N.J. van der Kooy

Project planning with temporal and
resource constraints

Bachelorthesis

Supervisor: Dr. F.M. Spieksma

June 5, 2015

Mathematical Institute, University of Leiden

Contents

[Abstractl v
1__Introductionl 1
2 Project schedules without resource constraints| 2
2.1 easibility|o 3
[2.2 Formulation as an Integer Programming Problem| 5
P21 Feasibility and a Total Unimodular constraint matrix| 6

2.3 Solving the Integer Programming Problem|. 6
2.3.1 IFarliest feasible start timesl 6

2.3.2 Latest feasible start timesl 6

[2.3.3 Constructing the min-cut graph|. 7

.34 Calculating the solution from the min-cut graphl 10
|3__Resource-constrained project schedules| 14
3.1 ormulation as an Integer Programming Problem| 14
[3:2 Tagrangian Relaxation| oo v v i i 15
3.3 Relating the Lagrangian relaxation and the resource-constrained |

| project scheduling problem| 17
[3.4 Computing the Lagrangian Multipliers| 18
3.4.1 Computing the target value| 18

3.4.2 omputing the actual multiplier] 19
4_Conclusion| 20

iii

Abstract

Within the world of operational research, project scheduling plays a large and
important part. Being able to plan a project in such a way that is deemed op-
timal, by minimizing a given objective, is a challenging mathematical problem.
Depending on the constraints placed on the project, there might not even exist
any straightforward algorithm to obtain an optimum.

For time constrained problems, polynomial time algorithms exists to calculate
the most cost effective solution for any provided set of jobs. However, if jobs
are additionally required to compete for resources, such a general solution does
not exist.

However, this thesis studies a method in which the Lagrangian relaxation of a
resource constrained project can be efficiently solved by transforming it into an
equivalent time constrained problem. This time constrained problem is subse-
quently solved by computing the minimum cut in a derived directed graph.

1 Introduction

Project scheduling problems are some of the most fundamental optimisation-
related mathematical problems. Due to their generality a wide variety of prob-
lems can be formulated as project scheduling problems. Hence, the question of
how to (efficiently) solve these problems is an important one.

In [6], the NP-hard project scheduling problem is studied where jobs are not
only related by time-constraints, but additionally by resource constraints. An
optimal solution for this problem is approximated by performing a so-called
Lagrangian relaxation on the resource constraints. This results in a subprob-
lem that is shown to be equivalent to a project scheduling problem with only
start-time dependent costs, which in turn is shown to be efficiently solvable by
transforming it into a minimum cut problem.

In this thesis, we first examine the project scheduling problem without resource
constraints. It is shown how this problem is transformed to a minimum cut
problem, and how this can then be efficiently solved. This is covered in §2}

In this same chapter, we also examine aspects of the time-constrained problem
not covered by [0]. Namely, we study the claimed feasibility test of a given
problem (§2.1). The proof of this claim was self-developed, and is given here.
In addition, we explicitly define algorithms that were determined to be usable to
calculate values (the Farliest feasible start times and Latest feasible start times)

necessary to solve a problem (

Following this, in §3| we look at project scheduling problems expanded by adding
resource constraints. This additions makes the problem NP-hard, and we ex-
amine how these problems are relaxed into a time-dependent project scheduling
problem using Lagrangian relaxations. For this section, an implementation of
the algorithm described in [6] was developed.

However, as we will see, the choice of so called Lagrangian multipliers is not a
simple task, but one that requires a significant amount of numerical analysis.
In we discuss the process of Lagrangian relaxations, while in we study
the actual steps performed in the calculation of these multipliers.

The goal of this thesis is not to expand on the methods provided in [6]. Rather,
it is to fill in the gaps by proving assumptions made in the article, as well as
providing explicit methods where this is not done in the article itself.

2 Project schedules without resource constraints

In this chapter, we consider one of the most basic project scheduling problems:
those without resource constraints, but with temporal constraints. This means
that we look at a project consisting of multiple jobs, which are potentially
interconnected through the requirement that the start times of these jobs need
to satisfy some criteria. Consider for example the building of a house, where the
job of “building the walls” cannot be performed until after the job of “setting
the foundation” has been completed.

Consider a set of jobs J = {0, ...,n}.

Definition 2.1. A schedule is a vector S = (S, ..., S»), S; € N, indicating the
starting time of job j € J.

Definition 2.2. For every job j € J, its processing time p; € N is the time
required for the job to be completed.

In order to be valid, a schedule S needs to satisfy given so-called time-lags. A
time-lag identifies jobs that are temporally dependent on each other. This is a
common occurrence in project scheduling problems, since often jobs cannot be
carried out until another task has been completed.

Let L C J x J be a set of time lags (i, 7) between jobs 4,5 € J.

Definition 2.3. For all (4, j) € L, d;; € Z is the length of the time lag between
jobs 7 and j.

What definition says is that for an (4,7) € L, a positive d;; indicates that
job 7 must have been started for at least d;; time units before job j can start.
For a negative d;;, it means that ¢ can start no more than —d;; time units after
job 7.

In other words, a valid schedule S has to satisfy S; +d;; < 5; < S; —dj;. We
consider jobs 0 and n as artificial jobs that indicate the project start and the
project end. Consequently, po = p, = 0, and Sy = 0. In addition, we assume
that (0,5) € L for all j € J with do; = 0 and (j,n) € L for all j € J with
d;, = pj. This first set of edges is needed to indicate that every job must start
after the start of the project as a whole, while the second set ensures that the
start time of job n indicates the completion time of the last ‘real’ job.

Once a feasible schedule S is determined (if it exists), its cost wg can be de-
termined through the cost w;; incurred when job j is started at time ¢. Here,
t=20,1,...,7 and T is a predetermined upper bound on the project makespan.
In other words, after time T', each job has to be completed. Hence, S; < T —p;
for all j € J.

When a valid schedule has been found, the total cost of the schedule can be

found by adding the cost of every individual job:

ws = ij’sj' (1)

jeJ

If we want to complete all jobs with minimum costs, our objective becomes to
find the smallest possible wg. Let S = {Feasible schedules S}.

w(J) minws = min EZJwLSJ , (2)
J

obtained with schedule

arg min wg = arg min E wijs; | - (3)
S S ;
jeJ

2.1 Feasibility

A first question that comes to mind, when trying to minimize the costs in a
project scheduling problem, is whether a feasible solution exists in the first
place. In [6], it is claimed that this can be verified through the use of Bellman’s
algorithm.[I] What follows is a verification of this claim. It is based on looking
at a graph with jobs ¢ € J as nodes, and time lags (¢,5) € L as edges of length
d;; between nodes ¢ and j. We assume that infeasibility of a problem never
stems from an insufficient time horizon (T°), but rather from conflicts within the
time lags.

Definition 2.4. The time-lag graph of a set of jobs is a weighted and directed
graph where every job j € J is represented by a node, with every time-lag in L
defining an edge. The weight of edge (i,7) € L is defined as d;;.

Proposition 2.5. A time-constrained project schedule has a feasible solution
& every cycle in its time lags has non-positive length.

Proof. Throughout this proof, when working in a cycle of positive length that
contains both 7 and j we will use the notation D;; for the shortest length from
job i to job j while going through this cycle. This length is then either d;;,
when jobs ¢ and j are directly connected, or the sum of the edges between these
two jobs. Note that since there is only one way to get from ¢ to j in a cycle, D;;
is unique. Additionally, by defining D;; as the shortest length from job i to j,
we ensure we do not select the path that walks the cycle multiple times. Since
we only use D;; in the context of positive length cycles, we know the shortest
length is well defined.

=

Take a feasible time-constrained project schedule S, and assume that the graph
of its time lags contains a cycle of positive length. There are two possibilities:
either all edges in this positive cycle are of non-negative length, or at least one
edge (7,J) in the cycle is of negative length.

In the first case, this means that for jobs ¢ and j for which (4, j) is an edge in
this cycle, there is a path from j to ¢ with length Dj; > 0. In addition, we know
dij > 0.

Dj; > 0= 8; >5;, while d;; >0=95; >5;. Since this can’t both be true, we
have a contradiction.

In the second case, there are jobs ¢ and j for which (i, j) is an edge in this cycle
and d;; < 0. Since the cycle as a whole has positive length, the path from j to
i has a length longer than —d;;: D;; > —d;;. This implies

SiZSj+Dji:>SjSSi*Dj¢<Si+dij. (4)

Since () breaks definition our assumption of a cycle of positive length is
incorrect.

=

Take a time-constrained project schedule whose graph of time lengths only con-
tains cycles of non-positive length. We obtain a new graph by multiplying all
edge lengths by —1 and, due to our assumption, this graph now only contains
cycles of non-negative length. This means that Bellman’s algorithm ([I]) can
be performed on this graph - the algorithm works for any graph where negative
cycles do not exist - using the node corresponding to job 0 as the source node.

This algorithm gives us the shortest path from the source node to each other
node, which is the same as the longest path in the original graph (obtained by
multiplying both the edges as the optimal solution by —1).

A job can start once all of the time constraints related to this job have been
complied with. This is determined by the longest (chain of) time constraint(s),
so the distance from the source to a node determined by Bellman’s algorithm
gives a feasible start time for that node. Since the algorithm can find a distance
for each connected node if the cycles in the original graph are of non-positive
length, this gives a feasible start-time for each node, and thus a feasible solution
for the problem. O

Definition 2.6. For every job j € J, e; is the Farliest Feasible Starting Time
for job j. A way to determine its value is explained in corollary [2.7]

Corollary 2.7. As a consequence of above proof, we find that the earliest time
a job can possibly start (its Farliest Feasible Start Time) is equal to its distance
from the source node found by Bellman’s algorithm performed on the negated
time-lag graph as described above. This value is used in algorithm[d in order to

construct the so-called min-cut graph, which in turn is used to solve the project
scheduling problem

We do not take into account the possibility that the processing time of a job
added to its earliest feasible start time exceeds the time horizon, since we assume
that time horizon T is never the cause of infeasibility. The computation of the
Earliest Start Times does give us a lower bound on T however:

min T = max (e; + p;), (5)
JjeJ

since T' can never be lower than the highest time needed for every job to complete
as quickly as possible.

2.2 Formulation as an Integer Programming Problem

If we assume a time-feasible solution for a time-constrained project scheduling
problem exists, we can formulate it as an integer programming problem in order
to try and solve it. We do so as follows.

First we introduce variables x;; where j € J,t € {0,...,T'}.

1 if job j starts at time ¢,
T—
ot 0 otherwise.

These x; are used to define a (potentially unfeasible) schedule. This then allows
us to formulate the following integer linear program:

minimize w(z) = Z Z WjT jt (6a)
t

J

subject to Z:vjt =1, Jed (6b)
¢
T t+di;j—1
omiet Y, @<l (i) €Lt=0,..T, (6c)
s=t s=0
zj 2> 0, jeJt=0,.,T, (6d)
xj; integer, jeJt=0,..T. (6e)

In the integer programming problem above, w(x) indicates the cost of schedule x
(wj is included in the sum iff job j starts at time ¢, through the ;). Constraint
(6b]) enforces each job to get performed exactly once, and constraint enforces
the temporal constraints, by making sure that the time period between S; and
S; + d;; does not contain Sj.

2.2.1 Feasibility and a Total Unimodular constraint matrix

The reason we are able to easily find a solution to above problem, in the way
that will be described in is because of the Total Unimodularity of the
constraint matrix in the above programming problem. This ensures us of an
integer optimal solution.

2.3 Solving the Integer Programming Problem

As displayed in [6] §2.2], a scheduling problem can be transformed into a directed
graph, through which an optimal solution can be found by finding the minimum
cut of this graph.

What follows is a complete algorithm for this process, useful for numerical solv-
ing of Project Scheduling Problems. This will be addressed in

Before we construct the directed graph through which we can determine an
optimal solution, we must first calculate earliest feasible start times e(j) and
latest feasible start times [(j) for all jobs j € J. These values indicate, as their
name suggest, the earliest and latest times t € {0, ..., T} at which a job can start
while still maintaining the possibility of a feasible solution.

2.3.1 Earliest feasible start times

As explained in corollary the Earliest feasible start times of a schedule are
automatically determined when we check whether a feasible solution exists using
Bellman’s algorithm. Therefore, when we are at this step in the process it is no
longer necessary to calculate these e; again.

2.3.2 Latest feasible start times

In order to determine the latest feasible start times I(j) for j € J, we have
developed the following algorithm. It works by repeatedly looking at a job 14
and one of its successors j. Note that job j is a successor of i if (i,5) € L. If
[(7) potentially forces job j to start beyond I(j) (so {(¢) + di; > I(j)), we know
that I(¢) is too high. Therefore, if such a situation is found, I(¢) is reduced
appropriately.

Note that on line [f] in algorithm [T} “shift” is the act of taking the first element
from a set, and removing it from the set itself.

Algorithm 1 Determining Latest Feasible Start Times
for jobs j € {1,....,.n—1} do
1(4) < (T'— (pj — 1)) # Initialization so that job j never finishes after T’
end for
processSet = {1,...,n — 1} # Track which I(j)’s need updating
while processSet # () do
PRrROCESS(shift(processSet))
end while
procedure PROCESS(7)
for (i,j) € L do
if (i) + d;; > I(j) then
1(3) < 1(j) — di; # Reduce {(¢) so it doesn’t interfere with job j
processSet < processSet U {k|(k,) € L} # We update an
I(i) based on [(j), where j is a successor to i. Therefore, if we change (i),
we need to reprocess its predecessors.
13: end if
14: end for
15: end procedure

_ =
M2

We know this algorithm always terminates, since the algorithm is only carried
out if a feasible solution exists. This means that the [(¢) can never be lowered
beyond e(i) (since the latest feasible start time cannot occur before the earliest
feasible start time), so at some point each job will have a correct latest starting
time (I(¢) + d;; will never be higher than [(j) for some successor j).

The complexity of this algorithm is easily determined. Each job will be processed
a maximum of T times (If its earliest and latest feasible start times are both
0, it gets initialized to T', and every processing iteration only reduces the latest
feasible start time by 1). Since there are n — 1 jobs, this gives us a complexity
O(nT). In practice the complexity will be much lower however, since with most
time constraints the latest feasible start time will not be too far from the initial
upper limit of T' — (p; — 1).

2.3.3 Constructing the min-cut graph

Now we have determined the earliest and latest feasible start times, we are able
to construct a directed graph the minimum cut of which will give us an optimal
solution to the project scheduling problem. The nodes and arcs will be created
as described in [0, §2.2].

Algorithm 2 Determining the Min-Cut graph

1: Create nodes a and b representing the virtual start and end jobs
2: for j € {1,...,n—1} do

3 for e(j) <t <li(j)+1do

4 Create a node v,

5: end for

6: end for

7. for j € {1,....n—1} do

8: Create an edge between a and v; ;) with infinite capacity

9: Create an edge between v;;(;)4+1 and b with infinite capacity
10: for e(j) <t <I(j) do

11: Create an edge between vj; and v; 41 with capacity w;¢

12: end for

13: forie{l,..,n—1} do

14: if (4,j) € L then

15: if e(i)+1<t<I(i) AND e(j) +1<t+d;; <I(j) then

16: Create an edge between v;; and v;¢14,; with infinite capacity
17: end if

18: end if

19: end for

20: end for

Here, every edge of finite capacity represents a job being performed at a certain
time. When a (minimum) cut has been found, the cut is related to a solution
of @ by defining:

1 if (vjs,vj,441) is in the cut,
Tt = .
0 otherwise.

In addition, note the constraints placed on the temporal edges of infinite capac-
ity, namely placing an edge of infinite capacity between nodes v;; and vj¢1q,;
when e(i) +1 <t <I(i) AND e(j) + 1 <t+d;; <I(j).

The reason this works can be best visualised by, for example, looking at the
min-cut graph generated by example (see figure . How this min-cut graph
is used is by finding finite capacity cuts that split the graph. The infinite
capacity temporal edges work to enforce the temporal constraints defined in the
problem.

As proven in [0, Theorem 1], the capacity of the cut is equal to the value w(x)
of the corresponding scheduling solution. Therefore, the minimum cut gives us
an optimal solution of the problem.

Example 2.8 (From scheduling problem to min-cut graph). The best way to
understand the process described in §2.3.1) §2.3.2) and §2.3.3|is by seeing the

process on an example. Take the following graph, with nodes representing jobs
and edge lengths representing time lags:

le
dip =1
d31=-3|2e
doz =1
3e

Figure 1: Given jobs with their time lags laid out in graph form

In addition, we have been given job processing times (p; = 2,p2 = 1,p3 = 1)
and costs for starting a job at a certain time, see the following table of w;;:

wip | t=0|t=1|t=2|t=3
1=1 30 2 15 4
1=2 50 1 10)
1= 90 9 13 2

Performing Bellman’s algorithm gives us the following information:

Earliest feasible starting time of job 1: O
Earliest feasible starting time of job 2: 1
Earliest feasible starting time of job 3: 2

Then, performing algorithm 1 on the graph using the processing time informa-
tion gives us:

Latest feasible starting time of job 1: 1
Latest feasible starting time of job 2: 2
Latest feasible starting time of job 3: 3

Finally, we can perform algorithm 2. This results, finally, in the following min-
cut graph:

Source

Figure 2: The min-cut graph, obtained from algorithm

In figure[2] an edge indicated by a black-headed arrow has its capacity indicated
above of it, while a white-headed arrow indicates an edge of infinite capacity.
Note that there are no infinite capacity edges from job 3 to job 1 to enforce ds;
anywhere. This is the result of that, in this example, d3; can never be broken
without violating time-horizon 7'

2.3.4 Calculating the solution from the min-cut graph

Now we have found the min-cut graph, we will determine the optimal solution
by calculating the maximum flow using the push-relabel algorithm [4]. First,
we will study example 2:§] to find out what we expect the optimal solution of
that example to be. Secondly, we will look at how the push-relabel algorithm
actually calculates the maximum flow within a graph. Lastly, we prove that the
maximum flow in the min-cut graph indeed corresponds to a general optimal
solution for the project scheduling problem.

Example 2.8 (Continued). To determine the optimal solution of this example,
we need to understand the meaning of the nodes and edges in figure 2| Essen-
tially, every edge indicates a certain job starting at a certain time. An edge of
finite capacity reflects the cost of starting a certain job at the time correspond-
ing to the originating node. Finding a schedule can therefore be seen as making
a cut in the graph, where the edges in the cut determine at what times jobs are
executed, while the sum of the edges cut gives us the total cost. The tempo-
ral constraints being modeled using edges of infinite capacity prevent us from
breaking these constraints (Since this would mean cutting an infinite capacity
edge, and thus making the costs of our schedule ‘infinite’, so infeasible). There
are four valid cuts, shown in figure [3]

10

Source

Figure 3: Red lines indicate valid cuts for the min-cut graph from example

Note that the two cuts which appear to cut the temporal edges of infinite ca-
pacity are valid, because the direction in which the edges are cut means that
the infinite capacity edge travels from the side of the sink to the side of the
source, so it does not affect the solution. This gives us four possible solutions,
where the bottom-right image shows us the solution of minimal capacity: 14.
This occurs when we start job 1 at ¢t =1, job 2 at ¢t =2 and job 3 at ¢t = 3.

2.3.4.1 The Push-Relabel algorithm

In order to calculate the maximum flow in the min-cut graph, we use the Push-
Relabel algorithm. The generic version of this algorithm, which we will be
using, has a time complexity of O(V2?A). The version used in [6] has a time
complexity of O(V Alog(V?/A)), but since this algorithm is less efficient in
practice [4] and significantly more cumbersome to implement, we will be using
the generic version.

If we refer to our min-cut graph as G(V, A), the actual algorithm is described
in algorithm [3] below:

11

Algorithm 3 The Push-Relabel algorithm

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

for (u,v) € A do
flu,v) <0 # f(u,v) indicates the flow over an edge
end for
for (s,v) € A, where s is the source node do
f(s,v) < ¢(s,v) # ¢(u,v) indicates the capacity of an edge
end for
for u eV do
h(u) <0 # h(u) is the height of a node
e(u) «+ f(s,u) # e(v) is the nodes excess, which can only come from
flow from the source
end for
for Source node s do
h(s) < |V|
e(s) < oo
end for
while We can perform a Push or Relabel operation do
Perform this operation
end while
procedure PUSH(u,v)
if e(u) > 0 AND h(u) = h(v) + 1 then
A + min{e(u), c(u,v) — f(u,v)}
F(u,v) < flu,0)+ A
F(o,u) — flo,u)— A
e(u) < e(u) — A
e(v) «—e(v) + A
end if
end procedure
procedure RELABEL(u)
if e(u) > 0 AND h(u
h(u) < min{h(v)
end if
end procedure

) < h(v) Vo with f(u,v) < ¢(u,v) then
+1 | v with f(u,v) < c(u,v)}

In

words, the algorithm works in a few phases:

1. Every edge going away from the source is saturated, meaning that for
source node s, the flow f(s,v) over edge (s,v) is set to capacity c(s,v).

2. Every node gets an attribute known as its height. This is initialized to
|V| (the number of nodes) for the source, and 0 for every other node. In
addition, we define the excess of a node v as

Z f(u,v), Vv e V\{source}
e(v) = < uev

12

Since we start with a flow of ¢(s, v) for all edges (s, v) where s is the source,
our excesses are initialised as

Z c(s,v), Yo € V\{source},
6(’[}) = { (s,0)eV
00 v=s,

which conforms to the previous definition. We call any node v €
V\{source, sink} active if e(v) > 0, since the amount of incoming flow
is more than the outgoing amount of flow. Therefore, it still needs to
be processed in some way. While performing the algorithm, the Push
operation slowly reduces the excess of all nodes to 0.

3. Push and relabel operations are performed on every active node. The
push operation effectively looks at how much excess a node v has, and
distributes this over nodes that can be reached from v. The end result of
these operations is that if saturating all starting edges gave us too much
flow (which is almost always the case), the push and relabel operations
reduce the amount of flow that is sent from the source.

Once the algorithm completes, we can simply look at the flow over edges coming
from the source, and this will give us the maximum flow from the source to the
sink. The proof of the correctness of this algorithm can be found in [§]. If we
perform this algorithm on the graph from example [2.8] we find that this indeed
gives us a maximum flow of 14. What follows is the proof that the maximum flow
indeed always gives us the optimal solution to the project scheduling problem.

Theorem 2.9. The optimal solution to a project scheduling problem with tem-
poral constraints is equal to the maximum flow in its corresponding min-cut
graph. The source nodes of the edges in the cut indicate the start time of each
job in this optimal schedule.

Proof. When the maximum flow of a min-cut graph has been determined, we
know from the Max-flow Min-cut theorem that this gives us the minimum ca-
pacity cut that, when removed in a specific way from the network, causes the
situation that no flow can pass from the source to the sink.[7]

Since every job provides a path from the source to the sink (with an edge from
source t0 v; o(;), through all nodes v;; and finally from v; ;(;y11 to sink), we know
that at least one edge from each job needs to be removed in order to block flow
from passing from the source to the sink. This means that any minimum cut
will — for every job j € J — include at least one edge (vj¢,vj¢41).

Once this observation is made, [0, Lemma 1] and [6 Theorem 1] prove the
theorem. O

13

3 Resource-constrained project schedules

After looking at project scheduling problems that are purely temporally con-
strained, we now expand our problem to include resource constraints. In addi-
tion to their temporal constraints, jobs now need resources while they process.
These resources are potentially needed by multiple jobs, meaning that previ-
ously feasible solutions now become infeasible due to jobs being processed in
parallel competing for a specific resource.

In this model, there is a finite set R of resources, and the capacity of resource
k € R is denoted by Rj. Note that in our model, Ry is time-independent: At
every point in time, Ry of resource k is available. In addition the resources
are renewable, so when a job is finished using a resource, the resource again
becomes available for other jobs to use.

The resource constraints are attached to a job by defining r;; as the amount of
resource k needed by job j during its processing. Like the resources themselves,
these constraints are time-independent.

Finally, we redefine our objective function. In this scheduling problem, instead
of aiming to reduce our costs, we aim to complete our project as quickly as
possible.

In We defined objective function wg = Z wjs; (1). We will keep using the
jeJ
notation wg as the ‘value’ of a schedule S, but we will now redefine it to

ws = Sn (7)

Recall that job n starting indicated that every job had been completed, so we
want to reduce S,, as much as possible. Of course, our objective w(.J) remains
the same - we still want to minimize wg, so equation remains valid.

For the resource-constrained project scheduling problem, there is no polynomial
time algorithm to find an optimal solution, unless NP = ZPP (the class of so-
called Zero-error Probabilistic Polynomial time problems)[3].

3.1 Formulation as an Integer Programming Problem

Like the purely temporally constrained problem, we are going to formulate the
resource constrained problem as an integer programming problem, and use this
to try and solve the problem.

As we are now trying to minimize our project makespan, we obtain the objective
function of

minimize w(z) = thnt (8)
t

14

where n is our artificial ‘last job’.

Since the time constraints and other restrictions remain valid and part of the

problem, the objective function is subject to (6b)), (6], and (6¢).

In addition, we now of course have our resource constraints. These are modeled
by
t
> ik > wj| <R keRt=0,..,T (9)

J s=t—p;+1

These inequalities ensure that all jobs being processed at time t simultaneously
do not consume more resources than available.

Note that in @ — as well as all following equations where we walk over s —
the starting index of s needs to be 0 or greater. A starting index of s =¢t—p;+1
can therefore always be read as s = max{t — p; + 1, 0}.

3.2 Lagrangian Relaxation

As mentioned above, the resource-constrained project scheduling problem has
no polynomial-time solution.

This is because, unlike the purely temporally-constrained problem, where the
constraints are Totally Unimodular as explained in §2.2.1] which guarantee a
polynomial time solvable problem, the resource constraints take away this guar-
antee.

However, by introducing Lagrangian multipliers A = (Ay), ¢ € {0, ..., T} we ob-
tain a Lagrangian relaxation of our problem. Since a relaxation allows us to
violate some of our constraints (in this case the resource constraints), the opti-
mal solution of the relaxation is potentially infeasible in the original problem.
However, these solutions do give us lower bounds on our solution, and we will
eventually use these lower bounds and solutions of the relaxed problem in order
to find an actual feasible solution.

What we do with our Lagrangian relaxation is take some of our constraints,
in this case the resource constraints, and incorporate them into our objective
function while scaling them using our multipliers A\. This in order to create
a matrix of constraints that is again Totally Unimodular. Since our A are
non-negative, any resource constraints that are broken generally increase our
solution. Hence they function as a ‘penalty’ on our minimization.

15

We rewrite our resource constraints as follows:

t
S| Y. | <RekeRt=0,..T
J

s=t—p;+1

t
Sra| Y | -Ri<0keRt=0,..T.
J

s=t—p;+1

Then, instead of requiring every inequality to be met, we instead try to minimize

them, which is the same as trying to minimize the sum of all inequalities:

t
minimize erk Z Zjs | — Rp, k€ R,t=0,...,T.

7 s=t—p;+1
Now we sum over the entire time horizon, and incorporate our multiplier A
t
minimize E Atk E Tjk E zjs | — Ri | k€ R.
t g s=t—p;+1
Next, we seperate the equation into two sums, resulting in

t
minimize Z erk Z Tjs Atk — Z MiRi, k€ R.
t 7 s=t—p;+1 t
Finally we also sum over all k € R, giving
t
minimize Z Z erk Z Tjs Atk — Z Z e Ry,
keER t 7 s=t—p;+1 keR t
which can be rewritten to the equal

t+pj—1
minimize Z Z (Z Tk Z)\sk> Ty — Z Z Atk R
J

t kER s=t t kER

If we add to , we obtain the following Lagrangian subproblem:

t+pj71
minimize Z trn: + Z Z (Z Tk Z)\sk> Tt — Z Z Atk R,
t J

t kER s=t t keR

again subject to , , and .

16

If we now introduce weights

tp;—1

o ZTjk Z Ask if j #n,
Wit = keER s=t

t if j=mn,

we can rewrite as

minimize Z ijtxjt - Z Z Ak R (13)
it

t kER

subject to , 7 and .

For a given A, the term), >, » A Ry, is constant, so we are purely minimizing
over the job weights and start times. If we compare this to , we see that
is a project scheduling problem with temporal constraints and start-time
dependent costs, just as the problem discussed in In addition, since weights
wj¢ depend on A, which are non-negative, the weights are non-negative as well,
which allows us to solve using the techniques discussed before.

3.3 Relating the Lagrangian relaxation and the resource-
constrained project scheduling problem

For any A, the optimal solution of is a lower bound on the value of our
resource-constrained project scheduling problem defined by , , ,
, and @: either the optimal solution of the relaxation complies with all
resource constraints and it is also an optimal solution to the project scheduling
problem, or some resource constraints are broken and the optimal solution of
the relaxation is lower than the optimal solution of the resource-constrained
project.

We shall denote the value of an optimal solution for the Lagrangian relaxation
as w) for a fixed A\. From this, we define the Lagrangian dual as IAX W)

In addition to being a lower bound on , the Lagrangian dual is in general
also a lower bound on the LP-relaxation of (L3]), since this relaxation is still
constrained by the resource restrictions.

However, since the time constraints are Totally Unimodular (see §2.2.1)), we find
that the optimal solution of the LP-relaxation in fact equals the Lagrangian dual
[5, Corollary 9.1].

Although knowing the value of the Lagrangian dual does not give us the A that
produces this value, this result is still important. Since the optimal solution of
the LP-relaxation can be determined in polynomial time, it gives us the means
to determine how close wy is to the Lagrangian dual for a certain .

17

3.4 Computing the Lagrangian Multipliers

Our objective now is to compute our multipliers A so that the Lagrangian relax-
ation using this value approaches its maximum, and is hence as close as possible
to the optimal solution of the resource-constrained project.

This computation is done in two steps. First, we calculate the target value of
the Lagrangian relaxation (which from now on we will call w*). Secondly, we
use this value to find a value for A that gets us in the neighborhood of this target
value.

3.4.1 Computing the target value

As explained in §3.3] this the target value of the Lagrangian relaxation is the
value of the Lagrangian dual, which is equal to the LP-relaxation of .

Example 2.8 (Continued). We turn again to our previous example. Now,
however, we need to add extra information, namely our resource constraints.
We define one resource constraint, with Ry = 10. In addition, we define
ry1 = 6,797 = 6,733y = 2. Note how this implies jobs 1 and 2 cannot exe-
cute simultaneously, since this would demand 12 units from resource 1, while
only R; = 10 units are available.

When only time constraints were involved, an optimal solution to our new ob-
jective function would have trivially been to start every job on its earliest
feasible starting time. In this case, that would have resulted in w(z) = 3. How-
ever, because of the choice of our resource constraints this is no longer possible.

Recall that p; = 2 and p; = 1. In addition, (1) = 0 and e(2) = 1 (see §2.3.3)).
This would mean our resource constraints are violated, since jobs 1 and 2 are
running simultaneously at ¢ = 1. In fact, manually looking for feasible solutions
by studying the valid cuts in figure [3] shows us that we in fact only have one
solution that complies with our resource constraints, namely where job 1 starts
at t =0, job 2 at t = 2 and job 3 at t = 3, which would be complete at ¢t = 4.

Therefore, when we calculate optimal value of the LP-relaxation, we expect
w* < 4.

This calculation was performed by the linprog() function in Matlab.
This calculation resulted in

fval =

3.7862

or w* = 3.7862, which meets our expectations that w* < 4.

18

3.4.2 Computing the actual multiplier

Once w* has been calculated as in §3.4.1] we can now begin actually calculating
our A by making use of the method described in [0, §3.5], which itself is based
on a standard subgradient method described in [2], §6.3]

This is an iterative process where, starting with a A\° (which we take to be the
matrix of ones), we calculate X! == [\" + 5igi]+, whereby:

e []T indicates the nonnegative part of a vector. In other words, every
negative value is changed to 0.

t t
v T 3) m(1-3a)
jeJ s=t—p;+1 s=0
O(w* — wyi(a'))
_ [lg*I? _ _
the improvement of our w) slows, w* is the value of the Lagrangian dual
as calculated in §3.4.1) and ||g°||? is the sum of squares of our elements
of g*. This denominator is important, as it normalizes the product §*g*
based on the size of our resource constraints.

o 5 = . Here, § is a parameter that is slowly reduced as

This is the point where all of the theory described in §2| comes into play. In
the definition of ¢*, we see the term wyi(x*). This term indicates the optimal

solution of constrained by (6b), (6d), (6d), (6€), (8) and (9), as described in

§3.3l However, since the non-constant term of (13)) is a purely time constrained

problem, we find a solution of wy: (z*) by applying the method described in

Example 2.8 (Continued). In order to put the above theory into practice, a
program was written to perform the above calculations for a number of iterations
— in this case 10.

However, due to the limited number of available options and the small scale of
the problem, we find that the results on this problem are quite uninteresting:
in the first two iterations, the solution that is found is the same as the optimal
solution found is the one where each job starts at its Earliest Feasible Start Time.
This is indeed the best solution when looking only at temporal constraints, since
it is minimizes wg. However, it is clearly not valid since it violates our only
resource constraint.

However, from iteration 3 onwards we immediately jump to the only valid so-
lution in our problem:

Start time of job 1: O
Start time of job 2: 2
Start time of job 3: 3

after which the generated solutions no longer change in new iterations.

19

This is clearly not a very interesting solution. Indeed, since the fact that our
found solution is also feasible in the resource constraints means that we also no
longer have to use any of the techniques discussed in [6], §4] to transform the
found solution into a feasible one. Therefore, as also mentioned in §] a next
step in this research should be to look at a problem where the found solution of
the Lagrangian relaxation is less obvious.

4 Conclusion

In this thesis, we studied part of the technique proposed in [6] to solve NP-
hard project scheduling problems, specifically those involving both temporal
and resource constraints. This technique involves an algorithm to solve problems
that are purely temporally constrained, and algorithm is then used in order to
efficiently solve an approximation of the resource constrained problem obtained
by performing a Lagrangian relaxation.

In doing so, proofs were given for unbacked claims made in the article and the
technique was applied to a basic but insightful example.

The application of the technique on this simple example, however, does not
produce any results that cannot be easily observed at a simple glance. Follow
up research could look at the application of the described technique on a more
sizable project scheduling problem, and look at complications found in doing so.
In addition, no real attention was paid to the choice of our initial A, for which
[6] also does not provide any insights. This is a second angle in which follow-up
research could be performed.

Since the solutions of the Lagrangian relaxations are generally infeasible for
the actual problem because of broken resource constraints, a final step in the
finding of a solution for a resource constrained problem is taking the solution
of the Lagrangian relaxation and transforming it into a feasible solution to the
original problem. This process is discussed in [6, §4]. The study of this process,
as well as their description in the article, could be a final way in which follow
up research on this thesis could be performed.

20

References

1]

Richard Bellman. On a routing problem. Technical report, DTIC Document,
1956.

Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont,
1999.

Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number.
In Computational Complexity, 1996. Proceedings., FEleventh Annual IEEE
Conference on, pages 278-287. IEEE, 1996.

Andrew V Goldberg and Robert E Tarjan. A new approach to the maximum-
flow problem. Journal of the ACM (JACM), 35(4):921-940, 1988.

Lodewijk CM Kallenberg. Besliskunde 4, 2009.

Rolf H Méhring, Andreas S Schulz, Frederik Stork, and Marc Uetz. Solving
project scheduling problems by minimum cut computations. Management
Science, 49(3):330-350, 2003.

Wikipedia. Max-flow min-cut theorem — Wikipedia, the free ency-
clopedia. http://en.wikipedia.org/wiki/Max-flow_min-cut_theorems,
2014. [Online; accessed october—december 2014].

Wikipedia. Pushrelabel maximum flow algorithm — Wikipedia, the free
encyclopedia. http://en.wikipedia.org/wiki/Pushi,E2/80%93relabel_
maximum_flow_algorithm#Correctness, 2015. [Online; accessed october
2014—february 2015].

21

http://en.wikipedia.org/wiki/Max-flow_min-cut_theorems
http://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm#Correctness
http://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm#Correctness

	Abstract
	Introduction
	Project schedules without resource constraints
	Feasibility
	Formulation as an Integer Programming Problem
	Feasibility and a Total Unimodular constraint matrix

	Solving the Integer Programming Problem
	Earliest feasible start times
	Latest feasible start times
	Constructing the min-cut graph
	Calculating the solution from the min-cut graph

	Resource-constrained project schedules
	Formulation as an Integer Programming Problem
	Lagrangian Relaxation
	Relating the Lagrangian relaxation and the resource-constrained project scheduling problem
	Computing the Lagrangian Multipliers
	Computing the target value
	Computing the actual multiplier

	Conclusion

