.13 Let I be a two-sided closed inessential ideal in the Banach algebra
A. Then for every a ∈ A the set σ(a,A) \ σ(a,A/IA) is the union of the Riesz
points of σ(a) relative to I and some of the holes of σ(a,A/IA).

Proof: See Theorem 6.1 in [11].
�

Theorem 2.14 Let (A,C) be an OBA with C closed and I a closed inessential
ideal of A such that the spectral radius in (A/I, πC) is monotone. If a ∈ C is
such that r(a) is a Riesz point of σ(a), then psp(a) consists of Riesz points of
σ(a).

Proof: Let λ ∈ psp(a). If λ ∈ σ(a), then r(a) = |λ| ≤ r(a), so that
r(a) = r(a). But by Lemma 2.12 this is a contradiction with the fact that
r(a) is a Riesz point of σ(a). Therefore psp(a) ⊂ σ(a) \ σ(a) and Lemma 2.13
now tells us that psp(a) consists of Riesz points of σ(a). �
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Chapter 3

Poles of the resolvent in
OBA’s

In this chapter we investigate the role of poles of the resolvent in spectral theory.
First we state versions of the Krein-Rutman Theorem in an OBA context fol-
lowing [18], then we take a closer look at the structure of the spectrum following
[20].

3.1 Preliminaries

Lemma 3.1 Let A be a Banach algebra and a ∈ A. If λ0 is an isolated point
of σ(a) then

(z − a)−1 =
∞∑

n=−∞
(z − λ0)nan

for 0 < |z − λ0| < r0 = d(λ0, σ(a) \ {λ0}), where

an =
1

2πi

∫
γ

(z − λ0)−n−1(z − a)−1dz

for γ any positively oriented circle centered at λ0 with radius < r0.
The isolated point λ0 is a pole of order k ≥ 1 if and only if a−k 6= 0 and

a−n = 0 for all n > k.

Proof: The first part is Lemma 6.11 in [10] and the series follows from the
usual Laurent series development that can be found in Theorem 1.11 in [9]. The
statement for the pole of order k follows from Corollary 1.18 in [9]. �

Proposition 3.2 Let A be a Banach algebra and a ∈ A. If λ0 is an isolated
point of σ(a) and n ≥ 1, then λ0 is a pole of the resolvent function R(z, a) = (z−
a)−1 of order n if and only if (λ0− a)np(a, λ0) = 0 and (λ0− a)n−1p(a, λ0) 6= 0.

Proof: Let (z−a)−1 =
∑∞
n=−∞(z−λ0)nan as in Lemma 3.1. Now λ0 is a pole

of order n if and only if a−n 6= 0 and a−k = 0 for k > n. Let Γ be a positively
oriented system of curves such that σ(a)\{λ0} ⊆ ins Γ and λ0 ∈ out Γ. Let γ be
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a circle centered at λ0 and contained in out Γ. Let e(z) ≡ 1 in a neighborhood
of γ ∪ ins γ and e(z) ≡ 0 in a neighborhood of Γ ∪ ins Γ. So e ∈ Hol (a) and
e(a) = p(a, λ0). If k ≥ 1,

a−k =
1

2πi

∫
γ

(z − λ0)k−1(z − a)−1dz

=
1

2πi

∫
γ+Γ

e(z)(z − λ0)k−1(z − a)−1dz

= p(a, λ0)(a− λ0)k−1.

The last stap follows from the functional calculus, since σ(a) ⊆ ins (γ+Γ). The
proposition follows.

�
Since p(a, λ0) is an idempotent it directly follows that:

Corollary 3.3 Let A be a Banach algebra and a ∈ A. If λ0 is an isolated point
of σ(a) and n ≥ 1, then λ0 is a pole of order n of the resolvent if and only if
(λ0 − a)p(a, λ0) is a nilpotent element of A of order n.

3.2 Krein-Rutman Theorems

We will now state OBA versions of the Krein-Rutman Theorem, which is con-
cerned with operators, following [18]. The Krein-Rutman Theorem describes
conditions under which the spectral radius of a positive operator is an eigen-
value of that operator, with a positive eigenvector. For more information on
this theorem we refer to [15].

First we state a version in which the condition that ensures that if a is
positive, r(a) is an eigenvalue of a with positive eigenvector, is in terms of r(a).

Theorem 3.4 Let A be anOBA with a closed algebra cone C and let 0 6= a ∈ C
be such that r(a) > 0. If r(a) is a pole of the resolvent of a, then there exists
0 6= u ∈ C such that ua = au = r(a)u and aua = r(a)2u.

Proof: Suppose that r(a) is a pole of order k of the resolvent of a. Then we
have according to Lemma 3.1 the following Laurent series development of the
resolvent:

R(z, a) =
∞∑

n=−k

(z − r(a))nan, 0 < |z − r(a)| < dist(r(a), σ(a) \ {r(a)}).

From the Laurent expression it follows that a−k = limz↓r(a)(z − r(a))kR(z, a).
We show that a−k is a possible choice for u. It is clear that a commutes with
a−k. From the Neumann series R(z, a) =

∑∞
j=0

aj

zj+1 (z > r(a)) for R(z, a)
and the fact that C is a closed algebra cone it follows that R(z, a), and hence
a−k, is an element of C. From the proof of Proposition 3.2 it follows that
0 = a−(k+1) = (r(a)− a)a−k = a−k(r(a)− a), which yields the first part of the
theorem, with u := a−k. Since au = ua = r(a)u, it follows that aua = r(a)2u. �

From the proof we see that if the pole r(a) of the resolvent function is of
order k, a possible choice for u is the coefficient a−k from the Laurent series
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expression of the resolvent. To distinguish a−k from possible other eigenvectors,
we will call a−k the (positive) Laurent eigenvector of the eigenvalue r(a) of a.

From the proof we see that we have more generally:

Theorem 3.5 Let A be a Banach algebra and a ∈ A. If α is a pole of the
resolvent of a of order k, so that

(z − a)−1 =
∞∑

n=−k

(z − α)nan

and 0 6= u := a−k, then au = ua = αu.

Now we state another version of the Krein-Rutman theory in an OBA con-
text.

Theorem 3.6 Let A be a semisimple OBA with a closed normal algebra cone
C and let a ∈ C be such that r(a) > 0. If there exists a closed inessential
ideal I in A such that a is Riesz w.r.t I, then there exists 0 6= u ∈ C such that
ua = au = r(a)u and aua = r(a)2u.

Before we can give the proof we need a few other theorems and lemmas.

Theorem 3.7 Let A be a semisimple Banach algebra and I an inessential ideal
of A. Then I ⊂ kh(soc(A)).

Proof: This is Theorem 1.4 in [16]. �

From this theorem we get the following corollary.

Corollary 3.8 Let A be a semisimple Banach algebra, a ∈ A and I a closed
inessential ideal of A. If a is Riesz relative to I then a is Riesz relative to soc(A).

Proof: Suppose a is Riesz relative to I. According to Theorem 1.40 σ(a) is
finite or a sequence converging to zero, and for every 0 6= α ∈ σ(a) the spectral
projection p(a, α) lies in I. By Theorem 3.7 we have I ⊂ kh(soc(A)), so that all
these spectral projections are in kh(soc(A)). Corollary 1.33 tells us that soc(A)
and kh(soc(A)) have the same projections, so it follows that all these spectral
projections are in soc(A). Thus Theorem 1.40 implies that a is Riesz relative
to soc(A). �

Lemma 3.9 Let A be a semisimple Banach algebra and a ∈ A. If a is in soc(A)
and a is quasinilpotent, then a is nilpotent.

Proof: This is Lemma 3.10 in [18]. �

Theorem 3.10 Let A be a semisimple Banach algebra, a ∈ A and I a closed
inessential ideal of A such that a is Riesz relative to I. If 0 6= α ∈ σ(a) then α
is a pole of the resolvent of a.

Proof: If a is Riesz relative to I, then by Corollary 3.8 we have that a is
Riesz relative to soc(A). If 0 6= α ∈ σ(a), then it follows Theorem 1.40 that α
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is an isolated point of σ(a) and p(a, α) is in soc(A). Since soc(A) is an ideal,
we have (a − α)p(a, α) ∈ soc(A). We know from ([8], Proposition 9, p36) that
(a− α)p(a, α) is quasinilpotent, so from Lemma 3.9 we see that (a− α)p(a, α)
is nilpotent. It follows from Corollary 3.3 that α is a pole of the resolvent of a. �

In a similar way as for the previous theorem, we can prove the following
related theorem. We do not use it to prove Theorem 3.6, but we will use it later
on.

Theorem 3.11 Let A be a semisimple Banach algebra, I an inessential ideal
of A, and a ∈ A. Then a point α in σ(a) is a Riesz point of σ(a) relative to I if
and only if α is a pole of the resolvent of a and p(a, α) ∈ I.

Proof: One implication is trivial. For the other implication let α be a Riesz
point of σ(a) relative to I. Then by definition α is an isolated point of σ(a) and
p(a, α) ∈ I. From Theorem 3.7 and the fact that kh(soc(A)) and soc(A) have
the same spectral projections (see Corollary 1.33) we see that p(a, α) ∈ soc(A).
Since soc(A) is an ideal, we have (a − α)p(a, α) ∈ soc(A). We know from ([8],
Proposition 9, p36) that (a − α)p(a, α) is quasinilpotent, so from Lemma 3.9
we see that (a− α)p(a, α) is nilpotent. It follows from Corollary 3.3 that α is a
pole of the resolvent of a. �

Now we can give the proof of Theorem 3.6.

Proof: By Theorem 2.2 and Theorem 2.7, r(a) ∈ σ(a). By assumption
r(a) 6= 0, so by Theorem 3.10 r(a) is a pole of the resolvent of a. The theorem
now follows from Theorem 3.4. �

3.3 More spectral theory

In this section we are going to investigate the influence that the structure of the
spectrum σ(a) has on some properties of a. We will follow [20]. First we discuss
the case in which the spectrum consists of one element. Then we also consider
spectra consisting of multiple elements.

The property of a we focus on is whether positivity of a implies that a − 1
is positive, i.e. a ≥ 1. Later on we discuss the more general case, if f ∈ Hol(a)
and f(a) defined by the functional calculus, whether a ∈ C implies f(a) ∈ C.

Theorem 3.12 Let (A,C) be anOBA with C closed and let a ∈ C. If λ > r(a),
then (λ− a)−1 ≥ 0.

Proof: For |λ| > r(a), the resolvent of a has a Neumann series representation

(λ− a)−1 =
∞∑
n=0

(an/λn+1). Since λ > 0, all the terms in the series are positive,

so because C is closed, we have (λ− a)−1 ≥ 0. �
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Theorem 3.13 Let A be a Banach algebra and a ∈ A such that σ(a) = {λ0}.
If λ 6= λ0, then

(λ− a)−1 =
∞∑
n=1

b−n(λ− λ0)−n

where b−n = (a− λ0)n−1

Proof: If λ 6= λ0, then |λ− λ0| > 0 = r(a− λ0), so that

(λ− a)−1 = ((λ− λ0)− (a− λ0))−1 =
∞∑
n=0

(a− λ0)n

(λ− λ0)n+1
=
∞∑
n=1

(a− λ0)n−1

(λ− λ0)n
.

Hence the result follows. �

The series above clearly is the Laurent series of the resolvent of a around λ0, so
we have

Theorem 3.14 Let A be a Banach algebra and a ∈ A such that σ(a) = {λ0}.
If λ0 is a pole of order k of the resolvent of a, then (a − λ0)k = 0 and
lim
λ→λ0

(λ− λ0)k(λ− a)−1 = (a− λ0)k−1.

Now we can state some conditions which imply that if a ∈ C and σ(a) =
{r(a)} with r(a) ≥ 1, then a− 1 ∈ C.

Theorem 3.15 Let A be a Banach algebra and a ∈ A such that σ(a) = {r(a)}.

1. If r(a) is a pole of order k of the resolvent of a, then (a− r(a))k = 0.

2. If r(a) is a simple pole of the resolvent of a, then a = r(a). It follows that,
if C is an algebra cone of A, then

r(a) ≥ 1⇒ a− 1 ∈ C

Suppose that C is a closed algebra cone of A, and a ∈ C.

3. If r(a) is a pole of order k of the resolvent of a, then (a− r(a))k−1 ∈ C.

4. If r(a) is a pole of order 2 of the resolvent of a, then a ≥ r(a).

Proof:

1. Follows directly from Theorem 3.14.

2. Follows from 1.

3. From Theorem 3.14 we have (a− r(a))k−1 = lim
λ→r(a)

(λ− r(a))k(λ− a)−1,

so we certainly have (a− r(a))k−1 = lim
λ→r(a)+

(λ− r(a))k(λ− a)−1. Since

C is closed, it follows from Theorem 3.12 that (a− r(a))k−1 ∈ C.

4. Follows from 3.

�

Now we state some results about the following question: if a ∈ C, for which
functions f ∈ Hol(a) does it follow that f(a) ∈ C?
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Theorem 3.16 Let (A,C) be an OBA and a ∈ C.

1. If p(λ) = αnλ
n + · · ·+ α1λ1 + α0 with αn, · · · , α0 real and positive, then

p(a) ∈ C.

2. Suppose, in addition, that C is closed. If f(λ) = eλ, then f(a) ∈ C.

Proof: Follows from the functional calculus. �

Theorem 3.17 Let A be a Banach algebra and a ∈ A such that r(a) is a pole
of order k of the resolvent of a. Let f be a complex valued function that is
analytic in the open disk D(r(a), R) for some R > 0. Let g(λ) = f(λ)(λ− a)−1

and let
∑∞
n=−∞(λ− r(a))nan be the Laurent series of g around r(a).

1. If f(r(a)) = 0 and the order of f at r(a) is k, then a−1 = 0.

Suppose, in addition, that (A,C) is an OBA with C closed, a ∈ C and f(λ) > 0
for all λ in the open real interval (r(a), r(a) +R).

2. If the order of f in r(a) is equal to j ≥ 0, then a−k+j ∈ C and al = 0 for
l ≤ −k + j.

Proof:

1. If f(r(a)) = 0 and the order of f at r(a) is k, then the order of g at r(a)
is zero, so its residue is zero. Hence a−1 = 0.

2. If the order of f in r(a) is equal to j ≥ 0, then the order of g at r(a) is
k−j, so a−k+j = limλ→r(a)(λ−r(a))k−jg(λ). Restricting λ to the interval
(r(a), r(a)+R), we get a−k+j = limλ→r(a)+(λ−r(a))k−jf(λ)(λ−a)−1. For
λ in (r(a), r(a)+R) we have that f(λ) > 0 by assumption and (λ−a)−1 ∈
C by Theorem 3.12, so (λ−r(a))k−jf(λ)(λ−a)−1 ∈ C. Since C is closed,
a−k+j ∈ C. It is clear that al = 0 for l < −k + j.

�

If we take f = 1 we know that a−1 is equal to the spectral projection
p(a, r(a)), so that the above Theorem gives us.

Corollary 3.18 Let (A,C) be an OBA with C closed, and a ∈ C such that
r(a) is a simple pole of the resolvent of a, then p(a, r(a)) ∈ C.

Theorem 3.19 Let A be a Banach algebra and a ∈ A such that σ(a) =
{λ1, . . . , λm} (m ≥ 1) where λ1 = r(a) and λj is a pole of order kj of the
resolvent of a (j = 1, . . . ,m). Let f ∈ Hol(a), such f has a zero of order kj at
λj for j = 2, . . . ,m.

1. If f(r(a)) = 0 and the order of f at r(a) is k1, then f(a) = 0.

Suppose, in addition, that (A,C) is an OBA with C closed, a ∈ C and f(λ) > 0
in the real interval (r(a), r(a) + b), for some b > 0.

3. If order of f at r(a) is k1 − 1, then f(a) ∈ C.
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Proof: Let Γ be the union of circles with centers λ1, . . . , λm and resp. radii
r1, . . . , rm such that they are disjoint. Then the functional calculus gives us
f(a) = 1

2πi

∫
Γ
g(λ)dλ =

∑m
j=1

1
2πi

∫
C(λj ,rj)

g(λ)dλ, with g(λ) = f(λ)(λ − a)−1.
Since the order of g at λj is zero, it follows that

∫
C(λj ,rj)

g(λ)dλ = 0 for
j = 2, . . . ,m, so that f(a) = 1

2πi

∫
C(λ1,r1)

g(λ)dλ. We can choose the radius r1

such that g is analytic in a deleted neighbourhood of r(a) containing C(r(a), r1).
Therefore 1

2πi

∫
C(λ1,r1)

g(λ)dλ is the residue of g at r(a). So f(a) = a−1, with
a−1 the coefficient of (λ − r(a))−1 in the Laurent series of g around r(a). The
results now follow from Theorem 3.17. �

We now give some corollaries of Theorem 3.19

Corollary 3.20 Let A be a Banach algebra and a ∈ A such that r(a) = kπ ∈
σ(a) with k ∈ N an even number, and

σ(a) \ r(a) ⊂ {nπ : n ∈ {0,±1, . . . ,±k}}.

1. If each value in σ(a) is a simple pole of the resolvent of a, then sin a = 0.

Suppose, in addition, that (A,C) is an OBA with C closed, and a ∈ C.

2. If each element of σ(a) \ r(a) is a simple pole and r(a) is a pole of order
2 of the resolvent of a, then sin a ∈ C

Proof: Let f(λ) = sinλ. Then f has simple zeros at all the values of the
spectrum of a and f(λ) > 0 for all λ in the real interval (r(a), r(a) + π). Since
f(a) = sin a,

1. Follows from Theorem 3.19.1.

2. Follows from Theorem 3.19.3.

�

Corollary 3.21 Let (A,C) be an OBA with C closed, and a ∈ C such that
r(a) = (k + 1

2 )π ∈ σ(a) with k ∈ N an even number, and

σ(a) \ r(a) ⊂ {nπ : n ∈ {0,±1, . . . ,±k}}.

If each value in σ(a) is a simple pole of the resolvent of a, then sin a ∈ C.

Proof: Let f(λ) = sinλ. Then f has simple zeros at all the values of σ(a)\r(a).
Furthermore, f(r(a)) = 1 > 0 and f(λ) > 0 for all λ in the real interval
(r(a), r(a) + π

2 ). Since f(a) = sin a, the result follows from Theorem 3.19.2. �

Corollary 3.22 Let A be a Banach algebra and a ∈ A such that σ(a) = {r(a)}
with r(a) > 0.

1. If r(a) = 1 is a simple pole of the resolvent of a, then log a = 0.

Suppose, in addition, that (A,C) is an OBA with C closed, and a ∈ C
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2. If r(a) is a simple pole of the resolvent of a and r(a) > 1, then log a ∈ C.

3. If r(a) = 1 is a pole of order 2 of the resolvent of a, then log a ∈ C.

Proof: Let f(λ) = log λ (log λ is the principal branch of the complex log-
arithm), then f is analytic on the right half plane, so because r(a) > 0,
f ∈ Hol(a). Also, f has a simple zero at 1, and f(λ) > 0 for all real λ > 1.
Hence the results follow from Theorem 3.19. �

Corollary 3.23 Let (A,C) be an OBA with C closed and a ∈ C such that
σ(a) = {1, r(a)}, with r(a) > 1. If both 1 and r(a) are simple poles of the
resolvent of a, then log a ∈ C.

Proof: Let f = log λ, then as in the proof of the previous corollary we have
f ∈ Hol(a) and f(λ) > 0 for all real λ > 1. Furthermore, 1 and r(a) are both
simple poles, hence the result follows from Theorem 3.19.2. �

Now we discuss the case of C being inverse-closed. First a theorem that
complements Theorem 3.16 and 3.19.

Theorem 3.24 Let (A,C) be an OBA with C inverse-closed, and a ∈ C.
Let p(λ) = αnλ

n + · · · + α1λ + α0 and q(λ) = βmλ
m + · · · + β1λ + β0 with

αn, . . . , α0, βm, . . . , β0 real a positive. Suppose that q(λ) has no zeroes in σ(a)
and let t(λ) = p(λ)/q(λ). Then t(a) ∈ C.

Proof: From Theorem 3.16.1 it follows that p(a) ∈ C and q(a) ∈ C. Ac-
cording to the Spectral Mapping Theorem σ(q(a)) = q(σ(a)), and q(λ) has no
zeroes in σ(a), so q(a) is invertible and q−1 ∈ Hol(a). Since C is inverse-closed,
(q(a))−1 ∈ C. From the functional calculus we have t(a) = p(a)(q(a))−1, so it
follows that t(a) ∈ C. �

Now we give some conditions under which it is true that a ∈ C and σ(a) =
{1} imply that a− 1 ∈ C, under the assumption that C is inverse-closed.

We begin with an obvious lemma

Lemma 3.25 Let (A,C) be an OBA with a and b invertible elements of A such
that a ≤ b and a−1, b−1 ≥ 0. Then b−1 ≤ a−1.

Theorem 3.26 Let (A,C) be an OBA with C closed and inverse-closed. If
a ∈ C and a is invertible, then

1. a ≥ α for all α ≥ 0 with α < δ(a).

2. a ≤ β for all β > r(a).

Proof:

1. For α = 0 it is obviously true. Let 0 < α < δ(a), then (1/δ(a)) < (1/α), so
that (1/α) > r(a−1). It follows from Theorem 3.12 that ((1/α)−a−1)−1 ≥
0. Because C is inverse-closed (1/α)− a−1 ≥ 0, so we have a−1 ≤ (1/α).
The result now follows from Lemma 3.25.

2. If β > r(a), then according to Theorem 3.12, (β − a)−1 ≥ 0. Since C is
inverse-closed, it follows that β − a ≥ 0, and hence a ≤ β.
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Theorem 3.27 Let (A,C) be an OBA with C closed and inverse-closed, and
let a ∈ C. Then we have

1. δ(a) ≤ a ≤ r(a).

Suppose, in addition, C is proper. Then,

2. σ(a) ⊂ {z ∈ C : |z| = 1} ⇒ a = 1.

3. σ(a) = {1} ⇒ a = 1.

Proof:

1. Let (αn) be a sequence of real numbers such that 0 ≤ αn < δ(a) and
αn → δ(a) as n → ∞. By Theorem 3.26.1, a ≥ αn, i.e. (a− αn) ∈ C for
all n. Therefore limn→∞(a−αn) = a− δ(a) ∈ C, because C is closed. Let
(βn) be a sequence of real numbers such that r(a) < βn and βn → r(a)
as n → ∞. Then a ≤ βn, by Theorem 3.26.2, so as before we have that
a ≤ r(a).

2. If σ(a) ⊂ {z ∈ C : |z| = 1}, then δ(a) = 1 = r(a), so by 1. we have that
1 ≤ a ≤ 1. Therefore, because C is proper, it follows that a = 1.

3. Follows from 2.

�

Lemma 3.28 Let A be a Banach algebra and a ∈ A. If there exist k ∈ N and
λ0 ∈ C such that psp(ak) = {λ0}, then #psp(a) ≤ k.

Proof: If λ ∈ psp(a), then (by the Spectral Mapping Theorem) λk ∈ psp(ak),
so λk = λ0. Hence every λ ∈ psp(a) is a k-th root of λ0 and thus #psp(a) ≤ k. �

Theorem 3.29 Let (A,C) be an OBA with C closed and the spectral radius
function monotone. If a ∈ A and there exist k ∈ N and α > 0 such that ak ≥ α,
then

1. psp(ak) = {r(a)k}.

2. #psp(a) ≤ k.

Proof:

1. Since psp(βa) = βpsp(a) for all β ≥ 0, we may assume without loss of
generality that r(a) = 1. Let b = ak − α. Then b ≥ 0. Since ak = b + α,
it follows that 1 = r(ak) = r(b + α), so that 1 = sup{|λ+ α| : λ ∈ σ(b)}.
Since r(b) ∈ σ(b), by Theorem 2.7, this supremum is exactly r(b) + α.
Hence r(b) = 1− α, so that σ(ak) ⊂ {λ+ α : |λ| ≤ 1− α}.
Now suppose z ∈ psp(ak). Then z = λ + α with |λ| ≤ 1 − α, so that
|z − α| ≤ 1 − α, and |z| = 1. Consequently z ∈ D(α, 1 − α) ∩ {z ∈ C :
|z| = 1}. Let z = c+di. Then (c−α)2 +d2 ≤ (1−α)2 and c2 +d2 = 1, so
that 2αc ≥ 2α, and hence c ≥ 1, since α > 0. Since c2 + d2 = 1, it follows
that c = 1 and d = 0, so that z = 1. Hence the result follows.
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2. Follows from 1. and Lemma 3.28.

�
Now with Theorem 3.26.1 and 3.29.1 we come to

Theorem 3.30 Let (A,C) be an OBA with C closed, inverse-closed and the
spectral radius function monotone. If a ∈ C is an invertible element, then
psp(a) = {r(a)}.
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Chapter 4

Representation theorems
for OBA’s

In this chapter we show that an OBA that satisfies certain conditions is iso-
morphic to the space of real-valued continuous functions C0(X) for a suitable
compact Hausdorff space X. We make clear which space the space X is and
state the results in a few representation theorems. We will follow [24] and [27].

4.1 Preliminaries

Let A be a Banach space. With A∗ we denote the dual space of A and with
wk* the weak-star topology of this space.

We state a corollary of the Hahn-Banach Theorem (see theorem 1.15).

Corollary 4.1 If A is a normed space and x ∈ A, then

‖x‖ = sup{|f(x)| : f ∈ A∗ and ‖f‖ ≤ 1}

Moreover, this supremum is attained.

Proof: This is Corollary 3.6.7 in [10]. �

If X is a normed space, denote by ball(X) the closed unit ball in X. So
ball(X) := {x ∈ X : ‖x‖ ≤ 1}.

Theorem 4.2 (Alaoglu’s Theorem) If X is a normed space, then ball(X∗)
is wk* compact.

Proof: This is Theorem 5.3.1 in [10]. �

Now we define extreme points and state the Krein-Milman Theorem.

Definition 4.3 If K is a convex subset of a vector space X, then a point a in
K is an extreme point of K if there is no proper open line segment that contains
a and lies entirely in K. Let ext(K) be the set of extreme points of K.

An open line segment is a set of the form (x1, x2) := {tx2+(1−t)x1} : 0 < t < 1},
and this line segment is proper if x1 6= x2.
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Theorem 4.4 (The Krein-Milman Theorem) If K is a nonempty compact
convex subset of a locally convex space X, then ext(K) 6= ∅ and K is equal to
the closed convex hull of ext(K).

Proof: This is Theorem 5.7.4. in [10]. �

4.2 Representation theorems for OBA’s

Definition 4.5 Let A be a real algebra. We call a functional f : A → R a
Schwarz map if it satisfies the Schwarz inequality f(a)2 ≤ f(a2) for all a ∈ A.
The set of all Schwarz maps is denoted by SA. If A is ordered by an algebra
cone C, we define S+

A to be the subset of all functionals with f(C) ⊂ [0,∞).

Lemma 4.6 SA and S+
A are convex.

Proof: Let f1, f2 ∈ SA, then

(
1
2
f1(a) +

1
2
f2(a))2 =

1
4
f1(a)2 +

1
2
f1(a)f2(a) +

1
4
f2(a)2

≤ 1
4
f1(a2) + (

1
2
f1(a)− 1

2
f2(a))2 +

1
2
f1(a)f2(a) +

1
4
f2(a2)

≤ 1
2
f1(a2) +

1
2
f2(a2)

So for all f1, f2 ∈ SA we have 1
2f1 + 1

2f2 ∈ SA. Therefore, given t ∈ [0, 1], ε > 0
and f1, f2 ∈ SA, we can find a number s equal to m

2n fore some m,n ∈ N, such
that |t− s| < ε and sf1 + (1− s)f2 ∈ SA. So we can find a sequence of numbers
sn such that sn → t as n→∞ and (snf1(a) + (1− sn)f2(a))2 ≤ snf1(a2) + (1−
sn)f2(a2) for all a ∈ A. Thus (tf1(a) + (1− t)f2(a))2 ≤ tf1(a2) + (1− t)f2(a2)
for all a ∈ A and we have that tf1 + (1− t)f2 ∈ SA.

The convexity of S+
A follows from the convexity of SA. �

Let f ∈ SA. If A is non-unital we define the map f on Ae as follows:

f((a, α)) := f(a) + α (a, α) ∈ Ae.

We have that

f((a, α))2 = (f(a) + α)2 = f(a)2 + 2αf(a) + α2

≤ f(a2) + 2αf(a) + α2 = f(a2 + 2αa) + α2

= f((a2 + 2αa, α2)) = f((a, α)2),

hence f is a Schwarz map. If A is unital and we speak of f , we just mean f .
With the Schwarz inequality we see that a Schwarz map is non-negative on the
squares. Conversely we have

Proposition 4.7 Let f be a bounded linear functional on a real Banach algebra
A, possessing a bounded approximate identity with norm bound L, which is
non-negative on the squares. Then

f(a)2 ≤ ‖f‖L2f(a2), ∀a ∈ A.
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Proof: Let a, b ∈ A, then for every x ∈ R we have

x2f(a2) + x(f(ab) + f(ba)) + f(b2) = f((xa+ b)2) ≥ 0.

Using the formula for the discriminant for second degree equations we get

(f(ab) + f(ba))2 ≤ 4f(a2)f(b2). (4.1)

Let (eλ)λ∈I be a bounded approximated identity with norm bound L. Then,

f(e2
λ) ≤ ‖f‖(sup ‖eλ‖)2 ≤ ‖f‖L2.

Since f is continuous it follows from 4.1 that

(2f(a))2 = lim
λ∈I

(f(aeλ) + f(aeλ))2 ≤ 4‖f‖L2f(a2).

Thus,
f(a)2 ≤ ‖f‖L2f(a2).

�

Note that equation 4.1 is the weak Cauchy-Schwarz inequality.

Corollary 4.8 Let f be a bounded (positive) linear functional on an unital
Banach algebra A with f(1) ≤ 1 which is non-negative on the squares. Then f
is a (positive) Schwarz map on A.

Proof: Putting b = 1 in equation (4.1) we get the result. �

Lemma 4.9 Let A be a real Banach algebra, not necessarily unital. Then every
Schwarz map is continuous and satisfies |f(a)| ≤ r(a) for all a ∈ A.

Proof: Using the functional calculus we see that for all a ∈ Ae with r(a) < 1
there exists b ∈ Ae such that (1 − a) = b2. If A = Ae, then 0 ≤ f(b2) =
f(1)− f(a), so f(a) ≤ f(1) ≤ 1. If A is non-unital, then 0 ≤ f(b2) = 1− f(a),
so again f(a) ≤ 1. Now we replace a by a2/(r(a)2 + ε) with ε > 0 and get
f(a)2 ≤ f(a2) ≤ r(a)2 + ε. Hence |f(a)| ≤ r(a). Since r(a) ≤ ‖a‖, f is continu-
ous. �

From now on we will denote ball(A∗) with Σ, so Σ := {f ∈ A∗ : ‖f‖ ≤ 1}.

Lemma 4.10 SA, S+
A and Σ+ are wk*-compact.

Proof: It follows from the preceding lemma that ‖f‖ ≤ 1, hence SA ⊂ Σ. The
set Σ is wk*-compact by Alaoglu’s Theorem. So if SA is wk*-closed in Σ we are
done. Let gi be a net in SA and f ∈ Σ such that gi

wk∗→ f . Then for all i we
have gi(a)2− gi(a2) ≤ 0, and therefore f(a)2− f(a2) ≤ 0. Thus f ∈ SA and SA
is closed in Σ.

Now we show that S+
A is w*-closed in SA. Let gi be a net in S+

A and f ∈ SA
such that gi

wk∗→ f . Then for a ∈ C, for all i, we have gi(a) ≥ 0, so f(a) ≥ 0.
Thus f ∈ S+

A and S+
A is closed in SA.
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Similarly we can show that Σ+ is compact. �

Note that it follows from Proposition 4.7 that, if A possesses a bounded
approximate identity with norm bound 1 and C contains all squares, then
Σ+ ⊂ S+

A , thus Σ+ = S+
A .

Now we turn our attention to the positive multiplicative functionals.

Definition 4.11 Let M denote the set of positive multiplicative functionals:

M = {f ∈ Σ+ : f(ab) = f(a)f(b), ∀a, b ∈ A}.

Lemma 4.12 M is wk*-compact.

Proof: Again we show that M is wk*-closed in the compact set Σ+. Let
gi be a net in M and f ∈ Σ+ such that gi

wk∗→ f . Then for all i we have
gi(a)gi(b) − gi(ab) = 0, thus f(a)f(b) − f(ab) = 0. So f ∈ M and M is closed
in Σ+.

�

For our main theorem we need one more lemma.

Lemma 4.13 A multiplicative Schwarz map is an extreme point of SA

Proof: Let f be a multiplicative Schwarz map. Suppose that f = 1
2f1 + 1

2f2,
with f1, f2 ∈ SA. Then we have

fi(a)2 ≤ fi(a2), (i = 1, 2).

Since f is multiplicative we also have f(a2) = f(a)2, which leads to,

1
2

(f1(a)2 + f2(a)2) ≤ 1
2

(f1(a2) + f2(a2)) = f(a2) = f(a)2 =

1
4

(f1(a)2 + 2f1(a)f2(a) + f2(a)2).

From this inequality it follows that (f1(a)− f2(a))2 ≤ 0, so f1(a) = f2(a). The
element a was arbitrary, so f1 = f2 and therefore f is an extreme point of SA.

�

Now we consider the following two conditions

(1) f(x2a2) ≥ 0 for every f ∈ S+
A and for all x, a ∈ Ae.

(2) x2a ∈ C for all x ∈ Ae and all a ∈ C.

Definition 4.14 Let F denote the set of extreme points of S+
A .

Theorem 4.15 Let A be a real Banach algebra with a cone satisfying the
conditions (1) and (2). Then the extreme points of S+

A are exactly the positive
multiplicative functionals, i.e. F = M .
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Proof: Let f ∈ S+
A be extreme. If A possesses a unit element put f = f ,

otherwise consider f : Ae → R. For x ∈ Ae with r(x) < 1 define Sx2 : Ae → R
by

Sx2(a) := f(x2a)− f(x2)f(a).

We show that f± := f ± Sx2 is non-negative on squares and positive. We have

f+(a) = (1− f(x2))f(a) + f(x2a).

From Lemma 4.9 it follows that f(x2) ≤ r(x2) = r(x)2 < 1. Therefore we have
1−f(x2) > 0. Thus f+ is positive by condition (2) and non-negative on squares
of Ae by condition (1). We know that 1− x2 = b2 for some b ∈ Ae, so

f−(a) = f(a− x2a) + f(x2)f(a) = f(b2a) + f(x2)f(a).

is positive and non-negative on squares of Ae by conditions (1) and (2). Since
1 − x2 = b2 and f is linear we have f±(1) = 1. Therefore f± are positive
Schwartz maps on Ae by Proposition 4.7 and the restrictions of f± to A are in
S+
A . We have f(a) = 1

2f+(a) + 1
2f−(a) for all a ∈ A, so because f is extreme,

Sx2(a) = 0, for all a ∈ A. This implies that f(x2a) = f(x2)f(a) for all a ∈ A
and for all x ∈ Ae with r(x) < 1, thus for all x ∈ Ae by the linearity of f . Let
a, b ∈ A. We may assume that ‖b‖ < 1 because of the linearity of f . Hence
1− b = x2 for some x ∈ Ae and we have

f(a)− f(ba) = f(a− ba) = f(a− ba) = f((1− b)a) = f(x2a) = f(x2a) = f(x2)f(a)
= f(1− b)f(a) = (1− f(b))f(a) = f(a)− f(b)f(a),

from which it follows that f(ba) = f(b)f(a). From Lemma 4.13 it follows that
a multiplicative positive Schwarz map is always an extreme point of S+

A and we
are done. �

Lemma 4.16 Let A be a Banach algebra possessing a bounded approximate
identity with norm bound 1. Then a closed algebra cone C containing all squares
satisfies conditions (1) and (2). For every bounded positive linear functional f
there exists λ > 0 such that λf is a Schwarz map.

Proof: Let (eλ)λ∈I be a bounded approximate identity with norm bound 1
and let x, a ∈ Ae. Then we have (xeλ)2 ∈ C and (aeλ)2 ∈ C. So (xeλ)2(aeλ)2

is positive, thus f((xeλ)2(aeλ)2) ≥ 0. Let x′, a′ ∈ A and β, γ ∈ R such that
x = (x′, β) and a = (a′, γ). If we then work out the products (xeλ)2(aeλ)2 and
x2a2 we see from the continuity and linearity of f that f((xeλ)2(aeλ)2−β2γ2e2

λ)
converges to f(x2a2 − β2γ2). Since ‖eλ‖ ≤ 1, we have f(β2γ2e2

λ) ≤ β2γ2.
Therefore,

0 ≤ f((xeλ)2(aeλ)2)
= f((xeλ)2(aeλ)2 − β2γ2e2

λ) + f(β2γ2e2
λ)

≤ f((xeλ)2(aeλ)2 − β2γ2e2
λ) + β2γ2

→ f(x2a2 − β2γ2) + β2γ2 = f(x2a2).

Hence f(x2a2) ≥ 0 and condition (1) is satisfied. Condition (2) follows directly
from x2a = limλ(xeλ)2a.
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Let f : A→ R be a continuous positive linear functional. Then

f(e2
λ) ≤ ‖f‖ sup ‖eλ‖2 ≤ ‖f‖.

We also have 2f(a) = limλ∈I f(aeλ + eλa) and from the weak Cauchy-Schwartz
inequality (4.1) it follows that 4f(a)2 ≤ 4‖f‖f(a2) for all a ∈ A. Hence λf is a
Schwartz map for λ = 4/‖f‖.

�

Let A∗ be the Banach dual space of A, with dual cone C∗ defined by

C∗ = {f ∈ A∗ : f(a) ≥ 0,∀a ∈ C}

We will need the following consequence of the Hahn-Banach Theorem.

Lemma 4.17 If K is a closed convex set in a real Banach space A, and x /∈ K,
then there is an f ∈ A∗ with f(x) < f(y) for all y ∈ C.

Lemma 4.18 If A is a real Banach space and C a closed cone in A and C∗

the dual cone, then x ∈ C if and only if f(x) ≥ 0 for all f ∈ C∗. Also, C 6= A
implies that C∗ 6= {0}.

Proof: Suppose x /∈ C. Since C is closed and convex it follows from Lemma
4.17 that there exists f ∈ A∗ with f(x) < f(y) for all y ∈ C. So f(x) < 0 = f(0).
Suppose that there is a y ∈ C such that f(y) < 0, then there is a λ > 0 such
that λf(y) < f(x). But since f is linear and λy ∈ C this is a contradiction.
Thus f(y) ≥ 0 for all y ∈ C, hence f ∈ C∗. �

With this lemma we see that C = {a ∈ A : f(a) ≥ 0, ∀f ∈ C∗} if C is a
closed cone. We say that C and C∗ are compatible.

Definition 4.19 The dual cone C∗ is said to be α-generated if each f ∈ A∗

has a decomposition f = f1 − f2 with f1, f2 ∈ C∗ and

α‖f‖ ≥ ‖f1‖+ ‖f2‖.

If C∗ is 1-generated then it follows from the triangle inequality that each
f ∈ A∗ has a Jordan decomposition, that is, f = f1 − f2 with f1, f2 ∈ C∗ and

‖f‖ = ‖f1‖+ ‖f2‖.

The following proposition restates Grosberg and Krein’s result on the equiv-
alence of α-normality of C and α-generation of C∗ stated in [12].

Proposition 4.20 Let (A,C) be an OBA, then C is α-normal if and only if
C∗ is α-generated. In particular, C is 1-normal if and only if each f ∈ A∗ has
a Jordan decomposition.

Proof: This is Proposition 1.2 in [28] �

Let X be a locally compact Hausdorff space. By C0(X) we denote the
Banach algebra of all real-valued continuous functions on X vanishing at infinity.
Let

C+
0 (X) = {f ∈ C0(X) : f(x) ≥ 0,∀x ∈ X},

then C+
0 (X) is a algebra cone and makes C0(X) an OBA.

Now we come to the following theorem.
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Theorem 4.21 Let (A,C) be a real OBA with C closed and 1-normal. Then A
is isometric and algebraic-order isomorphic to C0(X) for some locally compact
Hausdorff space X, if and only if C contains all squares and A possesses a
bounded approximated identity with norm bound 1.

Proof: First we prove the necessity, From the definition of the cone C+
0 (X)

and the fact that f(x)2 ≥ 0 we see that this cone contains all squares. From
Urysohn’s Lemma it follows that C0(X) has bounded approximated identity
with norm bound 1.

Now we prove the sufficiency. The set F from definition 4.14 is wk*-compact
by Lemma 4.16, Theorem 4.15 and Lemma 4.12 . Let X = F \ {0}, with the
wk*-topology. Suppose C = A, then 0 ≤ a ≤ b is valid for all a, b ∈ A. Since C
is normal this cannot be the case, thus C 6= A, and C∗ 6= {0} by Lemma 4.18.
It follows from Lemma 4.16 that S+

A 6= {0}, so X 6= ∅. Then X is a locally
compact Hausdorff space. We define a map ζ : a 7→ â from A into C(X) by

â(f) = f(a), ∀f ∈ X.

Since the maps in X are multiplicative linear functionals, ζ is an algebra homo-
morphism.

It is also an order-isomorphism. Let a, b ∈ A with a ≤ b. Then ζ(b−a)(f) =
f(b − a) ≥ 0 for all f ∈ X and we see that ζ(b) − ζ(a) ∈ C+(X,R), i.e.
ζ(a) ≤ ζ(b). Conversely, let a, b ∈ A with ζ(a) ≤ ζ(b). Then f(b − a) ≥ 0
for all f ∈ X. Theorem 4.15 and the Krein-Milman Theorem show that S+

A is
the wk*-closed convex hull of F and from Lemma 4.16 it also follows that S+

A

generates the dual cone C∗. So f(b − a) ≥ 0 for all f ∈ C∗ and we have that
b− a ∈ C by Lemma 4.18.

Now we show that ζ is an isometry. Since S+
A is the wk*-closed convex hull

of F , we have

‖â‖ = sup{|f(a)| : f ∈ X} = sup{|f(a)| : f ∈ S+
A}.

The Hahn-Banach theorem tells us that

‖a‖ = sup{|f(a)| : f ∈ Σ}.

Recall from the remark following Lemma 4.10 that Σ+ = S+
A , because C

contains all squares. We are now going to show that

‖a‖ = sup{|f(a)| : f ∈ S+
A}.

Let s = sup{|f(a)| : f ∈ S+
A}. Since C is 1-normal, it follows from Propos-

tion 4.20 that for f ∈ Σ there exist f1, f2 ≥ 0 with ‖f1‖+ ‖f2‖ = ‖f‖ such that
f = f1 − f2. Assuming f1, f2 6= 0, we have that ‖f1‖−1f1, ‖f2‖−1f2 ∈ S+

A . So

|f(a)| = |f1(a)− f2(a)| ≤ ‖f1‖|‖f1‖−1f1(a)|
+‖f2‖|‖f2‖−1f2(a)| ≤ ‖f1‖s+ ‖f2‖s = ‖f‖s ≤ s.

If either f1 = 0 or f2 = 0 the resulting inequality is trivial. Thus we have

‖a‖ = sup{|f(a)| : f ∈ Σ} ≤ s.
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It is obvious that

‖a‖ = sup{|f(a)| : f ∈ Σ} ≥ sup{|f(a)| : f ∈ S+
A} = s.

Therefore it follows that ‖a‖ = sup{|f(a)| : f ∈ S+
A} and we have

‖â‖ = sup{|â(f)| : f ∈ X} = sup{|f(a)| : f ∈ S+
A} = ‖a‖.

From this result we see that the map ζ is an isometry. Let Â = {â : a ∈ A}.
Let â ∈ Â and ε > 0. Suppose f ∈ X with |â(f)| = |f(a)| ≥ ε, then f 6= 0. So
the set {f ∈ X : |â(f)| ≥ ε} is equal to {f ∈ F : |â(f)| ≥ ε} and therefore is
compact, since it is a closed subset of the compact set F . Thus Â is a subalge-
bra of C0(X). Let f, g ∈ X with f 6= g, then there exists an a ∈ A such that
â(f) = f(a) 6= g(a) = â(g). So Â separates the points in X. Finally, for f ∈ X
there exists a ∈ A such that â(f) = f(a) 6= 0, because f 6= 0. By Theorem 1.13,
Â is dense in C0(X). Since A is complete and ζ is an isometry, it follows that
Â is complete. Hence Â = C0(X). �

From this theorem we directly have the following result.

Corollary 4.22 Let (A,C) be a real OBA with C closed and 1-normal such
that C contains all squares and A possesses a bounded approximated identity
with norm bound 1. Then A is commutative.

Now we prove a theorem stated by Kung-fu Ng in [24] using preceding
lemma’s.

Theorem 4.23 Let (A,C) be a real OBA with C 1-normal and closed. Then
A is isometrically and algebraically order isomorphic to C0(X) for some locally
compact Hausdorff space X, if and only if the following conditions are satisfied:

(1) For a, b ∈ A with ‖a‖ = 1 = ‖b‖, there exists a c ∈ A with ‖c‖ = 1 such
that 0, a, b ≤ c.

(2) If a, b ≥ 0 and ‖a‖ = 1 = ‖b‖, then ab ≤ a, b.

(3) For each c ∈ C there exists two sequences (an) and (bn) of positive ele-
ments with ‖an‖ ≤ 1 and ‖bn‖ ≤ 1 such that limn can = c = limn bnc.

Proof: We have the following lemmas.

Lemma 4.24 The ordered Banach algebra C0(X) satisfies conditions (1)-(3).

Proof: Let f1, f2 ∈ C0(X) with ‖f1‖ = 1 = ‖f2‖. Let f3 := max(|f1|, |f2|)
then f3 ∈ C0(X), ‖f3‖ = 1 and 0, f1, f2 ≤ f3. So (1) is satisfied. If f1, f2 ∈
C+

0 (X) and ‖f1‖ = ‖f2‖ = 1, then f1(1− f2)(x) ≥ 0 for all x ∈ X, so f1f2 ≤ f1

and likewise f1f2 ≤ f2. So (2) is satisfied. To show that (3) is also satisfied, let
f ∈ C+

0 (X). For n ∈ N we have

nf · (1 + nf)−1 ∈ C+
0 (X) and ‖nf · (1 + nf)−1‖ ≤ 1.

Also, 0 ≤ f(x) · (1 + nf(x))−1 < 1/n for each x ∈ X and n ∈ N . Therefore

‖f − f · (nf · (1 + nf)−1)‖ = ‖f · (1 + nf)−1‖
= sup{f(x)(1 + nf(x))−1 : x ∈ X} ≤ 1/n
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It follows that limn(f · nf(1 + nf)−1) = f = limn(nf(1 + nf)−1 · f). �

This lemma proofs the necessity part of the theorem. Now we prove the
sufficiency part. We first show that A has an approximate identity.

Lemma 4.25 Let (A,C) be an OBA satisfying conditions (1)-(3) and C nor-
mal, then A has an bounded approximated identity of norm bound at most
one.

Proof: Suppose A satisfies (1)-(3). Let α be the normality constant. Let Λ
be the set of all positive elements λ with ‖λ‖ = 1, and let eλ = λ. From (1) we
see that Λ is directed by ≤, so {eλ, λ ∈ Λ,≤} is a net. We will show that

lim aeλ = a, ∀a ∈ A. (4.2)

First we show that

lim aeλ = a, ∀a ∈ A with a ≥ 0 (4.3)

Let a ≥ 0. If a = 0 the equality is trivial. Suppose a 6= 0. We may assume that
‖a‖ = 1. Let 0 < ε < 1. By (3) there exists a b ≥ 0 with ‖b‖ ≤ 1 such that
‖a− ab‖ < ε. Clearly b 6= 0. Let λ0 = ‖b‖−1b and suppose that λ ∈ Λ with
λ ≥ λ0. Then λ ≥ ‖b‖−1b ≥ b, so a(λ−b) ∈ C and thus a−aeλ = a−aλ ≤ a−ab.
By (2) we have that aeλ ≤ a, so 0 ≤ a− aeλ and therefore

‖a− aeλ‖ ≤ α‖a− ab‖ < αε, ∀λ ∈ Λ, λ ≥ λ0

Since ε was arbitrary, (4.3) is proved.
Now let a ∈ A. The case a = 0 is trivial. Suppose a 6= 0. By (1) there is a

b ≥ 0 such that −‖a‖−1a, ‖a‖−1a ≤ b. Write a = a1− a2 with a1 = 1
2 (‖a‖b+ a)

and a2 = 1
2 (‖a‖b− a), then a1, a2 ≥ 0. So it follows from (4.3) that

lim aieλ = ai (i = 1, 2).

Thus,

lim aeλ = lim((a1 − a2)eλ) = lim a1eλ − lim a2eλ = a1 − a2 = a.

and (4.2) is proved. In the same way we can show that

lim eλa = a, ∀a ∈ A. (4.4)

�

Now we will prove that C contains all the squares.
Let Σ = {f ∈ A∗ : ‖f‖ ≤ 1} then Σ is wk*-compact by Alaoglu’s Theorem.

It is also true that C∗ is wk*-closed. Let f ∈ (C∗)c, then there exists a ∈ C
such that f(a) = δ < 0. Let g ∈ A∗ such that |f(a)− g(a)| < |δ|, then g(a) < 0
and thus g ∈ (C∗)c. So (C∗)c is wk*-open and therefore C∗ is wk*-closed. Let
Σ+ = Σ ∩ C∗, then Σ+ is wk*-compact and Σ+ is convex. Let F ′ be the set of
all extreme points of Σ+. Then it follows from the Krein-Milman theorem that
Σ+ is the wk*-closed convex hull of F ′.

We need the following lemmas:
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Lemma 4.26 If f is a positive bounded linear functional on A and {eλ, λ ∈
Λ,≤} the net of all positive elements with norm 1 (as in the proof Lemma 4.25),
then

‖f‖ = lim f(eλ). (4.5)

Proof: By (1) Since ‖eλ‖ = 1 for all λ ∈ Λ, we have f(eλ) ≤ ‖f‖. Now let
ε > 0. Let a ∈ A with ‖a‖ = 1 such that ‖f‖ − ε < f(a). By (1), there exists
λ0 ∈ Λ such that λ0 ≥ a. Since f is positive, we have that

‖f‖ − ε < f(a) ≤ f(eλ), ∀λ ∈ Λ, λ ≥ λ0.

Since ε was arbitrary, (4.5) is proved. �

Lemma 4.27 Let f ∈ F ′, then f(ab) = f(a)f(b) for all a, b ∈ A.

Proof: Let f ∈ F ′. If f = 0, clearly f is multiplicative. Suppose f 6= 0. We
have 0, ‖f‖−1f ∈ Σ+ and f = ‖f‖(‖f‖−1f) + (1 − ‖f‖)(0), so since f is an
extreme point of Σ+ it follows that ‖f‖ = 1. Next we show that for all a ∈ C,

f(ab) = f(a)f(b), ∀b ∈ A. (4.6)

For a = 0 the equation is trivial. Suppose a 6= 0. We may assume that ‖a‖ = 1.
Let f1(b) = (f(b) + f(ab))(1 + f(a))−1. Then f1 ≥ 0. Also it follows from
equations (4.5) and (4.2) and the fact that f is continuous that

‖f1‖ = lim f1(eλ) = lim(f(eλ)+f(aeλ))(1+f(a))−1 = (‖f‖+f(a))(1+f(a))−1 = 1.

Therefore f1 ∈ Σ+. Let f2 = 2f − f1, so

f2(b) = (f(b) + 2f(a)f(b)− f(ab))(1 + f(a))−1, ∀b ∈ A. (4.7)

If b ≥ 0, it follows from (2) that ab ≤ b and because f is positive we have
f(ab) ≤ f(b). So from (4.7) we see that f2(b) ≥ 0, i.e. f2 is positive. Again, it
follows from equations (4.5) and (4.2) and the fact that f is continuous that

‖f2‖ = lim f2(eλ) = lim(f(eλ) + 2f(a)f(eλ)− f(aeλ))(1 + f(a))−1

= (‖f‖+ 2f(a)‖f‖ − f(a))(1 + f(a))−1 = 1.

Therefore f2 ∈ Σ+. Because f = 1
2 (f1 + f2) and since f is an extreme point of

S+
A , we have that f = f1 = f2. So f(b) = (f(b)+f(ab))(1+f(a))−1, from which

4.6 follows. Now let a ∈ A. By (1), we can write a = a1 − a2 with a1, a2 ≥ 0
and it follows from 4.6 that

f(aib) = f(ai)f(b) (i = 1, 2).

Hence,

f(ab) = f(a1b)− f(a2b) = f(a1)f(b)− f(a2)f(b)
= (f(a1)− f(a2))f(b) = f(a)f(b), ∀b ∈ A.

�
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Lemma 4.28 Let (A,C) be an OBA satisfying conditions (1)-(3), then C con-
tains all squares.

Proof: By the preceding lemma, we have f(a2) = f(a)2 ≥ 0 for all f ∈ F ′.
We already saw with the Krein-Milman Theorem, that Σ+ is the wk*-closed
convex hull of F ′. Therefore f(a2) ≥ 0 for all f in Σ+ and therefore for all
f ∈ C∗. Since C and C∗ are compatible, it follows that a2 ≥ 0. �

Now we can apply Theorem 4.21 in order to prove Theorem 4.23 and we see
that A is isometrically and algebraically order-isomorphic to C0(X) for some
locally compact Hausdorff space X.

�

If the a real OBA has a unit element, we may assume with norm 1, we have
the following corollary:

Corollary 4.29 Let (A,C) be a real OBA with unit element of norm one and C
1-normal and closed. Then A is isometrically and algebraically order-isomorphic
to C(X) for some compact Hausdorff space X, if and only if it satisfies,

(1) For a, b ∈ A with ‖a‖ = 1 = ‖b‖, there exists a c ∈ A with ‖c‖ = 1 such
that 0, a, b ≤ c.

(2) If a, b ≥ 0 and ‖a‖ = 1 = ‖b‖, then ab ≤ a, b.

Proof: By definition e is positive, so A satisfies condition (3) from Theorem
4.23, since we can take bn = cn = e. Now we can apply Theorem 4.23 and it
follows that A can be represented by C0(X) for some locally compact Hausdorff
space X. Because A is algebraically isomorphic to C0(X) and A has a algebraic
identity, C0(X) has a multiplicative identity, say 1. Urysohns Lemma tells us
that for every x0 ∈ X there exists a f ∈ C0(X) with f(x0) 6= 0. So because
the multiplication in C0(X) is defined pointwise it follows that the multiplica-
tive identity must be constant function 1. By the definition of C0(X) the set
{x ∈ X : |1(x)| > 1/2} is compact. Hence X is compact and we are done. �

Now we have three examples to show that conditions (1), (2), (3) are inde-
pendent.

Example 4.30 Let A be the set of all pairs (α, β) of real numbers with the
operations defined coordinatewise, ‖(α, β)‖ = max{|α|, |β|} and C = {(α, β) ∈
A : α ≥ 0, β = 0}. Then A is an OBA, with identity of norm 1 and C 1-
normal and closed, that satisfies conditions (2) and (3), but not condition (1).
Moreover, the identity map of A onto R2 is an isometric isomorphism, but not
an order-isomorphism.

Proof: Direct calculation shows that (A,C) is an OBA, the identity has norm
1 and C is 1-normal. It is not hard to verify that A satisfies (2), and A does not
satisfy (1). Since (1, 0) is an algebraic identity for positive elements, A satisfies
(3). The last statement is easy to verify. �

Example 4.31 Let A be the set of all pairs (α, β) of real numbers with the
operations defined coordinatewise, ‖(α, β)‖ = 1

2 max{|α|, |β|} and C = {(α, β) ∈
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A : α ≥ 0, β ≥ 0}. Then (A,C) is an OBA with C 1-normal and closed that
satisfies (1) and (3), but not (2). Moreover, the identity map of A onto R2 is
an order-isomorphism, but not an isometric isomorphism.

Proof: Direct calculation shows that (A,C) is an OBA, the identity has
norm 1 and C is 1-normal. Since we can take c = (2, 2), A satisfies (1).
If we take bn = (1, 1) = cn we see that A satisfies condition (3). Because
(2, 2) · (2, 2) � (2, 2), (2) is not satisfied. The last statement is easy to verify. �

Example 4.32 Let X be a compact Hausdorff space and A the ordered Banach
space C(X) ordered by the cone C := C+(X). We define the product of any
two functions to be zero. Then A is an OBA with C 1-normal and closed, that
satisfies (1) and (2), but not (3).

Proof: Straightforward. �
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Chapter 5

The boundary spectrum in
OBA’s

Following [22] we define the boundary spectrum and investigate some properties
of this set and its relation with the spectral radius.

Let A be a Banach algebra with unit 1 and let S (or SA if necessary) be the
set of all non-invertible elements of A. Then S is closed. Now we define the
boundary spectrum.

Definition 5.1 If A is a Banach algebra with identity and a ∈ A then the
boundary spectrum of a, denoted by S∂(a), is defined by

S∂(a) = {λ ∈ C : λ− a ∈ ∂S}.

We also define related to radii r1 and r2,

r1(a) = sup{|λ| : λ ∈ ∂σ(a)},

r2(a) = sup{|λ| : λ ∈ S∂(a)}.

Proposition 5.2 Let A be a Banach algebra and a ∈ A. Then ∂σ(a) ⊆
S∂(a) ⊆ σ(a); and therefore r1(a) = r2(a) = r(a) and if α /∈ σ(a), then
d(α, ∂σ(a)) = d(α, S∂(a)) = d(α, σ(a)).

Proof: Let λ ∈ ∂σ(a) and ε > 0. Then there are λ1 ∈ B(λ, ε) ∩ σ(a) and
λ2 ∈ B(λ, ε) ∩ (C \ σ(a)). Let b1 = λ1 − a and b2 = λ2 − a, then b1 ∈ S, b2 /∈ S
and b1, b2 ∈ B(λ−a, ε). Therefore λ−a ∈ ∂S, so by definition λ ∈ S∂(a). Thus
∂σ(a) ⊆ S∂(a), and since S is closed, ∂S ⊆ S, so that S∂(a) ⊆ σ(a). The rest
is then clear. �

Because σ(a) is non-empty, it follows from Proposition 5.2 that S∂(a) is
non-empty. Since ∂S is closed, S∂(a) is closed, so it is a closed subset of the
compact set σ(a) and therefore it is compact as well.

Proposition 5.3 Let a be an invertible element of a Banach algebra A. Then
S∂(a−1) = (S∂(a))−1.

Before we can give the proof of this proposition we need the following lemma:
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Lemma 5.4 Let A be a Banach algebra and a ∈ ∂S and d an invertible element.
Then ad ∈ ∂S and da ∈ ∂S.

Proof: Let a ∈ ∂S and d an invertible element, then for all ε > 0 there exists
a c1 ∈ S ∩ B(a, (ε/‖d‖)) and a c2 ∈ (A \ S) ∩ B(a, (ε/‖d‖)). It follows that
c1d ∈ S ∩ B(ad, ε) and c2d ∈ (A \ S) ∩ B(ad, ε). Hence ad ∈ ∂S and similarly
da ∈ ∂S. �

Now we give the proof of Proposition 5.3.
Proof: Let a ∈ A be invertible. If λ ∈ S∂(a−1), then λ − a−1 = λ(a −

(1/λ))a−1 ∈ ∂S. It follows from Lemma 5.4 that a − (1/λ) ∈ ∂S, so that
1/λ ∈ S∂(a) and thus S∂(a−1) ⊆ (S∂(a))−1. Because a−1 is invertible as well,
we have S∂(a) ⊆ (S∂(a−1))−1 and therefore (S∂(a))−1 ⊆ S∂(a−1). �

Using the boundary spectrum we get a stronger version of Theorem 2.7.

Theorem 5.5 Let (A,C) be an OBA with C closed and such that the spectral
radius in (A,C) is monotone. If a ∈ C, then r(a) ∈ S∂(a).

Proof: If a ∈ C, then by Theorem 2.8 r(a) ∈ σ(a). Hence r(a) ∈ ∂σ(a) and
so r(a) ∈ S∂(a). �

Theorem 5.6 Let (A,C) be an OBA with C closed and inverse-closed, and
such that the spectral radius is monotone. If a is an invertible element of C,
then δ(a) ∈ S∂(a).

Proof: If a ∈ C and a is invertible, then a−1 ∈ C, since C is inverse-closed.
From Theorem 5.5 we have r(a−1) ∈ S∂(a−1). Therefore r(a−1) = 1/λ0 for
some λ0 ∈ S∂(a), by Proposition 5.3, and from Lemma 1.23 we know that
r(a−1) = 1/(δ(a)), so δ(a) = λ0. �

In the following result B is a subalgebra of A but not necessarily closed in
A.

Theorem 5.7 Let (A,C) be an OBA and B a Banach algebra with 1 ∈ B ⊆ A.

1. Suppose that the spectral radius in (A,C) is monotone. If 0 ≤ a ≤ b
with a, b ∈ B and ∂σ(a,B) = ∂σ(a,A) or S∂(a,B) = S∂(a,A), then
r(a,B) ≤ r(b, B).

2. Suppose that the spectral radius in (B,B ∩ C) is monotone. If 0 ≤ a ≤
b with a, b ∈ B and ∂σ(b, B) = ∂σ(b, A) or S∂(b, B) = S∂(b, A), then
r(a,A) ≤ r(b, A).

Proof:

1. Since B is a subalgebra of A we have σ(b, A) ⊂ σ(b, B) and therefore
r(b, A) ≤ r(b, B). From the monotonicity of the spectral radius in (A,C)
it follows that r(a,A) ≤ r(b, A). By Proposition 5.2, the assumption that
either ∂σ(a,B) = ∂σ(a,A) or S∂(a,B) = S∂(a,A) give us that r(a,B) =
r(a,A). So r(a,B) = r(a,A) ≤ r(b, A) ≤ r(b, B).

2. The proof is similar to the proof in (1).

�
We note that Theorem 5.7.2 is a stronger version of Proposition 2.5.
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Chapter 6

Spectral continuity in
OBA’s

In this chapter we will turn our attention to the continuity of the spectrum
and the spectral radius. To define spectral continuity we first introduce the
Hausdorff distance. Then we state results about the continuity of the spectrum
that are valid for Banach algebras, following [5]. After that we focus on OBA’s
and using [19], [21] and [23] state several results about the continuity of spectrum
and the spectral radius in OBA’s.

6.1 Continuity of the spectrum.

Let A be a Banach algebra. An important question about the spectrum function
x 7→ σ(x), is under which conditions it is continuous. The spectrum function
maps to a compact set in C, so in order to define continuity for this map, we
introduce a distance on the set of compact subsets of C, called the Hausdorff
distance . This distance is defined by

∆(K1,K2) = max( sup
z∈K2

d(z,K1), sup
z∈K1

d(z,K2)),

for K1 and K2 compact subsets of C. Let r > 0 and K a compact subset of
C, the we denote by K + r the set {z : d(z,K) ≤ r}. From this we see that
K1 ⊂ K2 + ∆(K1,K2) and K2 ⊂ K1 + ∆(K1,K2).

If B is a cone, then λB ⊂ B for all λ > 0. Also λσ(x) = σ(λx) and
∆(λK1, λK2) = λ∆(K1,K2). From these properties it follows that uniform
continuity of the spectrum on the cone B is equivalent with the condition that
there exists a C > 0 such that ∆(σ(x), σ(y)) ≤ C‖x− y‖, for x, y ∈ B. We
show the non-trivial implication. If the spectrum is uniform continuous on
B, then there exists a δ > 0 such that for all x, y ∈ B we have ‖x− y‖ <
δ ⇒ ∆(σ(x), σ(y)) < 1. Take C = 2/δ. Let x, y ∈ B with x 6= y, then
there is a λ such that λ‖x− y‖ = ‖λx− λy‖ = δ/2. So ∆(σ(λx), σ(λy)) =
λ∆(σ(x), σ(y)) < 1 = Cλ‖x− y‖. Thus ∆(σ(x), σ(y)) < C‖x− y‖.

We will investigate conditions under which the spectrum is (uniformly) con-
tinuous. An important spectral property is the following.

51



Theorem 6.1 Let A be a Banach algebra. Suppose that x, y ∈ A satisfy
xy = yx. Then r(x+ y) ≤ r(x) + r(y) and r(xy) ≤ r(x)r(y).

Proof: We have (xy)n = xnyn, so

r(xy) = lim
n→∞

‖(xy)n‖1/n ≤ lim
n→∞

‖xn‖1/n lim
n→∞

‖yn‖ = r(x)r(y).

Let α > r(x), β > r(y) and a = x/α, b = y/β. Then r(a) < 1 and r(b) < 1 and
therefore there exists a integer N such that for all n ≥ N , max(‖a2n‖, ‖b2n‖) <
1. Define

γn = max
0≤k≤2n

‖ak‖ · ‖b2
n−k‖,

then we have

‖(x+ y)2n

‖1/2
n

= ‖
2n∑
k=0

(
2n

k

)
xky2n−k‖1/2

n

≤

(
2n∑
k=0

(
2n

k

)
αkβ2n−k‖ak‖ · ‖b2

n−k‖

)1/2n

≤ (α+ β)γ1/2n

n .

Because

γn+1 = max
0≤k≤2n+1

‖ak‖ · ‖b2
n+1−k‖

= max
(

max
0≤k≤2n

‖ak‖ · ‖b2
n+1−k‖, max

2n≤k≤2n+1
‖ak‖ · ‖b2

n+1−k‖
)

≤ γn max(‖a2n

‖, ‖b2
n

‖).

we see that the series γn is decreasing for n ≥ N . So we have r(x + y) =
limn→∞ ‖(x+ y)2n‖1/2n ≤ (α+β) lim supn→∞ γ

1/2n

n ≤ (α+β) lim supn→∞ γ
1/2n

N =
α+ β, for arbitrary α > r(x), β > r(y). Hence r(x+ y) ≤ r(x) + r(y). �

If A is a commutative Banach algebra, the spectrum is uniformly continuous.

Theorem 6.2 Let A be a Banach algebra. Suppose that x, y ∈ A commute.
Then σ(y) ⊂ σ(x) + r(x − y) and therefore we have ∆(σ(x), σ(y)) ≤ r(x −
y) ≤ ‖x− y‖. Consequently, if A is commutative then the spectrum function is
uniformly continuous on A.

Proof: Suppose the inclusion is not true. Then there exists an α ∈ σ(y) such
that d(α, σ(x)) > r(x−y). Lemma 1.23 now tells us that r((α−x)−1)r(x−y) <
1. So, by Theorem 6.1, we have r((α−x)−1(x−y)) < 1, hence 1+(α−x)−1(x−y)
is invertible. Therefore α− y = (α− x)(1 + (α− x)−1(x− y)) is also invertible,
which is a contradiction. �

If A is a noncommutative algebra, the spectrum function need not to be
continuous. However, the spectrum is always upper semicontinuous.

Theorem 6.3 Let A be a Banach algebra. Then the spectrum function σ is
upper semicontinuous on A. That is, if x ∈ A, then for every open set U
containing σ(x) there exists δ > 0 such that ‖x− y‖ < δ implies σ(y) ⊂ U .
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Proof: Suppose there exist sequences (yn) and (αn) such that x = limn→∞ yn,
αn ∈ σ(yn) ∩ (C \ U). From Theorem 1.5 we have |αn| ≤ ‖yn‖, so (αn) is a
bounded sequence in C and therefore has a convergent subsequence. So without
loss of generality we may assume that (αn) converges, say to α, and we have
(αn− yn)→ (α−x) as n→∞. The set C \U is closed, so α /∈ U , thus α−x is
invertible. The set of invertible elements is open by Theorem 1.3, so for n large
enough αn − yn will be invertible, which is a contradiction. �

From this theorem we can deduce that the spectral radius function is upper
semicontinuous as well.

Corollary 6.4 Let A be a Banach algebra. Then the spectral radius function
r is upper semicontinuous on A.

Proof: Let x ∈ A and ε > 0. Let U :=
⋃
α∈σ(x)Bε(α). Then U is an open

set containing σ(x), so from Theorem 6.3 it follows that there exists a δ > 0
such that ‖x− y‖ < δ implies σ(y) ⊂ U . Therefore ‖x− y‖ < δ implies that
supz∈σ(y) d(z, σ(x)) < ε, thus r(y) < r(x) + ε. �

Now two important results by J.D. Newburgh.

Theorem 6.5 (J.D. Newburgh) Let A be a Banach algebra and x ∈ A.
Suppose that U, V are two disjoint open sets such that σ(x) ⊂ U ∪ V and
σ(x)∩U 6= 0. Then there exists r > 0 such that ‖x− y‖ < r implies σ(y)∩U 6= 0.

Proof: Since the spectrum is upper semicontinuous, there exists δ > 0 such
that ‖x− y‖ < δ implies σ(y) ⊂ U ∪V . Therefore, if the theorem is false, there
exists a sequence (yn) converging to x such that σ(y) ⊂ V for n large enough.
Let f be the function on U ∪ V defined by 1 on U and 0 on V . Then f is
holomorphic on U ∪ V and from the definition of the functional calculus we see
that limn→∞ f(yn) = f(x) and f(yn) = 0 for n large enough. So using the
spectral mapping theorem we have 0 = σ(0) = σ(f(x)) = f(σ(x)). But f(σ(x))
contains 1, which gives a contradiction. �

Definition 6.6 A topological space X is totally disconnected if for every x ∈ X
and every open neighbourhood U of x there is a V ⊂ X that is both open and
closed and such that x ∈ V ⊆ U .

Corollary 6.7 (J.D. Newburgh) Suppose that the spectrum of a is totally
disconnected. Then x 7→ σ(x) is continuous at a.

Proof: Let ε > 0. Since σ(a) is totally disconnected it is included in the
union U , say

⋃k
i=1 Uk, of a finite number of disjoint open sets Ui, intersecting

σ(a) and with diameters smaller then ε. By Theorem 6.2 there exists an r0 > 0
such that ‖x− a‖ < r0 implies that σ(x) ⊂ U . Since for all 1 ≤ i ≤ k we have
σ(a) ∩ Ui 6= ∅, we can apply Theorem 6.5 to Ui ∪ (U \ {Ui}). It follows that
there exists an ri > 0 such that ‖x− a‖ < ri implies σ(x) ∩ Ui 6= ∅. So for
r = min(r1, . . . , rk) we have that ‖x− a‖ < r implies that dist(z, σ(x)) < ε for
z ∈ σ(a). So ‖x− a‖ < min(r0, r) implies ∆(σ(a), σ(x)) < ε. �
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This corollary implies in particular that the spectral function is continuous
at all elements having finite or countable spectrum.

We state one more theorem about general spectral continuity. It is a result
of K. Kuratowski and tells us that even if the spectrum is discontinuous, the set
of elements where it is continuous is dense in the algebra.

Theorem 6.8 Let A be a Banach algebra. Then the set of points of continuity
of x 7→ σ(x) is a dense Gδ-subset of A.

Proof: This is Theorem 3.4.3. in [5]. �

6.2 Continuity of the spectral radius

Now we turn our attention to continuity of the spectral radius in ordered Banach
algebras.

From Theorem 2.8 we get the following lemma.

Lemma 6.9 Let (A,C) be an OBA with C closed and normal. If x ∈ C and
α ∈ R+, then r(x+ α) = r(x) + α.

Now we define the following set.

Definition 6.10 Let (A,C) be an OBA, define for each x ∈ C the set A(x) by,

A(x) = {y ∈ A : x ≤ y, (xy ≤ yx or yx ≤ xy),
and d(r(y), σ(x)) ≥ d(α, σ(x)) for all α ∈ σ(y)}

From this definition we easily see x ∈ A(x), A(x) ⊂ C and A(0) = C.
Lemma 6.9 tells us that if C is closed and normal, then A(α) = C + α for all
α ∈ R+.

In Theorem 6.2 we saw that for all y in the commutant {x}′ of x we have
σ(y) ⊂ σ(x) + r(x− y). We are going to prove a theorem which shows that this
inclusion will hold for positive elements x of an OBA, if y is an element of A(x)
rather than of the commutant of x.

First we need the following lemma, which was proved in the proof of Theorem
6.2.

Lemma 6.11 Let A be a Banach algebra, x, y ∈ A and α ∈ C. If α − x is
invertible and r((α− x)−1(x− y)) < 1, then α− y is invertible.

Theorem 6.12 Let (A,C) be an OBA with C closed and normal, and let
x ∈ C. Then σ(y) ⊂ σ(x) + r(x− y) for all y ∈ A(x).

Proof: Let y ∈ A(x). Then 0 ≤ x ≤ y, so that r(x) ≤ r(y) by Theorem
2.2. If r(x) = r(y), then d(r(y), σ(x)) = 0 by Theorem 2.8, and by the last
condition in the definition of A(x), we see from the assumption that y ∈ A(x)
that d(α, σ(x)) = 0 for all α ∈ σ(y). So d(α, σ(x)) ≤ r(x− y) for all α ∈ σ(y),
and we have σ(y) ⊂ σ(x) + r(x− y).

So suppose that r(x) < r(y) and suppose that there exists an α ∈ σ(y)
such that d(α, σ(x)) > r(x − y). By Theorem 2.8 we know that r(y) ∈ σ(y).
By the assumption that y ∈ A(x), we see from the definition of A(x) that
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d(r(y), σ(x)) ≥ d(α, σ(x)) > r(x−y) and therefore we may take such an α ∈ R+

with α > r(x) for example, α = r(y). Now it follows from Lemma 1.23 that

r((α− x)−1)r(x− y) < 1. (6.1)

It follows from Theorem 3.12 that (α − x)−1 ∈ C and because x ≤ y, we
have (y − x) ∈ C. If xy ≤ yx, then (y − x)(α − x) ≤ (α − x)(y − x), so
(α − x)−1(y − x) ≤ (y − x)(α − x)−1 by Lemma 1.48. From Proposition 2.4 it
now follows that r((α− x)−1(y − x)) ≤ r((α− x)−1)r(y − x). In the same way
we get this result in the case yx ≤ xy.

This result together with equation (6.1) gives us r((α − x)−1(y − x)) < 1
and from Lemma 6.11 it follows that α /∈ σ(y), which is a contradiction.
Thus d(α, σ(x)) ≤ r(x − y) for all α ∈ σ(y) and therefore we have σ(y) ⊂
σ(x) + r(x− y). �

From this theorem it does not follow that the restriction of the spectrum
function to the set A(x) is continuous in x, because we only prove that
supy∈σ(y) d(y, σ(x)) ≤ r(x − y). Because x and y are not interchangeable in
the theorem, supx∈σ(x) d(x, σ(y)) ≤ r(x− y) does not have to be true. We can
however use this theorem to prove that the spectral radius function restricted
to A(x) is continuous in x.

Theorem 6.13 Let (A,C) be an OBA with C closed and normal, and let
x ∈ C. Then the spectral radius restricted to A(x) is continuous in x. In fact,
if y ∈ A(x), then |r(y)− r(x)| ≤ r(y − x) ≤ ‖y − x‖.

Proof: Let y ∈ A(x). If λ ∈ σ(y), then d(λ, σ(x)) = |λ− µλ| for some
µλ ∈ σ(x) because σ(x) is closed. So it follows from Theorem 6.12 that |λ| ≤
|λ− µλ|+ |µλ| ≤ r(x− y) + r(x) for all λ ∈ σ(y). Thus r(y) ≤ r(x) + r(x− y)
for all y ∈ A(x).

Let y ∈ A(x), then x ≤ y and thus r(x) ≤ r(y) by Theorem 2.2. Therefore
|r(y)− r(x)| = r(y)− r(x) ≤ r(y − x) ≤ ‖y − x‖. �

We can formulate a stronger version of Theorem 6.13. In order to do this
we first need the following theorem.

Theorem 6.14 Let (A,C) be an OBA with C normal, and let x, y ∈ C be
such that either xy ≤ yx or yx ≤ xy. Then r(x + y) ≤ r(x) + r(y) and
r(xy) ≤ r(x)r(y).

Proof: Without loss of generality assume that yx ≤ xy. By Lemma 1.49,

0 ≤ (x+ y)2n

≤
2n∑
k=0

(
2n

k

)
x2n−kyk.

Since C is normal, there exists an α > 0 such that

‖(x+ y)2n

‖ ≤ α‖
2n∑
k=0

(
2n

k

)
x2n−kyk‖

and hence

‖(x+ y)2n

‖1/2
n

≤ α1/2n

‖
2n∑
k=0

(
2n

k

)
x2n−kyk‖1/2

n
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Now we can follow the proof of Theorem 6.1, which leads to the first statement.
The last statement was proved in Proposition 2.4. �

With the use of this theorem, we can prove the stronger version of Theorem
6.13.

Theorem 6.15 Let (A,C) be an OBA with C normal, and let x ∈ C. Then
the spectral radius is continuous at x, if it is restricted to the set

A′(x) := {y ∈ A : x ≤ y, and (xy ≤ yx or yx ≤ xy)}.

In fact, if y ∈ A′(x), then |r(y)− r(x)| ≤ ‖y − x‖.

Proof: Let y ∈ A′(x). Then (y−x) ∈ C because x ≤ y and the condition xy ≤
yx or yx ≤ xy implies respectively that x(y−x) ≤ (y−x)x or (y−x)x ≤ x(y−x).
So it follows from Theorem 6.14 that r(y) = r(x + (y − x)) ≤ r(x) + r(y − x)
and the result follows as in 6.13. �

With C(0, r(x)) we will denote the circle centered at 0 with radius r(x).

Theorem 6.16 Let A be a Banach algebra and let x ∈ A be such that σ(x) ⊂
C(0, r(x)). Then the spectral radius is continuous at x.

Proof: Let ε > 0, and Gε = {λ ∈ C : r(x) − ε < |λ| < r(x) + ε}. Then
σ(x) ⊂ Gε. If xn → x, then by the upper semicontinuity of the spectrum there
exists an N ∈ N such that σ(xn) ⊂ Gε for all n ≥ N . Since r(xn) = |λn| for
some λn ∈ σ(xn), it follows that r(x)−ε < r(xn) < r(x)+ε, so |r(x)− r(xn)| < ε
for all n ≥ N . �

Now we define for each x ∈ C the set

B(x) = {y ∈ A : x ≤ y, (xy ≤ yx or yx ≤ xy),
and (α− x)−1 ∈ C for all α ∈ σ(y) \ σ(x)}.

Then x ∈ B(x), B(x) ⊂ C and B(0) = {y ∈ C : α−1 ∈ C for all α ∈ σ(y)\{0}},
thus if C is proper B(0) = {y ∈ C : σ(y) ⊂ R≥0}. We have the following
theorem.

Theorem 6.17 Let (A,C) be an OBA with C normal, and let x ∈ C. Then
σ(y) ⊂ σ(x) + r(x− y) for all y ∈ B(x).

Proof: Let y ∈ B(x). Suppose there exists an α ∈ σ(y) such that d(α, σ(x)) >
r(x − y). From Lemma 1.23 it follows that r((α − x)−1) = 1/d(α, σ(x)) <
1/r(x− y). So we have

r((α− x)−1)r(x− y) < 1. (6.2)

If xy ≤ yx, then (y − x)(α − x) ≤ (α − x)(y − x), so that (α − x)−1(y − x) ≤
(y − x)(α − x)−1, by Lemma 1.48. Since y ∈ B(x) we have y − x ∈ C and
(α − x)−1 ∈ C, so it follows from Proposition 2.4 that r((α − x)−1(x − y)) ≤
r((α− x)−1)r(x− y). In the same way we get this result in the case yx ≤ xy.

This result together with equation (6.2) gives us r((α − x)−1(y − x)) < 1
and from Lemma 6.11 it follows that α /∈ σ(y), which is a contradiction.
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Thus d(α, σ(x)) ≤ r(x − y) for all α ∈ σ(y) and therefore we have σ(y) ⊂
σ(x) + r(x− y). �

From this theorem, as with A(x), we get the continuity of the spectral radius
in x, restricted to B(x).

Corollary 6.18 Let (A,C) be an OBA with C normal, and let x ∈ C. Then
the spectral radius restricted to B(x) is continuous in x. In fact, if y ∈ B(x),
then |r(y)− r(x)| ≤ r(y − x) ≤ ‖y − x‖.

The inequality |r(y)− r(x)| ≤ r(y − x) ≤ ‖y − x‖ holds for elements com-
muting with x. Now we give some examples to show that the sets B(x) and
A(x) contain elements which do not commute with x.

Example 6.19 Let A be the OBA as in Example 1.53, then there exists x ∈ C
such that that the sets A(x) and B(x) contain elements which do not commute
with x.

Proof: Let

x =
((

1 0
0 0

)
,

(
1 0
0 0

)
, · · ·

)
Then x ∈ C and σ(x) = {0, 1}. Let

y =
((

1 1
0 2

)
,

(
1 1
0 2

)
, · · ·

)
Then x ≤ y and σ(y) = {1, 2}. Since

xy =
((

1 1
0 0

)
,

(
1 1
0 0

)
, · · ·

)
, yx =

((
1 0
0 0

)
,

(
1 0
0 0

)
, · · ·

)
,

we have yx ≤ xy. The only element of σ(y) \ σ(x) is 2, and

(2− x)−1 =
((

1 0
0 1

2

)
,

(
1 0
0 1

2

)
, · · ·

)
∈ C

So y ∈ B(x). Since d(r(y), σ(x)) = 1 and {δ(α, σ(x)) : α ∈ σ(y)} = {0, 1}, it
follows that y ∈ A(x). �

Now we look at the boundary spectrum end define an analogue F (x) of the
set A(x).

Definition 6.20 Let (A,C) be an OBA. Define for each x ∈ C the set F (x)
by,

F (x) = {y ∈ A : x ≤ y, xy ≤ yx or yx ≤ xy,
and d(r(y), S∂(x)) ≥ d(α, S∂(x)) for all α ∈ S∂(y)}

From this definition we see x ∈ F (x), F (x) ⊂ C and F (0) = C.
Analogous to Theorem 6.12 we have the following theorem.

Theorem 6.21 Let (A,C) be an OBA with C closed and normal, and let
x ∈ C. Then S∂(y) ⊂ S∂(x) + r(x− y) for all y ∈ F (x).
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Proof: The proof follows the same line as the proof of Theorem 6.12. Let
y ∈ F (x). Then 0 ≤ x ≤ y, so r(x) ≤ r(y) by Theorem 2.2. If r(x) = r(y), then
d(r(y), S∂(x)) = 0 by Theorem 5.5. From the last condition in the definition of
F (x), we see from the assumption that y ∈ F (x) that d(α, S∂(x)) = 0 for all
y ∈ S∂(y). Hence S∂(y) ⊂ S∂(x) ⊂ S∂(x) + r(x− y).

So suppose that r(x) < r(y) and suppose that there exists an α ∈ S∂(y)
such that d(α, S∂(x)) > r(x− y). By Theorem 5.5 we know that r(y) ∈ S∂(y).
By the assumption that y ∈ F (x), we see from the definition of F (x) that
d(r(y), S∂(x)) ≥ d(α, S∂(x)) > r(x − y) and therefore we may take such an
α ∈ R+ with α > r(x) for example, α = r(y). Since α /∈ σ(x), it follows from
Proposition 5.2 that d(α, S∂(x)) = d(α, σ(x)), so that d(α, S∂(x)) = 1/(r((α −
x)−1)) by Lemma 1.23. We thus have

r((α− x)−1)r(x− y) < 1. (6.3)

for some α > r(x).
It follows from Theorem 3.12 that (α − x)−1 ∈ C and because x ≤ y, we

have (y − x) ∈ C. If xy ≤ yx, then (x − y)(α − x) ≤ (α − x)(y − x), so
(α−x)−1(y−x) ≤ (y−x)(α−x)−1 by Lemma 1.48. From Theorem 2.4 it now
follows that r((α − x)−1(y − x)) ≤ r((α − x)−1)r(y − x). In the same way we
get this result in the case yx ≤ xy.

This result together with equation (6.3) gives us r((α − x)−1(y − x)) < 1
and from Lemma 6.11 it follows that α /∈ σ(y). Hence α /∈ S∂(y), which is a
contradiction. Thus d(α, S∂(x)) ≤ r(x − y) for all α ∈ S∂(y) and therefore we
have S∂(y) ⊂ S∂(x) + r(x− y). �

From this theorem we can, as in Theorem 6.13 deduce that the spectral
radius restricted to F (x) is continuous in x.

Corollary 6.22 Let (A,C) be an OBA with C closed and normal, and let
x ∈ C. Then the spectral radius restricted to F (x) is continuous in x. In fact,
if y ∈ F (x), then |r(y)− r(x)| ≤ r(y − x) ≤ ‖y − x‖.

We will now set out to prove that, if a ∈ C and S∂(a) ∩ R+ = {r(a)} the
spectral radius restricted to C is continuous in a. We need some preparation.

Definition 6.23 Let A be a Banach algebra with identity and a ∈ A then we
define the set T (a) by,

T (a) = {λ ∈ C : |λ| − a ∈ ∂S}

and if T (a) 6= ∅,
γ(a) = sup{|λ| : λ ∈ T (a)}

Now there are some easy facts. We have λ ∈ T (a) if and only if |λ| ∈ T (a).
Furthermore,

T (a) = {λ ∈ C : |λ| ∈ S∂(a)} = {λ ∈ C : |λ| ∈ S∂(a) ∩ R+}

Hence T (a) ⊂ B(0, r(a)) and T (a) is closed, thus T (a) is compact. If λ0 ∈ R+,
then S∂(a)∩R+ = {λ0} if and only if T (a) = C(0, λ0). Also γ(a) ∈ T (a) for all
a ∈ A. We have the following lemma:
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Lemma 6.24 Let (A,C) be an OBA with C closed and normal. If a ∈ C, then
γ(a) = r(a) and r(a) ∈ T (a).

Proof: Since T (a) ⊂ B(0, r(a)) for all a ∈ A we have (if T (a) 6= ∅) γ(a) ≤ r(a).
If a ∈ C, then by Theorem 2.2 and Theorem 5.5, r(a) ∈ S∂(a). Since r(a) ∈ R+,
it follows that r(a) ∈ T (a), so that T (a) 6= ∅ and r(a) ≤ γ(a). �

We see from this lemma that for a ∈ C the set T (a) is not empty. However
for a /∈ C it can occur that T (a) is empty, and that the properties γ(a) = r(a)
and r(a) ∈ T (a) do not hold. This is illustrated with the following example:

Example 6.25 Let A be the OBA of Example 1.51. Then there exist

1. an a1 /∈ C such that T (a1) = ∅, and

2. an a2 /∈ C such that T (a2) 6= ∅, but r(a2) /∈ T (a2) and γ(a2) 6= r(a2).

Proof: We have ∂S = S and hence, if
(
λ1 λ2

0 λ4

)
∈ A, then S∂(a) =

{λ1, λ4} = σ(a) and T (a) = {λ ∈ C : |λ| = λ1 or |λ| = λ4}.

1. Let a1 =
(
−1 1
0 −1

)
. Then a1 /∈ C and T (a1) = ∅.

2. Let a1 =
(
−3 1
0 1

)
. Then a2 /∈ C, r(a2) = 3 and T (a2) = {λ ∈ C :

|λ| = 1}, so that T (a2) 6= ∅ and γ(a2) = 1. It follows that r(a2) /∈ T (a2)
and γ(a2) 6= r(a2).

�

If A is any complex Banach algebra with unit 1, then T (−1) = {λ ∈ C :
|λ| ∈ {−1}} = ∅. So if (A,C) is an OBA with C closed and normal, then there
exists an a /∈ C such that T (a) = ∅.

We now prove that the map a 7→ T (a) is upper semicontinuous.

Theorem 6.26 Let A be a Banach algebra. The function a 7→ T (a) from A
into K(C), the compact sets of C, is upper semicontinuous on A.

Proof: Suppose the map is not upper semicontinuous, then there exists an
a ∈ A, an open set U containing T (a) and for each n ∈ N an an ∈ A such that
an → a and n→∞, but T (an) /∈ U , say λn ∈ T (an)∩C \U . Since λn ∈ T (an),
we have |λn| ≤ r(an) ≤ ‖an‖ and because an is a convergent sequence it is
bounded. Hence (λn) is bounded and it has a convergent subsequence, say
λnk
→ λ as k →∞.

Since U is open and λn /∈ U , it follows that λ /∈ U . So λ /∈ T (a) and thus
|λ| − a /∈ ∂S. It follows that for some ε > 0,

either B(|λ| − a, ε) ⊆ S or B(|λ| − a, ε) ⊆ Sc. (6.4)

Since λnk
→ λ and ank

→ a as k → ∞, there is an N ∈ N such that |λN | −
aN ∈ B(|λ| − a, ε). Let ρ = ε − ‖(|λN | − aN )− (|λ| − a)‖. Then ρ > 0 and
B(|λN | − aN , ρ) ⊆ B(|λ| − a, ε).

59



Since λN ∈ T (aN ), we have that |λN | − aN ∈ ∂S and therefore B(|λN | −
aN , ρ) contains a point of S as well as a point of Sc. But this means that
B(|λ| − a, ε) contains a point of both S and Sc, which is a contradiction with
equation (6.4). So the map is upper semicontinuous. �

Now we can use the upper semicontinuity of the map a 7→ T (a) to prove the
following theorem.

Theorem 6.27 Let (A,C) be an OBA with C closed and normal and let a ∈ C
be such that S∂(a) ∩ R+ = {r(a)}. Then the spectral radius restricted to C is
continuous in a.

Proof: Let (an) be a sequence in C such that an → a as n→∞ and let (λn)
be a sequence in T (a) such that d(r(an), T (a)) = |r(an)− λn|. Now let ε > 0
and U = {λ ∈ C : d(λ, T (a)) < ε}. Then U is open and T (a) ⊆ U . The map
x 7→ T (x) is upper semicontinuous on A by Theorem 6.26 and an → a, there-
fore there exists an N ∈ N such that for all n > N we have T (an) ⊆ U .
Lemma 6.24 tells us that r(an) ∈ T (an) ⊆ U , so |r(an)− λn| < ε for all
n > N , so |r(an)− |λn|| < ε for all n > N . Since λn ∈ T (a), it follows
that |λn| ∈ S∂(a) ∩ R+, so that by the assumption that S∂(a) ∩ R+ = {r(a)}
we have |λn| = r(a), for all n ∈ N. Therefore |r(an)− r(a)| < ε for all n > N . �

6.3 Convergence properties

In this section we use general OBA theory and functional analysis to come to
several convergence results for specific points in the spectrum.

Theorem 6.28 Let A be a Banach algebra. Suppose that (an) is a sequence in
A such that an → a ∈ A. If psp(a) contains at least one point that is isolated
in σ(a) then the following properties hold:

1. r(an)→ r(a) as n→∞.

2. If (αn) is a sequence such that αn ∈ psp(a) for all n ∈ N and αn → α then
α ∈ psp(a).

Proof:
(1) Let µ ∈ psp(a) be isolated in σ. Let B(µ, r) be an open ball such that

B(µ, r)∩σ(a) = µ, and let V be an open set such that B(µ, r) and V are disjoint
and σ(a) \ µ ⊂ V . Let 0 ≤ ε ≤ r. Then σ(a) ⊂ B(0, r(a) + ε). From the upper
semicontinuity of the spectral radius (Corollary 6.4) and the fact that an → a, it
follows that there exists an Nε,1 ∈ N such that r(an) ≤ r(a)+ε, for all n ≥ Nε,1.
We have σ(a) ⊂ B(µ, ε)∪V and σ(a)∩B(µ, ε) 6= ∅, so according to Newburgh’s
theorem (Theorem 6.5) there exists an Nε,2 ∈ N such that σ(an) ∩B(µ, ε) 6= ∅,
say αn ∈ σ(an) and |αn − µ1| < ε, for all n ≥ Nε,2. Then r(an) ≥ |αn| > r(a)−ε
for all n ≥ Nε,2. Let N := max{Nε,1, Nε,2}. Then it follows that, if n ≥ N ,
then r(a)− ε < r(an) < r(a) + ε.

(2) This follows from Theorem 1.7 and (1).
�
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Theorem 6.29 Let (A,C) be an OBA with C closed and suppose the spectral
radius in (A,C) is monotone. Let I be a closed inessential ideal of A such that
the spectral radius in (A/I, πC) is monotone. Suppose that a ∈ A, an ∈ C for
all n ∈ N and an → a as n→∞. If r(a) is a Riesz point of σ(a), then there is
a natural number N such that, for all n ≥ N , r(an) is a Riesz point of σ(an).

Proof: By the upper semicontinuity of the spectral radius lim sup r(an) ≤
r(a), and by Lemma 2.12.1 we have r(a) < r(a). Let λ ∈ R be such that
r(a) < λ < r(a), then there exists an N1 ∈ N such that, for n ≥ N1, we have
r(an) < λ. Theorem 6.28 tells us that there exists an N2 ∈ N such that, for
n ≥ N2, we have r(an) ≥ λ. So if n ≥ max{N1, N2}, then r(an) < r(an). By
Lemma 2.12, r(an) is a Riesz point of σ(an). �

The above theorem can be extended to any sequence (αn) where each αn is an
element of the boundary of the unbounded connected component of the resolvent
set of an, and (αn) converges to an element α in the peripheral spectrum of a.
This result can be proved without assuming that the spectral radius in (A,C)
is monotone:

Theorem 6.30 Let (A,C) be an OBA with C closed and I a closed inessential
ideal of A such that the spectral radius in (A/I, πC) is monotone. Suppose that
a ∈ C, an ∈ A for all n ∈ N, that an → a as n → ∞, and that r(a) is a Riesz
point of σ(a). If α ∈ psp(a), αn ∈ σ(an) for all n ∈ N and αn → α as n → ∞,
then there is a natural number N such that, for all n ≥ N , αn is a Riesz point
of σ(an).

Proof: Suppose that there exists a subsequence (αnk
) of (αn) such that αnk

is an element of the connected hull of σ(ank
), so αnk

∈ σ(ank
)∧ for all k ∈ N.

Then |αnk
| ≤ r(ank

) for all k ∈ N and since αn → α ∈ psp(a) we have
|αnk
| → r(a). Therefore because of the upper semicontinuity of the spectral

radius, r(a) ≤ lim sup r(ank
) ≤ r(a) and we get r(a) = r(a). By Lemma 2.12.1

this is in contradiction with the fact that r(a) is a Riesz point of σ(a), thus there
exists an N ∈ N such that αn /∈ σ(an)∧ for all n ≥ N . Because αn ∈ ∂∞σ(an)
we also have αn ∈ σ(an). Now it follows from Lemma 2.13 that for n ≥ N , αn
is a Riesz point of σ(an). �

Now we discuss some general Banach algebra theory as preparation for OBA
convergence theorems for coefficients in Laurent series of the resolvent.

The following theorem is Theorem 5.1 in [19]. This theorem appears to be
not entirely correct, which we will demonstrate with an example. We do state
the theorem and the proof that was given below, and point out what mistake
seems to have been made.

Theorem 6.31 Let A be a Banach algebra and (an) a sequence in A such that
an → a ∈ A. Suppose that (αn) is a sequence in C such that, for each n ∈ N, αn
is an isolated point of σ(an), and αn → α ∈ C where α is an isolated point in
σ(a). Let rn := d(αn, σ(an) \ {αn}), for all n ∈ N such that σ(an) \ {αn} 6= ∅.
If rn → s, then s 6= 0.

Proof: For each n ∈ N, the distance rn is the largest number such that
B(αn, rn) ∩ σ(an) = {αn}. Hence for each n ∈ N and every m ∈ N there exists
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a λn,m ∈ B(αn, rn + 1
m ) ∩ σ(an) such that λn,m 6= αn and λn,m /∈ B(αn, rn).

Because an → a, the sequence (λn,m) = (λ1,m, λ2,m, . . . ) is bounded and hence
has a convergent subsequence which we again denote by (λn,m). For each m
denote the limit of the corresponding convergent subsequence by λm. Since
λn,m ∈ σ(an) for all m and n in N, it follows from Lemma 1.7.1 that λm ∈ σ(a)
for all m ∈ N. We have the inequality rn ≤ |λn,m − αn| < rn + 1

m , where λn,m
is an element of the convergent subsequence (λn,m). Letting n → ∞, we see
that s ≤ |λm − α| ≤ s+ 1

m for all m ∈ N. So if s = 0, then λm → α as m→∞
and therefore α is an accumulation point of σ(a). But this is a contradiction
with the assumption that α is an isolated point in σ(a), so s 6= 0. �

The mistake that seems to have been made is the following. The assumption
is made that, if λm → α as m → ∞ then α is an accumulation point of σ(a).
However, it seems to be possible that λm can be the same for all m, in which
case α is not an accumulation point.

We have the following example to show what can go wrong.

Example 6.32 Let A = M2(C), α = 1, a =
(

1 0
0 1

)
, αn = 1 + 1

n , and

an =
(

1 + 1
n 0

0 1 + 1
n2

)
with n ∈ N. Then αn is a pole of the resolvent of

an, α is a pole of the resolvent of a, an → a and αn → 1 as n → ∞. But

d(αn, σ(an) \ {αn}) =
1
n
− 1
n2
→ 0.

The theorems that follow make use of the result of Theorem 6.31. Since this
theorem might not be entirely correct, we added the result as an extra condition
in the theorems.

Theorem 6.33 Let A be a Banach algebra and (an) a sequence in A such that
an → a ∈ A. Suppose that (αn) is a sequence in C such that, for each n ∈ N,
αn is an isolated point of σ(an), and αn → α ∈ C where α is an isolated point
of σ(a). Suppose infn∈N d(αn, σ(an) \ {αn}) > 0. If

(λ− a)−1 =
∞∑

j=−∞
(λ− α)jbj

and

(λ− an)−1 =
∞∑

j=−∞
(λ− αn)jbn,j

are the Laurent series of the resolvents of a and an, then bn,j → bj as n → ∞,
for all j ∈ Z .

Proof: Let rn := d(αn, σ(an)\{αn}) for all n ∈ N such that σ(an)\{αn} 6= ∅.
Let r := d(α, σ(a) \ {α}) if σ(a) \ {α} 6= ∅ and r = 1 if σ(a) \ {α} = ∅. By
assumption, infn∈N rn = K1 > 0. Define the curves Γ,Γn : [0, 2π] → C by
Γn(t) = αn + Keit and Γ(t) = α + Keit for a fixed K > 0 with K < K1. Now
Lemma 3.1 gives us

62



bn,j =
1

2π

∫
Γn

(z − an)−1

(z − αn)j+1
dz

=
1

2π

∫ 2π

0

gn,j(t)dt

for all n ∈ N and

bj =
1

2π

∫
Γ

(z − a)−1

(z − α)j+1
dz

=
1

2π

∫ 2π

0

gj(t)dt

where gn,j(t) = (αn+Keit−an)−1i(Keit)−j and gj(t) = (α+Keit−a)−1i(Keit)−j

are continuous on [0, 2π].
Let fn(t) = Γn(t)− an = αn +Keit− an and f(t) = Γ(t)− a = α+Keit− a

for all n ∈ N and for all t ∈ [0, 2π]. Then (fn) converges uniformly to f on
[0, 2π]. Denote with Γ∗ and Γ∗n the ranges of Γ and Γn. We have Γ∗n ⊂ ρ(an) for
all n ∈ N and Γ∗ ⊂ ρ(a). Let B := ∪n∈N(Γ∗n−an)∪(Γ∗−a), then fn(t), f(t) ∈ B
for all n ∈ N and for all t ∈ [0, 2π]. It is not hard to see that, because Keit is
compact and (αn−an)→ (α−a), B is compact. The set B is also contained in
the subset of invertible elements of A, so the function x 7→ x−1 is analytic on the
compact set B, thus is uniformly continuous on B. Therefore (f−1

n ) converges
uniformly to f−1 on [0, 2π]. Since |e−ijt| = 1 for all t ∈ [0, 2π] and for all j ∈ Z,
it follows that (gn,j) converges to gj uniformly on [0, 2π] for each j ∈ Z, which
yields the result. �

From the definition of the spectral projection we know that bn,−1 = p(an, αn)
and b−1 = p(a, α). This leads us immediately to the following corollary.

Corollary 6.34 Let A be a Banach algebra and (an) a sequence in A such that
an → a ∈ A. Suppose that (αn) is a sequence in C such that, for each n ∈ N,
αn is an isolated point of σ(an), and αn → α ∈ C where α is an isolated point
of σ(a). Suppose infn∈N d(αn, σ(an) \ {αn}) > 0. Then p(an, αn) → p(a, α) as
n→∞.

Corollary 6.35 Let A be a Banach algebra and (an) a sequence in A such that
an → a ∈ A. Suppose that (αn) is a sequence in C such that, for each n ∈ N,
αn is a pole of the resolvent of an of order kn, and αn → α ∈ C where α is a
pole of the resolvent of a of order k. Suppose infn∈N d(αn, σ(an) \ {αn}) > 0.
Let the Laurent series of the resolvents of a and an be as in Theorem 6.33 and
u := b−k, un := bn,−kn

(as in Theorem 3.5). If there exists an N ∈ N such that
kn ≤ k for all n ≥ N , then un → u as n→∞.

Proof: Suppose there exists a N ∈ N such that for all n ≥ N , kn ≤ k. From
Theorem 6.33 it follows that bn,−k → b−k as n→∞. Therefore, since b−k 6= 0,
there exists N1 ∈ N such that for all n ≥ N1, bn,−k 6= 0 . Thus for n ≥ N1,
k ≤ kn and we have that kn = k for all n ≥ N2 := max{N,N1}. So for n ≥ N2,
we have un = bn,−kn

= bn,−k and bn,−k → b−k = u as n→∞, so that un → u
as n→∞. �
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Now we combine the above theorems and corollaries to prove the following
two theorems.

Theorem 6.36 Let (A,C) be a semisimple OBA with C closed and I a closed
inessential ideal of A such that the spectral radius in (A/I, πC) is monotone.
Suppose that a ∈ A, an ∈ C for all n ∈ N, that an → a as n→∞ and that r(a)
is a Riesz point of σ(a). If αn ∈ psp (an) such that αn → α, then the following
hold:

1. There exists a N ∈ N such that for all n ≥ N , αn is a pole, say of order
kn, of (z − an)−1, and α is a pole, say of order k, of (z − a)−1.

Suppose, in addition, that infn∈N d(αn, σ(an) \ {αn}) > 0.

2. If

(z − a)−1 =
∞∑

j=−∞
(z − α)jbj (b−j = 0 for all j > k)

and for all n ≥ N , with N as in 1,

(z − an)−1 =
∞∑

j=−∞
(z − αn)jbn,j (bn,−j = 0 for all j > kn)

then bn,j → bj as n→∞, for all j ∈ Z.

3. p(a, α)→ p(an, αn) as n→∞.

4. If kn ≤ k for all n ≥ N1, for some N1 ∈ N, and u := b−k, un := bn,−kn ,
then un → u as n→∞.

Proof: By Theorem 2.14 psp (a) consists of Riesz points of σ(a). Therefore,
from Lemma 6.28.2, α ∈ psp (a) and hence α is a Riesz point of σ(a) and a pole
of (z − a)−1 according to Theorem 3.11. By Theorem 6.30 αn is a Riesz point
of σ(an), and hence a pole of (z − an)−1, for all n big enough. This proves (1).

Using 1, we obtain 2 from Theorem 6.33, 3 from Corollary 6.34 and 4 from
Corollary 6.35. �

We now come a version of the above theorem, applied to spectral radii.

Theorem 6.37 Let (A,C) be a semisimpleOBA with C closed and the spectral
radius in (A,C) monotone. Let I be a closed inessential ideal of A such that
the spectral radius in (A/I, πC) is monotone. Suppose that a ∈ A, an ∈ C for
all n ∈ N, that an → a as n→∞ and that r(a) is a Riesz point of σ(a). Then
the following hold:

1. There exists a N ∈ N such that for all n ≥ N , r(an) is a pole, say of order
kn, of (z − an)−1, and r(a) is a pole, say of order k, of (z − a)−1.

Suppose, in addition, that infn∈N d(αn, σ(an) \ {αn}) > 0.

2. If

(z − a)−1 =
∞∑

j=−∞
(z − r(a))jbj (b−j = 0 for all j > k)
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and for all n ≥ N , with N as in 1,

(z − an)−1 =
∞∑

j=−∞
(z − r(an))jbn,j (bn,−j = 0 for all j > kn)

then bn,j → bj as n→∞, for all j ∈ Z.

3. p(a, α)→ p(an, αn) as n→∞.

4. Let u denote the positive Laurent eigenvector of the eigenvalue r(a) of a,
and un the positive Laurent eigenvector of the eigenvalue r(an) of an, as
in Theorem 3.5. If kn ≤ k for all n ≥ N1, for some N1 ∈ N, then un → u
as n→∞.

Proof: The spectral radius is monotone in (A,C), so r(a) ∈ σ(a) and there-
fore r(a) ∈ psp(a). By Theorem 2.14 psp(a) consists of Riesz points of σ(a), so
that, by Lemma 6.28.1, we have r(an)→ r(a). The results 1-4 now follow from
Theorem 6.36. �
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Chapter 7

Domination properties in
OBA’s

In this chapter we will discuss domination properties in an OBA following [7]
and [17]. By a domination property in an OBA A we mean the following: If
0 ≤ a ≤ b and b has a certain property, then does a inherit this property?

First we will focus our attention to the property of being in the radical
Rad(A) of A. We will use subharmonic analysis to get some interesting results.
We get the results from subharmonic analysis that we need from [5]. Then we
will look at the property of an element being inessential.

7.1 Subharmonic functions and capacity

Let D be an open subset of C. A function φ from D into R ∪ {−∞} is said to
be subharmonic on D if it is upper semicontinuous on D and satisfies the mean
inequality

φ(λ0) ≤ 1
2π

∫ 2π

0

φ(λ0 + reiθ)dθ

for all closed disks B(λ0, r) included in D. We state a few basic properties of
subharmonic functions.

Let D be an open subset of the complex plane.

(i) If φ1 and φ2 are subharmonic on D then φ1 + φ2 is subharmonic on D.

(ii) If φ is subharmonic on D and if α is a positive number then αφ is subhar-
monic on D.

(iii) If φ is subharmonic on D and if f is a real, convex and increasing function
on R, then f ◦ φ is subharmonic on D (by convention f(−∞) = lim f(x)
when x goes to −∞).

(iv) If (φn) is a decreasing sequence of subharmonic functions on D then φ =
limn→∞ φn is subharmonic on D.
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For more properties of subharmonic functions we refer to [13] and [5].

The following theorem by E.Vesentini has a lot of applications in spectral theory
and will be an important tool for the domination theorems. Therefore we will
give the proof of this theorem.

Theorem 7.1 (E. Vesentini) Let f be an analytic function on a domain D
of C into a Banach algebra A. Then λ 7→ r(f(λ)) and λ 7→ log r(f(λ)) are
subharmonic on D.

Before we can give the proof of this theorem we need the following theorem and
lemma.

Theorem 7.2 (E.F. Beckenbach-S. Saks) Let φ be positive on an open set D.
Then log φ is subharmonic on D if and only if z 7→ |ep(z)|φ(z) is subharmonic
on D for every polynomial p.

Proof: This is Theorem 2.6.5 in [25]. �

Lemma 7.3 Let f be an analytic function from a domain D of C into a Banach
space X. Then λ 7→ log ‖f(λ)‖ is subharmonic on D.

Proof: This function is clearly continuous. Let B(λ0, r) be a closed disk
included in D. By Cauchy’s theorem we have

f(λ0) =
1

2π

∫ 2π

0

f(λ0 + reiθ)dθ,

and consequently

‖f(λ0)‖ ≤ 1
2π

∫ 2π

0

‖f(λ0 + reiθ)‖dθ. (7.1)

For every polynomial p we have |ep(λ)| ·‖f(λ)‖ = ‖ep(λ)f(λ)‖ and λ 7→ ep(λ)f(λ)
is analytic. So by equation (7.1) applied to ep(λ)f(λ), |ep(λ)| · ‖f(λ)‖ is subhar-
monic. Now we see that log ‖f(λ)‖ is subharmonic by the Beckenbach-Saks
theorem. �

Now we give the proof of the Theorem 7.1:
Proof: Let φn := 1

2n log ‖f(λ)2n‖. We have,

1
2n+1

log ‖f(λ)2n+1
‖ ≤ 1

2n+1
log ‖f(λ)2n

‖2 =
1
2n

log ‖f(λ)2n

‖.

So (φn) is a decreasing sequence. It follows from Theorem 1.10 that (φn) con-
verges to log r(f(λ)) as n → ∞. Because λ 7→ f(λ)2n

is analytic, the function
λ 7→ log ‖f(λ)2n‖ is subharmonic by Lemma 7.3. So log r(f(λ)) is the limit of
a decreasing sequence of harmonic functions and therefore is subharmonic by
property (iv). Property (iii) now tells us that the composition of this function
with et, which is convex and increasing, is subharmonic. Thus r(f(λ)) is sub-
harmonic. �
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To come to our main tool from subharmonic analysis that we use in domi-
nation theory, we also need the concept of capacity. We will only describe this
concept vaguely and state the main theorems that we need. For more informa-
tion on capacity we refer to [5] and [25]. The capacity c is a function from a
collection of subsets of the complex plane to R, that in some sense measures their
size. For a measure, not every set is measurable; the sets that are, are called
measurable sets. For capacity we also have capacitable and non-capacitable
sets. The domain of c consists of the capacitable sets of the complex plane. It
can be shown that the bounded subsets of the complex plane are capacitable.
So for our purposes the domain of c will be the bounded subsets of C. It can be
shown that closed disks and closed line segments have a non-zero capacity. A
subset of C is locally of capacity zero if all its bounded subsets have zero capac-
ity. Therefore open disks and closed line segments are not locally of capacity
zero.

Theorem 7.4 (H. Cartan) Let φ be subharmonic on a domain D of C and not
identically −∞. Then {λ ∈ D : φ(λ) = −∞} is a countable intersection of open
sets which is locally of capacity zero.

Proof: This is Theorem A.1.29 in [5]. �

We will use the following corollary of the theorem.

Corollary 7.5 Let f be an analytic function from a domain D of C into a
Banach algebra A. Suppose E is either an open ball or a closed line segment
with E ⊂ {λ ∈ D : r(f(λ)) = 0}. Then r(f(λ)) = 0 for all λ in D.

Proof: If f is analytic on D, then we know that φ = log(r ◦f) is subharmonic
on D by Theorem 7.1. Suppose there is a λ ∈ D with r(f(λ)) 6= 0. Then
φ(λ) 6= −∞, so it follows from Cartan’s theorem that {λ ∈ D : r(f(λ)) = 0} =
{λ ∈ D : φ(λ) = −∞} is locally of capacity zero. Since E is contained in this
set, E is locally of capacity zero as well. But the assumption is that E is either
an open ball or a closed line segment, which are not locally of capacity zero. So
we have a contradiction. �

7.2 Domination properties

Now we turn to the domination properties in OBA’s. We will use Cartan’s The-
orem and Corollary 7.5 to come to some interesting results. First two lemmas
we are going to need:

Lemma 7.6 Let A be an OBA such that the spectral radius is monotone. If
0 ≤ a ≤ b and b ∈ Rad(A), then aC ⊂ QN(A).

Proof:
If b ∈ Rad(A), then bC ⊂ Rad(A) ⊂ QN(A). From 0 ≤ a ≤ b and the fact

that C is an algebra cone it follows that 0 ≤ ac ≤ bc for all c ∈ C. The spectral
radius is monotone, because C is normal, so r(ac) ≤ r(bc), for all c ∈ C. Since
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bC ⊂ QN(A), r(bc) = 0, so r(ac) = 0 and we have aC ⊂ QN(A). �

Lemma 7.7 Let A be an OBA. If aC ⊂ QN(A), then a span(C) ⊂ QN(A).

Proof: Let n ∈ N and c1, · · · , cn ∈ C. Take fixed positive real numbers
λ2, · · · , λn and let f1(λ1) = a(λ1c1 + · · · + λncn), with λ1 ∈ C. Then f1 is
analytic on C. If λ1 ∈ R+ then f1(λ1) ∈ aC, so by the assumption we have
r(f(λ1)) = 0 for all λ1 ∈ R+. Let E be the interval [1, 2], then it follows from
Corollary 7.5 that r(f1(λ1)) = 0 for all λ1 ∈ C. So,

r(a(λ1c1 + · · ·+ λncn)) = 0 for all λ1 ∈ C and all λ2, · · · , λn ∈ R+. (7.2)

Next we take a fixed λ1 ∈ C, and fixed λ3, · · · , λn ∈ R+ and let f2(λ2) =
a(λ1c1 + · · ·+ λncn), with λ2 ∈ C. Again f2 is analytic on C and if λ2 ∈ R+ it
follows from equation 7.2 that r(f2(λ2)) = 0. Again we have by Corollary 7.5
that r(f2(λ2)) = 0 for all λ2 ∈ C, so

r(a(λ1c1 + · · ·+ λncn)) = 0 for all λ1, λ2 ∈ C and all λ3, · · · , λn ∈ R+.

We continue this process, until after n− 2 more steps we get,

r(a(λ1c1 + · · ·+ λncn)) = 0 for all λ1, · · · , λn ∈ C.

We took n and c1 · · · , cn ∈ C arbitrary, so r(ax) = 0 for all x ∈ span(C). �

Since Rad(A) = {a ∈ A : aA ⊂ QN(A)}, we have the following theorem
using Lemmas 7.6 and 7.7:

Theorem 7.8 Let A be an OBA such that the spectral radius is monotone and
suppose that A = span(C). If 0 ≤ a ≤ b and b ∈ Rad(A), then a ∈ Rad(A).

Proof: If 0 ≤ a ≤ b then by Lemma 7.6 we have aC ⊂ QN(A). Since
A = span(C), it follows from Lemma 7.7 that aA ⊂ QN(A) and therefore
a ∈ Rad(A) by Theorem 1.31. �

If the span of C is dense in A we have the following result:

Theorem 7.9 Let A be an OBA such that the spectral radius is monotone.
Suppose that A = span(C) and the spectral radius is continuous on A. If
0 ≤ a ≤ b and b ∈ Rad(A), then a ∈ Rad(A).

Proof: If 0 ≤ a ≤ b and b ∈ Rad(A), then aC ⊂ QN(A) according to Lemma
7.6, so by Lemma 7.7 a span(C) ⊂ QN(A). Because span(C) is dense in A,
there is for each x ∈ A a sequence {xn} in span(C) that converges to x as
n → ∞. Hence we have limn→∞ axn = ax. Each element axn is in a span(C),
so r(axn) = 0 for all n ∈ N. Since the spectral radius is continuous we have
r(ax) = limn→∞ r(axn) = 0, i.e. ax ∈ QN(A). So aA ⊂ QN(A) and a ∈ Rad(A)
by Theorem 1.31. �

Using the above theorems, we can also give a characterization of the radical
of A in terms of the algebra cone C:
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Theorem 7.10 Let A be an OBA such that the spectral radius is monotone
and suppose that one of the following holds:

1. A = span(C).

2. A = span(C) and the spectral radius function is continuous.

Then Rad(A) = {a ∈ A : aC ⊂ QN(A)}.

Proof: The inclusion Rad(A) ⊂ {a ∈ A : aC ⊂ QN(A)} is trivial, in view of
Theorem 1.31.

For the other inclusion, let a ∈ A be such that aC ⊂ QN(A). Then Lemma
7.7 tells us that a span(C) ⊂ QN(A). In case (1), span(C) = A, so we directly
have aA ⊂ QN(A). In case (2), it follows as in the proof of Theorem 7.9 that
aA ⊂ QN(A). �

Now we consider the domination problem with the property that b belongs
to an ideal of A or if b is Riesz relative to some ideal of A.

Lemma 7.11 Let (A,C) be an OBA with a, b ∈ A and let F be a closed ideal
of A. Then the following conditions are equivalent:

1. If 0 ≤ a ≤ b and b ∈ F , then a ∈ F .

2. The algebra cone πC in the quotient algebra A/F is proper.

Proof: Suppose 1. holds. Let c ∈ πC ∩ −πC. Then c = c1 = −c2 for some
c1, c2 ∈ C, so c1 + c2 ∈ F . We also have 0 ≤ c1 ≤ c1 + c2 and therefore by
condition 1. it follows that c1 ∈ F and thus c = c1 = 0.

Suppose 2. holds. If 0 ≤ a ≤ b and b ∈ F , then 0 ≤ a ≤ b = 0 w.r.t. πC in
A/F . Since πC is proper, the order ≤ in A/F is antisymmetric and therefore
a = 0, i.e. a ∈ F . �

Lemma 7.12 Let (A,C) be an OBA and F a closed ideal in A such that the
spectral radius function in the OBA (A/F, πC) is monotone. If a, b ∈ A is such
that 0 ≤ a ≤ b and b is Riesz relative to F , then a is Riesz relative to F .

Proof: Let 0 ≤ a ≤ b, then 0 ≤ a ≤ b. Since the spectral radius function
in (A/F, πC) is monotone, 0 ≤ r(a) ≤ r(b). If b is Riesz relative to F , then
r(b) = 0 and so r(a) = 0, i.e. a is Riesz relative to F . �

Now we consider a different domination property.

Theorem 7.13 Let A be an OBA such that the spectral radius is monotone
and let 0 ≤ a ≤ b with b ∈ QN(A). If g(a) ∈ Rad(A) for some polynomial g in
a with k ∈ N the smallest nonzero power of a in g(a), then ak ∈ Rad(A).

Proof: The spectral radius is monotone, so 0 ≤ r(a) ≤ r(b). Since b ∈ QN(A)
it follows that r(a) = r(b) = 0, i.e. a ∈ QN(A). So with the Spectral Map-
ping Theorem we see that 0 = σ(g(a)) = g(σ(a)) = g(0) and therefore g(a) =
ak(λk + · · · + λna

n−k) with λk, · · · , λn ∈ C, λk 6= 0 and k ≥ 1. Again by
using the Spectral Mapping Theorem and the fact that a ∈ QN(A), we have
σ(λk + · · ·+ λna

n−k) = {λk}. Thus λk + · · ·+ λna
n−k is invertible in A and so
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ak = g(a)(λk + · · ·+ λna
n−k)−1 ∈ Rad(A). �

Now we turn our attention to inessential elements.

Theorem 7.14 Let (A,C) be an OBA and F be a closed ideal in A . Suppose
a, b ∈ A with 0 ≤ a ≤ b and b is inessential relative to F . Let the spectral radius
in the OBA (A/F, πC) be monotone. Then:

1. a is Riesz relative to F .

2. If a is in the center of A then a is inessential relative to F .

3. If C is generating then a is inessential relative to F .

Proof:

1. We already saw that kh(F ) ⊂ R(J). So if b is inessential relative to F ,
then b is Riesz relative to F . Also, the spectral radius in the quotient
algebra A/F is monotone and the result follows from Theorem 7.12.

2. Since b is inessential relative to F , we have b ∈ Rad(A/F ). We suppose
that a is in the center of A, so a is in the center of A/F . Now it follows
from Theorem 2.3.3 that a ∈ Rad(A/F ), thus a is inessential relative to
F .

3. Since C is generating in A, πC is generating in the quotient algebra A/F .
It follows from Theorem 7.10 that a ∈ Rad(A/F ).

�

From this theorem we get the following corollaries

Corollary 7.15 Let (A,C) be an OBA and F a closed ideal in A. Suppose the
spectral radius in the OBA (A/F, πC) is monotone and C is generating. Then
the algebra cone C + kh(F ) in the quotient algebra (A/kh(F ), C + kh(F )) is
proper.

Proof: Let 0 ≤ a ≤ b and b ∈ kh(F ), then Theorem 7.14.3 tells us that
a ∈ kh(F ). Because kh(F ) is a closed ideal it follows from Theorem 7.11 that
the algebra cone C + kh(F ) in the quotient algebra (A/kh(F ), C + kh(F )) is
proper. �

Corollary 7.16 Let (A,C) be an OBA and F a closed ideal in A such that
kh(F ) is a proper ideal in A. Suppose a, b ∈ A with 0 ≤ a ≤ b and b inessential
relative to F . If the spectral radius in the OBA (A/F, πC) is monotone and C
is generating, then a cannot be invertible.

Proof: Using the fact that a proper ideal cannot contain invertible elements
it follows from Theorem 7.14.3. �

Theorem 7.13 in the case of inessential elements becomes:
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Theorem 7.17 Let (A,C) be an OBA and F a closed ideal in A such the
spectral radius in the OBA (A/F, πC) is monotone. Let a, b ∈ A such that
0 ≤ a ≤ b and let b be Riesz relative to F . If g(a) is inessential relative to F
for some polynomial g in a with k ∈ N the smallest nonzero power of a in g(a),
then ak is inessential relative to F .

Proof: Since 0 ≤ a ≤ b, we have 0 ≤ a ≤ b. The element b is Riesz relative to
F , so b ∈ QN(A/F ). The spectral radius in the OBA (A/F, πC) is monotone
and if g(a) is inessential relative to F , then g(a) ∈ Rad(A/F ). Therefore we can
apply Theorem 7.13 to the OBA (A/F, πC) and we see that ak ∈ Rad(A/F ),
i.e. ak is inessential relative to F . �

Theorem 7.18 Let (A,C) be an OBA with C closed and the spectral radius in
(A,C) monotone. Let I be a closed inessential ideal of A such that the spectral
radius in (A/I, πC) is monotone. Suppose that a, b ∈ A with 0 ≤ a ≤ b and
r(a) = r(b). If r(b) is a Riesz point of σ(b), then psp(a) consists of Riesz points
of σ(a).

Proof: Since r(b) is a Riesz point of σ(b), it follows from lemma 2.12.1 that
r(b) < r(b). By the monotonicity of the spectral radius in (A/I, πC) we have
that r(a) ≤ r(b), and, since r(a) = r(b), it follows that r(a) < r(a). Lemma
2.12.2 implies that r(a) is a Riesz point of σ(a). The result now follows from
Theorem 2.14. �
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