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1 Introduction

In this thesis, we will explore a simple, but rich concept, called ultrafilters.
This concept has utilities in many areas, such as model theory, logic, and
topology (this can be read in [2]). As the title suggests, this thesis has its
focus on the latter area, topology.

On topological spaces, ultrafilters can converge. Many topological prop-
erties can be formulated in terms of this convergence. They work in is similar
fashion to the ordinary sequence convergence, with one notable difference: it
works for every topological space. This comes with a nice bonus: Tychonov’s
theorem, a theorem that is otherwise hard to prove!

The main result of this thesis will a reconstruction of the category of
compact Hausdorff spaces. Originally proven by Ernest Manes, this con-
struction enables a very different way of creating topological spaces, what
will come in handy last chapter.

When finding a major result, one could do two things with it: general-
izing or finding an application. I went for both. The fourth chapter yields
a reconstruction of the category of all topological spaces. The result is not
much different. However, this will involve taking a look at the category of
sets and relations, which has the structure of a 2-category. As such, every-
thing will be slightly harder.

The last chapter will cover a utility of this reconstruction: the Stone-Čech
compactification of a topological space. This is a natural way to make a space
compact Hausdorff. The resulting space is rich of mathematical structure,
and some unusual applications. This can be read here [5] and here [6].

This thesis is very categorical, and so, the reader will be assumed to know
about functors and natural transformations. Other concepts, like monads,
will be introduced throughout the thesis.

Before starting, I would like to thank my supervisor Owen Biesel for his
knowledge and support throughout the project.
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2 Ultrafilters and topology

2.1 Fundamental matters

In this section, we will give a definition for ultrafilters, and a way to construct
them.

Definition 2.1. Let S be a set. A collection of subsets F ⊆ P(S) is an
ultrafilter on S if it satisfies the following properties:

(1) For every subset A ⊆ S, F contains either A or its complement Ac,
but not both.

(2) If A ∈ F , and A ⊆ B ⊆ S, then B ∈ F .

(3) For all A,B ∈ F , A ∩B ∈ F as well.

We denote the set of ultrafilters on S by U(S).

There is one easy, but important class of ultrafilters.

Example 2.2. Let x ∈ S. Then the set {A ⊆ S : x ∈ A} is an ultrafilter.
We denote this set by Px.

An ultrafilter that can be written as Px, for some x ∈ S, is called a prin-
cipal ultrafilter. These are the only ultrafilters we can construct explicitly.
Others will require the Axiom of choice. For the construction, we will need
a new concept:

Definition 2.3. A collection of subsets C ⊆ P(S) has FIP (Finite intersec-
tion Property) if each finite subcollection of C has a nonempty intersection,
i.e. for every finite subcollection {A1, ..., An} ⊆ C, we have:

⋂n
i=1Ai 6= ∅.

The following theorem will give us the ability to create free ultrafilters.
It will be very fundamental throughout the thesis. And so, many proofs will
involve verifying whether a given collection of sets has FIP.

Theorem 2.4. Let C ⊆ P(S) be any collection with FIP. Then there exists
an ultrafilter F ∈ U(S) such that C ⊆ F .

Proof. Let C ⊆ P(P(S)) be the collection of supersets of C with FIP. Ap-
plying Zorn’s Lemma (the hypothesis is easy to verify) shows this set has a
maximal element; call it M .
We now have to verify M is an ultrafilter. Conditions (2) and (3) are clear
from maximality. SupposeM does not meet condition (1). Then there exists
an A ⊆ S such that A,Ac /∈M (they cannot be both contained in M , as M
has FIP). Then M ∪{A} does not have FIP. As M meets condition (2), this
would mean that there exists a B ∈M such that B∩A = ∅. But that means
that B ⊆ Ac. But since M meets condition (3) as well, this means that
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Ac ∈M , which is a contradiction to our assumption. So M meets condition
(1) as well. So M is an ultrafilter.
So C is contained within an ultrafilter, M .

Remark 2.5. This proof shows that ultrafilters can also be interpreted as
maximal sets with FIP.

2.2 Convergence and topological properties

Ultrafilters play a very interesting role in topology : ultrafilters can converge!
In this section, we will introduce this type of convergence, and derive some
powerful properties. All of these properties will be proven with Theorem 2.4,
so they rely on the Axiom of Choice!

Definition 2.6. Let S be a topological space. Consider an ultrafilter F ∈
U(S) and a point x ∈ S. We say F converges to x if F contains all open
neighborhoods of x. We denote F ↘ x.

Several examples of convergent ultrafilters are fairly easy to derive.

Example 2.7. Let S be an arbitrary topological space, and let x ∈ S. The
ultrafilter Px contains all sets containing x, let alone the open neighborhoods
thereof. And so, we have the convergence relation Px ↘ x.

Example 2.8. When S is discrete, there are no convergent ultrafilters out-
side of the ones described in Example 2.7. On the other hand, when S is
indiscrete, each ultrafilter converges to every point.

Ultrafilters shine more in an abstract sense. The property we are going
to prove now allows us to tell exactly whether a given set is open or not.

Theorem 2.9. Let S be a topological space, and U ⊆ S. The following are
equivalent:

(1) U is open in S.

(2) U appears in each ultrafilter that converges to some point in U .

Proof. (1) ⇒ (2) Let F ∈ U(S) be an ultrafilter that converges to, say,
x ∈ U . Then U is an open neighborhood of x, so U ∈ F by definition.
(2) ⇒ (1) Let x ∈ U . We are going to prove first that U is a superset of
an open neighborhood of x. Suppose it is not. Then the following subset of
P(S) has FIP :

C = {open neighborhoods of x} ∪ {U c}

So we can extend C to an ultrafilter F ∈ U(S). This converges to x, but
lacks U , which is a contradiction to our assumption. So U is a superset of
an open neighborhood of x.
Now we can construct U by taking an open neighborhood Ux ⊆ U , for all
x ∈ U . Then U is the union of them, so U is indeed open in S.
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This means that the underlying topology, and therefore its topological
properties, can be fully derived out of a given convergence relation! Some
properties have a very nice and simple ultrafilter interpretation. We will
start with compactness.

Theorem 2.10. Let S be a topological space. The following are equivalent:

(1) S is compact.

(2) Each ultrafilter F ∈ U(S) converges to at least one point.

Proof. (1)⇒ (2) Suppose there exists on ultrafilter F ∈ U(S) that does not
converge anywhere. Then we can choose for each x ∈ S an open neighbor-
hood Ux ⊆ S such that Ux /∈ F . This leaves us with an open cover (Ux)x∈S of
S. Since S is compact, it has a finite subcover (Uxi)

n
i=1. As none of the sets

of the cover are contained in F , F fully contains (U c
xi
)ni=1. But

⋂n
i=1 U

c
xi

= ∅.
Since ultrafilters are closed under finite intersections, this means that ∅ ∈ F ,
which is a contradiction. So each ultrafilter in U(S) converges to some point
in A.

(2)⇒ (1) Suppose S is not compact. Let C be an open cover of S with
no finite subcover. Then C ′, the collection of complements of sets in C,
has FIP, and can be extended to an ultrafilter F ∈ U(S). This converges
somewhere, by assumption, to say, x ∈ S. As C covers S, there is an open
set U ∈ C, such that x ∈ U . By convergence, this means that U ∈ F . But
U c ∈ C ′, which is fully contained in F , so F contains both U and U c, which
is a contradiction. So S is compact.

The Hausdorff property also has a very interesting interpretation.

Theorem 2.11. Let S be a topological space. The following are equivalent:

(1) S is Hausdorff.

(2) Each ultrafilter F ∈ U(S) converges to at most one point.

Proof. (1) ⇒ (2) Suppose there exists an ultrafilter F ∈ U(S) that con-
verges to multiple points, say x and y. Let Ux and Uy be disjoint open
neighborhoods of x and y respectively. Then F contains both Ux and Uy,
and therefore contains ∅. This is a contradiction, so each ultrafilter in U(S)
converges to at most one point.

(2) ⇒ (1) Suppose S is not Hausdorff. Then there exists an x, y ∈
S without pairwise disjoint neighborhoods. Let C be the set of all open
neighborhoods of x and y. This set has FIP, as each finite intersection of open
neighborhoods can be written as an intersection of an open neighborhood of
x and an open neighborhood of y, which by assumption are never disjoint.
So C can be extended to an ultrafilter F ∈ U(S). However, this ultrafilter
converges to both x and y; a contradiction to our assumption. So S is
Hausdorff.
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Combining the previous theorems yields the following characterization.

Corollary 2.12. Let S be a topological space. The following are equivalent:

(1) S is compact Hausdorff.

(2) Each ultrafilter F ∈ U(S) converges to precisely one point.

This shows that the compact Hausdorff spaces are precisely those whose
convergence relation is a function U(S) → S. We will give a closer look to
it next chapter.

The last property we will give an ultrafilter interpretation is continuity.
But we will need one new concept, of pushforward ultrafilters.

Definition 2.13. Let f : S → S′ be any function, and F ∈ U(S) be an
ultrafilter. The pushforward ultrafilter f∗(F ) ∈ U(S′) is defined by:

f∗(F ) := {A ⊆ S′ : f−1(A) ∈ F}

As we see from this definition, every function f : S → S′ induces a func-
tion f∗ : U(S) → U(S′). This will play a major role next chapter, when
talking about categories. But it also allows us to have an ultrafilter inter-
pretation of continuity.

Theorem 2.14. Let S and S′ be topological spaces, and let f : S → S′ be a
map. Let x ∈ S. The following are equivalent:

(1) f is continuous at x.

(2) For each ultrafilter F ∈ U(S) where F ↘ x, we have f∗(F )↘ f(x).

Proof. (1) ⇒ (2) Let F ∈ U(S) such that F ↘ x. Let U ⊆ S′ be an
open neighborhood of f(x). Since f is continuous at x, f−1(U) is an open
neighborhood of x. So f−1(U) ∈ F and hence U ∈ f∗(F ). So f∗(F ) contains
all open neighborhoods of f(x). Hence f∗(F )↘ f(x).

(2)⇒ (1) Let U ⊆ S′ be an open neighborhood of f(x). Let F ∈ U(S) be
an ultrafilter converging to x. By assumption, f∗(F )↘ f(x) and hence U ∈
f∗(F ). By definition, f−1(U) ∈ F . This holds for all ultrafilters converging
to a point of f−1(U). In follows that f−1(U) is open in S by Theorem 2.9.
So f is continuous.

Remark 2.15. There are similarities between ultrafilter convergence and
the ordinary sequence convergence. Let S and S′ be metric spaces. Recall
the following properties:

(1) Each subset U ⊆ S is open if and only if each sequence with a limit in
U is eventually situated in U .
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(2) The space S is compact if and only if each sequence has a convergent
subsequence.

(3) Let x ∈ S. A map f : S → S′ is continuous at x if and only if for
each sequence (xn)n∈N that converges to x, the sequence (f(xn))n∈N
converges to f(x).

This shows that Theorem 2.9, Theorem 2.10 and Theorem 2.14 are more
powerful analogues of these respective properties. Especially compactness
has a much better ultrafilter interpretation.

2.3 Application: Tychonov’s theorem

One nice application of the properties found in previous section is Tychonov’s
theorem. This theorem has a wide range of applications, and is known to be
equivalent to the axiom of choice. It is very easy to prove with ultrafilters.
Before heading to the proof, we will first take a look at how the convergence
relation looks on product topologies. I will do this in a more general setting:
looking at how it looks on initial topologies, which is mostly used for defining
product topologies and subspace topologies. Recall the definition of initial
topologies below:

Definition 2.16. Let (Si)i∈I be a family of topological spaces, and let
(fi : S → Si)i∈I be a family of maps. On S, the initial topology, or topology
induced by (fi)i∈I is the coarsest topology such that fi is continuous, for all
i ∈ I. This space has the following subbase:

B = {f−1i (Ui) : Ui open in Si, i ∈ I}

This topology can be formulated nicely in terms of ultrafilter convergence.

Lemma 2.17. Let S as above. Let x ∈ S and F ∈ U(S). The following are
equivalent:

(1) F ↘ x.

(2) fi∗(F )↘ fi(x) for all i ∈ I.

Proof. (1) ⇒ (2) The map fi is continuous for all i ∈ I, so (2) holds auto-
matically.

(2)⇒ (1) Let U ⊆ S be an open neighborhood of x. As F is closed under
finite intersections, we can assume U ∈ B (with B defined above). Then
U = f−1i (Ui), for some i ∈ I, Ui ∈ Ti. This Ui is an open neighborhood of
fi(x), so by assumption, Ui ∈ fi∗(F ). Hence U = f−1i (Ui) ∈ F . This holds
for all open neighborhoods of x, so F ↘ x.

With this result, combined with Theorem 2.10, Tychonov’s theorem sud-
denly becomes very easy to prove.
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Corollary 2.18. (Tychonov’s theorem) Suppose (Si)i∈I is a family of com-
pact spaces. Then the space S :=

∏
i∈I Si is compact as well.

Proof. For j ∈ I, we denote the coordinate-wise projection
∏

i∈I Si → Sj
by πj . Let F ∈ U(S) be an ultrafilter. For all j ∈ I, Sj is compact, so we
can choose a point sj ∈ Sj such that πj∗(F )↘ sj . Since

∏
i∈I Si is induced

by (πi)i∈I , it follows that F converges to (si)i∈I by Lemma 2.17. So each
ultrafilter on

∏
i∈I Si converges, making

∏
i∈I Xi compact.
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3 A categorical approach

Last chapter, we found out that each structure of a compact Hausdorff topol-
ogy on S is determined by a function U(S)→ S. In this chapter, we will find
out which functions. With pushforward-ultrafilters in mind (Definition 2.13),
one can define the following functor:

U : Sets→ Sets

S 7→ U(S)
f 7→ f∗

It is easy to verify that this is actually a functor. To find more structure of
it, we need some categorical concepts.

3.1 Monads and algebras

This section devotes to some categorical concepts that are necessary for this
thesis. As such, this section has nothing to do with ultrafilters, but with
arbitrary categories instead.

Definition 3.1. Let C be a category, and let T : C → C be any (endo)functor.
Let η : idC → T and µ : T 2 → T be two natural transformations. The triplet
(T, η, µ) is a monad if the following two diagrams commute, for all objects
S ∈ C:

T (S)

T 2(S) T (S) T 2(S)

T (ηS) ηT (S)

µS µS=

T 3(S) T 2(S)

T 2(S) T (S)

µT (S)

T (µS) µS

µS

I will illustrate this concept with three examples.

Example 3.2. Let G be a group. Consider the following functor:

T : Sets→ Sets

S 7→ G× S
f 7→ idG × f

Then (T, η, µ) is a monad if we put:

ηS : s 7→ (1, s)

µS : (g, g
′, s) 7→ (gg′, s)
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One can verify that the left diagram holds since 1 is left and right neutral,
and that the right one holds because the multiplication is associative. In
that regard, the monads generalize the whole concept of monoids; group-like
structures where the existence of inverses is unnecessary.

Example 3.3. For any set S, we can define Z[S] to be the ring of polynomials
with coefficients in Z, and variables in S. Any function f : S → S′ induces
a unique ring homomorphism f∗ : Z[S] → Z[S′] that sends x to f(x) for all
x ∈ S. This allows us to define a functor given by:

T : Sets→ Sets

S 7→ Z[S]
f 7→ f∗

For any set S, let ηS : S → Z[S] be the inclusion map, and let µS : Z[Z[S]]→
Z[S] be the evaluation map that sends each variable to its corresponding
polynomial in Z[S]. Then (T, η, µ) is a monad over Sets.

Example 3.4. Let S be a topological space. Consider the category P(S)
with the inclusion relation as arrows. Consider the following functor:

T : P(S)→ P(S)
A 7→ A

(A ⊆ B) 7→ (A ⊆ B)

Then for all A ⊆ S, let ηA be the inclusion relation A ⊆ A, and let µA be the
inclusion relation A ⊆ A. Then (T, η, µ) is a monad simply because every
pair of objects in P(A) can be connected by one arrow at most.

But there is another tool we will need, called algebras:

Definition 3.5. Let (T, η, µ) be a monad on C. An algebra for this monad
is an object S, together with an arrow α : T (S)→ S, such that the following
diagrams commute:

S T (S)

S

ηS

α

=

T 2(S) T (S)

T (S) S

T (α)

µS α

α

I will show what the algebras are of previous examples.

Example 3.6. First, consider the monad of Example 3.2. For any set S,
the G-actions G × S → S are precisely the algebra structures on S, as the
diagrams express the desired properties.
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Example 3.7. Now consider the monad of Example 3.3, and let S be an ar-
bitrary set. If a commutative ring structure on S is given, then the evaluation
map α : Z[S]→ S is an algebra on S. Conversely, if an algebra α : Z[S]→ S
is given, then the set I = {p ∈ Z[S] : α(p) = α(0)} is an ideal of the ring
Z[S] by the right diagram. By the left diagram, α is surjective (and behaves
like some sort of evaluation map). So α induces a bijection Z[S]/I → S, and
therefore a ring structure on S. And so, there is a one-to-one correspondence
between ring structures and algebra structures on S.

Example 3.8. Lastly, consider the monad of Example 3.4. For any closed
set A ⊆ S, the inclusion relation A ⊆ A is an algebra structure on A. If a
subset A ⊆ S is not closed, then A does not have any algebra structures.

The fun part of algebras is that it allows us to construct a new category
out of a given monad.

Definition 3.9. Let T := (T, η, µ) be a monad on a category C. The
Eilenberg-Moore category of T , denoted by CT consists of:

• objects in the form (S, α), where α : T (S)→ S are algebras. These are
called the T -modules.

• morphisms f : (S, α) → (S′, α′), which are arrows f : S → S′ that
respect the following diagram:

T (S)

S

T (S′)

S′

α

T (f)

f

α′

These are called the T -module morphisms. The composition of two
arrows in CT is the same as in C.

I will illustrate this, again, with the previous examples.

Example 3.10. Let T be the monad of Example 3.2. Then SetsT consists
of the G-sets, and the arrows are the functions that preserve G-actions.

Example 3.11. Let T be the monad of Example 3.3. Then SetsT consists
of the commutative rings, and the arrows are the ring homomorphisms.

Example 3.12. Let T be the monad of Example 3.4. Then P(S)T consists
of the closed sets of S, and the arrows are (still) the inclusion relations.
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3.2 The ultrafilter monad

We now want to create a monad (U , η, µ) on the ultrafilter functor defined
in the first paragraph. In order to do so, we have to find suitable choices for
η and µ.

Lemma 3.13. The transformation η given by

ηS : S → U(S)
x 7→ Px

is a natural transformation η : idSets → U .

Proof. Let f : S → S′ be any function. We must verify that the following
diagram commutes:

S U(S)

S′ U(S′)

ηS

f f∗

ηS′

Let x ∈ S. We have to prove that f∗(ηS(x)) = ηS′(f(x)). Let A ∈ ηS′(f(x)).
Then A ∈ Pf(x) or, equivalently, f(x) ∈ A. So x ∈ f−1(A). Hence f−1(A) ∈
Px, which means that A ∈ f∗(Px) = f∗(ηS(x)). So ηS′(f(x)) ⊆ f∗(ηS(x)).
Since both are ultrafilters, it follows that ηS′(f(x)) = f∗(ηS(x)).

Before we can define µ, we need to define a new class of sets.

Definition 3.14. Let S be a set and A ⊆ S be a subset thereof. Then the
set [A] ⊆ U(S) is given by:

[A] = {F ∈ U(S) : A ∈ F}

Lemma 3.15. The transformation µ given by

µS : U2(S)→ U(S),F 7→ {A ⊆ S : [A] ∈ F}

is a natural transformation µ : U2 → U .

Proof. Let f : S → S′ be any function. We must verify that the following
diagram commutes:

U2(S) U(S)

U2(S′) U(S′)

µS

f∗∗ f∗

µS′

12



Let F ∈ U2(S). We have to prove that f∗(µS(F)) = µS′(f∗∗(F)). Let
A ∈ µS′(f∗∗(F)). Then [A] ∈ f∗∗(F), which implies that f−1∗ ([A]) ∈ F .
Using the definitions, we can rewrite (f∗)

−1([A]) as:

(f∗)
−1([A]) = {F ∈ U(S) : f∗(F ) ∈ [A]}

= {F ∈ U(S) : A ∈ f∗(F )}
= {F ∈ U(S) : f−1(A) ∈ F}
= [f−1(A)]

So [f−1(A)] ∈ F , which means that f−1(A) ∈ µS(F), and hence A ∈
f∗(µS(F)). So µS′(f∗∗(F)) ⊆ f∗(µS(F)) and hence µS′(f∗∗(F)) = f∗(µS(F)).

Lemma 3.16. The triplet (U , η, µ) is a monad. We call it the ultrafilter
monad.

Proof. Let S be a set. We must verify that the following diagrams commute:

U(S)

U2(S) U(S) U2(S)

ηS∗ ηU(S)

µS µS=

U3(S) U2(S)

U2(S) U(S)

µU(S)

µS∗ µS

µS

To check the right one, let F ∈ U3(S). Let A ∈ µS(µS∗(F)). Then [A] ∈
µS∗(F) and hence µ−1S ([A]) ∈ F . Using the definitions, we can rewrite
µ−1S ([A]) as follows:

µ−1S ([A]) = {F ∈ U2(S) : µS(F ) ∈ [A]}
= {F ∈ U2(S) : A ∈ µS(F )}
= {F ∈ U2(S) : [A] ∈ F}
= [[A]]

This means that [[A]] ∈ F . So [A] ∈ µU(S)(F) and henceA ∈ µS(µU(S)(F)).
It follows that µS(µS∗(F)) ⊆ µS(µU(S)(F)) and hence µS(µS∗(F)) = µS(µU(S)(F)).
The right diagram is therefore commutative.
To prove that the left diagram commutes, we will prove first that the left
triangle thereof commutes. To do so, let F ∈ U(S). Let A ∈ µS(ηS∗(F )).
Then [A] ∈ (ηS∗(F )). But that means that ηS−1([A]) ∈ F . We can rewrite:

ηS
−1([A]) = {x ∈ S : ηS(x) ∈ [A]}

= {x ∈ S : A ∈ Px}
= {x ∈ S : x ∈ A}
= A

13



So A ∈ F . It follows that µS(ηS∗(F )) ⊆ F and hence µS(ηS∗(F )) = F . It
follows that the left triangle commutes.
To verify the right one, let A ∈ µS(ηU(S)(F )). Then [A] ∈ ηU(S)(F ) = PF ,
which implies that F ∈ [A] and hence A ∈ F . So µS ◦ηU(S)(F ) = F , making
the right triangle of the right diagram commutative as well.
So both diagrams commute, making (U , η, µ) a monad.

3.3 Manes’ theorem

Having constructed the ultrafilter monad, we may wonder what its Eilenberg-
Moore category look like. This category will be equivalent to a very well-
known category, the category of compact Hausdorff spaces. We will prove
that in this section.

Theorem 3.17. The Eilenberg-Moore category of the ultrafilter monad is
equivalent to the category of compact Hausdorff spaces.

We will start with the easiest part: proving that each convergence relation
is an algebra.

Lemma 3.18. Let S be a compact Hausdorff space. The map α : U(S)→ S
that sends an ultrafilter to its limit point is an algebra on the monad (U , η, µ).

Proof. We have to prove that the following diagrams commute:

S U(S)

S

ηS

α

=

U2(S) U(S)

U(S) S

α∗

µS α

α

The left one follows immediately from Example 2.7. To prove the right
one, let F ∈ U2(S), and put x = α(α∗(F)). Then α∗(F) contains all
open neighborhoods of x. Now let U be an open neighborhood of x. Then
α−1(U) ∈ F . All ultrafilters that converge to a point in U contain U itself,
as U is an open neighborhood of those points. So α−1(U) ⊆ [U ] and hence,
[U ] ∈ F as well. But this means that U ∈ µS(F). This holds for all open
neighborhoods of x, so µS(F)↘ x. Since the limit point of µS(F) is unique,
as S is compact Hausdorff, it follows that α(µS(F)) = x. So the right
diagram commutes too.

Now, we have to do the hard part, creating a topology out of an algebra.
This will happen with a few lemmas. We first need the concepts of closure
operators.
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Definition 3.19. A map Cl: P(S) → P(S) is called a Kuratowski closure
operator if it satisfies the following axioms, for all A,A′ ⊆ S:

(1) Cl(∅) = ∅

(2) A ⊆ Cl(A)

(3) Cl2(A) ⊆ Cl(A)

(4) Cl(A ∪A′) = Cl(A) ∪ Cl(A′)

This operator defines a unique topology on S where A = Cl(A) for all A ⊆ S.

Lemma 3.20. Let α : U(S) → S be an algebra. The map Cl : P(S) →
P(S), A 7→ α([A]) is a Kuratowski closure operator.

Proof. We verify axioms 1-4 one by one (with A,A′ ⊆ S being arbitrary).

(1) Since no ultrafilter contains ∅, [∅] = ∅. This means that Cl(∅) =
α([∅]) = ∅.

(2) Let x ∈ A. Since α is an algebra, α(ηS(x)) = x. As such, α(Px) = x.
Since A ∈ Px, or equivalently, Px ∈ [A], this means that x ∈ α([A]) =
Cl(A).

(3) Let x ∈ Cl2(A). Then we can choose an ultrafilter F ∈ U(S) such that
Cl(A) ∈ F , and α(F ) = x. We will create an ultrafilter out of the
following subset of P(U(S)):

C = {α−1(B) : B ∈ F} ∪ {[A]}

The set {α−1(B) : B ∈ F} is closed under finite intersections and with
α being surjective (by being the left inverse of ηS), it does not contain
∅. It will be therefore sufficient to prove α−1(B)∩{[A]} 6= ∅ all B ∈ F .
Suppose this is not the case, and that α−1(B) ∩ {[A]} = ∅, for some
B ∈ F . Then all ultrafilters G ∈ U(S) where α(G) ∈ B lack A.
In particular, all ultrafilters where α(G) appears in the nonempty set
B ∩ Cl(A) lack A. This is a contradiction to the definition of Cl(A).
So C indeed has FIP, and can be extended to an ultrafilter F ∈ U2(S).
Since F contains {α−1(B) : F ∈ F}, we have α∗(F) = F . And so,
α(α∗(F)) = x. It follows from α being an algebra that α(µS(F) = x
as well. Since [A] ∈ F by construction, this means that µS(F) is an
ultrafilter containing A and with image x. Hence x ∈ Cl(A).

(4) We first prove Cl(A∪A′) ⊆ Cl(A)∪Cl(A′). Let x ∈ Cl(A∪A′). Then
there exists an ultrafilter F ∈ U(S) containing A ∪ A′ that converges
to x. Then F contains A or A′; if it contained neither of them, then it
would contain Ac and A′c, and therefore also Ac∩A′c = (A∪A′)c, which
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is not true. So F ∈ [A] or F ∈ [A′] and hence, x ∈ α([A]) or x ∈ α([A′]).
So x ∈ Cl(A) ∪ Cl(A′), and hence Cl(A ∪A′) ⊆ Cl(A) ∪ Cl(A′).
To prove the converse, let x ∈ Cl(A) ∪ Cl(A′). Then x ∈ Cl(A) or
x ∈ Cl(A′). As such, there exists an ultrafilter F ∈ U(S) containing
A or A′ where α(F ) = x. Since ultrafilters are closed under supersets,
F contains A ∪ A′, so F ∈ [A ∪ A′]. Hence x ∈ Cl(A ∪ A′). So
Cl(A) ∪ Cl(A′) ⊆ Cl(A ∪A′)
So Cl(A) ∪ Cl(A′) = Cl(A ∪A′).

This proof allows us to make a Kuratowski closure operator depending
on α. It is, however, unclear that the convergence relation of the resulting
topology coincides with α. So we need the following two rather similar lem-
mas. The first one yields an alternative definition for convergence relations.

Lemma 3.21. Let S be a topological space, F ∈ U(S), and x ∈ S. The
following are equivalent:

(1) F ↘ x

(2) For every A ∈ F , x ∈ A.

Proof. (1) ⇒ (2) Suppose there exists a set A ∈ F such that x /∈ A. Then
x ∈ Ac, which is open in S. By assumption, Ac ∈ F . With A ⊆ A, we have
A ∈ F as well. So we get a contradiction.

(2)⇒ (1) Suppose F 6↘ x. Let U be an open neighborhood of x that F
lacks. Then U c ∈ F . By assumption, x ∈ U c. But U c is already closed in S,
so x ∈ U c, which is false.

Lemma 3.22. Let α : U(S) → S be an algebra, and F ∈ U(S) be an ultra-
filter, and x ∈ S. The following are equivalent:

(1) α(F ) = x

(2) For all A ∈ F , x ∈ Cl(A).

Proof. (1)⇒ (2). Let A ∈ F . Then F ∈ [A], while α(F ) = x. So x ∈ Cl(A).
(2)⇒ (1). Consider the following subset of P(U(S)):

C = {[A] : A ∈ F} ∪ {α−1({x})}

This set has FIP; this follows immediatly from the assumption. So it can
be extended to an ultrafilter F ∈ U2(S). Since F contains {[A] : A ∈ F},
we find that µS(F) = F . Moreso, since α−1({x}) ∈ F , we find that {x} ∈
α∗(F), which means that α∗(F) = Px. With α being an algebra, α(Px) = x
and α(α∗(F)) = α(µS(F)). Combining our results gives α(F ) = x.

Corollary 3.23. Let α : U(S)→ S be an algebra. Then there exists a com-
pact Hausdorff topology on S such that α coincides with the convergence
relation on S.
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Proof. By Lemma 3.20, Cl is a Kuratowski closure operator, and therefore
induces a topology on S. The convergence relation of the resulting space
coincides with α, since for all F ∈ U(S) and x ∈ S, F ↘ x if and only if
x ∈ A for all A ∈ F (Lemma 3.21), if and only if x ∈ Cl(A) for all A ∈ F , if
and only if α(F ) = x (Lemma 3.22).

Remark 3.24. I have not mentioned anything about the constructed topol-
ogy being compact Hausdorff. This is, however, obvious from the fact that α
is a function, and that a convergence relation is a function if and only if the
underlying topology is compact Hausdorff, as seen in Corollary 2.12. The

Remark 3.25. The constructed topology is unique, since each convergence
relation fully determines the topology, as proven in Theorem 2.9.

This shows that the objects of the Eilenberg-Moore category are precisely
the compact Hausdorff spaces. But what about the arrows? We will find
out next lemma.

Lemma 3.26. Let S and S′ be compact Hausdorff spaces with convergence
relations α and α′ respectively, and let f : S → S′ be a map. The following
are equivalent:

(1) f is continuous.

(2) The following diagram commutes:

U(S) U(S′)

S S′

f∗

α α′

f

Proof. This follows immediately from Theorem 2.14.

This shows that the arrows of the Eilenberg-Moore category of (U , η, µ)
corresponds to the continuous maps. And so, this Eilenberg-Moore cate-
gory fully corresponds to the category of compact Hausdorff spaces, proving
Theorem 3.17.

Remark 3.27. The proof of Corollary 3.23 yields an ultrafilter interpreta-
tion for closures: if α is the convergence relation on S, then α([A]) = A for
all A ⊆ S.

17



4 Barr’s theorem

The highlight of the previous chapter is that the category of compact Haus-
dorff spaces coincides with the Eilenberg-Moore category of the constructed
monad. This chapter gives a brief sketch of how this generalizes to the cat-
egory of all topological spaces. The result will be a correspondence proven
by Barr (although he went for a different approach, see [4]).
The major roadblock we will face is that the convergence relation of arbitrary
spaces no longer has to be a function; for this reason we will have work in the
category of sets and relations instead. This category is more complicated, as
commutativity of diagrams is a rough demand. As such, we will introduce
the notion of oplax diagrams.
Proofs have been left out in this chapter, since they use the same ideas as
earlier seen proofs (many are, in fact, almost copies thereof).

The category of sets and relations, denoted as Rel, consists of sets as
its objects. The arrows R : S → S′ are relations between S and S′. The
composition of two relations is defined as follows.

Definition 4.1. Let R : S → S′ and R′ : S′ → S′′ be two relations. The
composition R′ ◦R : S → S′′ is defined by saying x(R′ ◦R)x′ if there exists
a y ∈ S′ such that xRy and yR′x′.

The key difference between the categories Sets and Rel is the notion of
inclusions of relations.

Definition 4.2. Let R,R′ : S → S′ be two relations. We say that R ⊆ R′

if for all (x, x′) ∈ S × S′ were xRx′, we have xR′x′.

Remark 4.3. When considering R and R′ as subsets of S × S′, this notion
of inclusion coincides with regular inclusion of sets.

With this notion, the set Hom(S, S′) (for all sets S, S′) is a category on its
own: its objects are the relations and the arrows are the inclusion relations.
And so, the category Rel is a 2-category.
We will now repeat the story of chapter 3 on Rel. In order to do so, we will
first need an ultrafilter functor. This will require a definition for pushforward
relations.

Definition 4.4. Let R : S → S′ be a relation. We define a pushforward rela-
tion R∗ : U(S)→ U(S′) by saying that FR∗G when the following equivalent
conditions are met:

(1) For any A ∈ F , we have AR ∈ G. The set AR ⊆ S′ is given by:

AR = {x ∈ S′ : there exists a y ∈ A such that yRx}
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(2) For any A ∈ G, we have RA ∈ F . The set RA ⊆ S is given by:

RA = {x ∈ S : there exists a y ∈ A such that xRy}

Remark 4.5. It follows immediately from condition (2) that when R is
a function, then R∗ coincides with the notion of pushforward maps from
Definition 2.13.

One can prove that for two relations R : S → S′ and R′ : S′ → S′′ the
equality R′∗ ◦R∗ = (R′ ◦R)∗ holds. And so, we get a functor given by:

U : Rel→ Rel

S 7→ U(S)
R 7→ R∗

Remark 4.6. It is easy to see that if R ⊆ R′, that R∗ ⊆ R′∗. And so, U is
a functor of 2-categories.

On Rel, we can define the transformations µ and η the same way as
we did on Sets. Unfortunately, they are no longer natural transformations.
Nonetheless, they have some structure.

Lemma 4.7. Let R : S → S′ be a relation. The following diagrams hold:

S U(S)

S′ U(S′)

ηS

R∗R

ηS′

⊆

U2(S) U(S)

U2(S′) U(S′)

µS

R∗∗ R∗

µS′

⊆

Diagrams in this form are oplax diagrams. The left diagram means that
ηS′ ◦R ⊆ R∗ ◦ ηS , and the right diagram means µS′ ◦R∗∗ ⊆ R∗ ◦ µS .
Lemma 4.7 tells us that µ and η are weak natural transformations. And so,
we call (U , η, µ) a weak monad instead (since the monad diagrams still hold).
On weak monads, one could still define algebras. Unfortunately, convergence
relations do not always have to be algebras. As such, they also have a weaker
structure now.

Lemma 4.8. Let S be a topological space. The convergence relation α : U(S)→
S meets the following diagrams:

S T (S)

S

ηS

α

=

⊆

T 2(S) T (S)

T (S) S

µS

α∗ α

α

⊆
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The convergence relation is now a lax algebra. If the inclusion symbols
were pointed the other way, it would be called colax.

Remark 4.9. Strictness of diagrams are topological properties, equivalent
to other well-known properties:

• The left diagram is strict if and only if all singletons are closed (i.e.
the space is T1).

• The right diagram is strict if and only if the space is core-compact or
exponential. On Hausdorff spaces, this property is equivalent to locally
compactness. This is explained further on [7].

Similar to Corollary 3.23, the condition of a relation to be a lax algebra
is a sufficient condition for being a convergence relation of a topological
space. And so, there is a one-to-one correspondence between lax algebras
and topological structures on S. Combining this result with Theorem 2.14,
we can identify the category of topological spaces as follows.

Theorem 4.10. The category of topological spaces and continuous maps is
equivalent to the category consisting of:

• objects, which are in the form (S, α), where α : U(S) → S is a lax
algebra.

• arrows f : (S, α)→ (S′, α′) satisfying the following diagram:

U(S) U(S′)

S S′

f∗

αS αS′

f

⊆

Remark 4.11. It is easy to see that the coarser a topology on S is, the
bigger it is corresponding convergence relation will be. As such, we get a
Galois correspondence between the lax algebras and the topologies on a set.
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5 The Stone-Čech compactification

This chapter yields a fun application of everything proven in chapter 3: the
Stone-Čech compactification. We will first give the characterization of a
Stone-Čech compactification of a space.

Definition 5.1. Let S be a topological space. A Stone-Čech compactification
of S is a pair (βS, i). Here, βS is a compact Hausdorff space, and i : S → βS
a continuous map, satisfying the universal property: for every continuous
map f : S → C, where C is a compact Hausdorff space, there exists a unique
map f̂ : βS → C such that the following diagram commutes:

S βS

C

i

f̂
f

Thanks to the universal property, a Stone-Čech compactification of a
space is unique up to unique homeomorphism. While there are multiple
constructions, the construction we will see in this chapter is the most elegant,
in my opinion.

5.1 Stone-Čech compactification of discrete spaces

We start with construction of Stone-Čech compactification of discrete spaces.
The fun part is that this section solely relies on the diagrams of chapter 3.
And so, this result can be extended to any monad. I will point this out in
Remark 5.7.

Theorem 5.2. Let S be discrete space. On the set U(S), equip the topol-
ogy with convergence relation µS. Then the pair (U(S), ηS) is a Stone-Čech
compactification of S.

In this theorem, we assumed µS to be a convergence relation. We actually
have to prove that.

Lemma 5.3. The map µS : U2(S) → U(S) is an algebra on U(S), and
therefore the convergence relation of a compact Hausdorff space.

Proof. We have to verify the following diagrams hold:

U(S) U2(S)

U(S)

ηU(S)

µS

=

U3(S) U2(S)

U2(S) U(S)

µU(S)

µS∗ µS

µS
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Both of them hold thanks to (U , η, µ) being a monad.

So we can equip U(S) with the topology induced by µS . This gives us a
compact Hausdorff space, as µS is a function. Moreso, we can consider S as
a subspace by the embedding ηS . This is continuous, as all functions from
discrete spaces are.
Now let f : S → C be an arbitrary continuous function, where C is a compact
Hausdorff space with convergence relation β. In the next two lemmas, we
will prove that f factors through ηS , i.e. there exists a continuous map
f̂ : U(S)→ C such that f = f̂ ◦ ηS .

Lemma 5.4. The map f̂ := β ◦ f∗ meets the equality f̂ ◦ ηS = f .

Proof. With η being a natural transformation, and β being an algebra, the
following diagram commutes:

S C

U(S) U(C)

f

ηS ηC

f∗
C

β =

So, indeed, f = f̂ ◦ ηS .

Lemma 5.5. The map f̂ : U(S)→ C is continuous.

Proof. We will prove this by using the interpretation of continuity by Lemma 3.26.
With µ being natural and β being an algebra, the following diagram com-
mutes:

U2(S) U2(C)

U(S) U(C)

U(C)

C

f∗∗

µS µC

f∗

β∗

β

β

Since f̂ = β ◦f∗ and f̂∗ = β∗ ◦f∗∗, this result yields the desired diagram.

We have proven that there exists a continuous map f̂ : U(S) → C such
that f = f̂ ◦ ηS . But is that extension unique? We will prove that in the
following lemma:

Lemma 5.6. Let g : U(S) → C be a continuous map such that g ◦ ηS = f .
Then g = f̂ .
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Proof. Using that g is continuous and that (U , η, µ) is a monad yields the
following commutative diagram:

U(S) U2(S)

U(S)

U(C)

C

ηS∗

µS

g∗

β

g=

Since f̂ = β ◦ f∗ = β ◦ g∗ ◦ ηS∗, this diagram yields the desired result.

So we have proven that each map f : S → C, where C is a compact
Hausdorff space, extends uniquely to a map f̂ : U(S)→ C such that f̂ ◦ηS =
f . So indeed, the pair (U(S), ηS) is a Stone-Čech compactification for S,
when it is discrete.

Remark 5.7. This result extends to arbitrary monads as follows. Let T :=
(T, µ, η) be a monad over a category C. Let S ∈ C be an object, and let
(M,α) ∈ CT be an T -module. For every arrow f : S → M , there exists a
unique T -module morphism f̂ : (T (S), µS)→ (M,α) such that the following
diagram commutes:

S T (S)

M

ηS

f̂
f

And so, (T (S), µS), along with the arrow ηS , is called a free module over S.

The next question is: why is this trick invalid for arbitrary spaces? The
problem here is that ηS is not always continuous. In fact, one can prove that
ηS is continuous exclusively when S is discrete. In the next section, we will
make some adjustments to make this work for arbitrary spaces as well.

5.2 Stone-Čech compactification of arbitrary spaces

During the project, I found that taking the Stone-Čech compactification of
an arbitrary space is not only possible, but also pretty easy to do out of a
given Stone-Čech compactification of the underlying discrete space.
So we will assume now that S is an arbitrary topological space, and U(S) will
be the topological space we constructed last chapter. It will be sufficient to
take a quotient of U(S), which is very similar to the Hausdorff quotient. As
quotient spaces lack the nice ultrafilter interpretation product spaces have,
we will have to rely on elementary facts instead.
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Theorem 5.8. Let S be an arbitrary topological space. On U(S), we de-
fine an equivalence relation ∼ by declaring F and G to be equivalent if
f̂(F ) = f̂(G) for all continuous maps f to compact Hausdorff spaces. Put
η̃S := q ◦ ηS (where q is the quotient map). Then (U(S), η̃S) is a Stone-Čech
compactification for S.

Remark 5.9. The equivalence relation on U(S) has been defined so that
for any continuous map f : S → C, the map f̂ : U(S) → C factors uniquely
through q, i.e. there exists a unique continuous map f̂ ′ : U(S)/∼→ C such
that f̂ = f̂ ′ ◦ q.

The fundamental difference with this construction is that η̃S is continu-
ous now. We will prove this now. But first, we will need a lemma to show
the impact of the convergence relation of S.

Lemma 5.10. Let F ∈ U(S) and x ∈ S, and suppose that F ↘ x. Then
F ∼ Px.

Proof. Let C a compact Hausdorff space with convergence relation β, and
let f : S → C be a continuous map. Then f∗(F ) and f∗(Px) both converge
to f(x). Since β is a function, this means that β ◦f∗(F ) = β ◦f∗(Px) = f(x)
and hence f̂(F ) = f̂(Px). This holds for all continuous maps f to compact
Hausdorff spaces. So F ∼ Px.

Corollary 5.11. The map η̃S is continuous.

Proof. Let F ∈ U(S) and x ∈ S such that F ↘ x. Since µS ◦ ηU(S) = idU(S),
it follows that ηS∗(F )↘ F (in U(S)). Since q is continuous, it follows that
η̃S∗(F )↘ F (in U(S)/∼). But F ∼ Px by Lemma 5.10, so η̃S(x) = Px = F ,
and hence η̃S∗(F )↘ η̃S(x).

The space U(S)/∼ would never be a Stone-Čech campactification of S
if it were not compact Hausdorff itself. The space is certainly compact, as
quotients of compact spaces always are. However, we do need to prove that
U(S)/∼ is Hausdorff.

Lemma 5.12. The space U(S)/∼ is Hausdorff.

Proof. Suppose it is not. Then there exists an ultrafilter F ∈ U(U(S)/∼)
with two distinct limits, say, F and F ′ for some ultrafilters F, F ′ ∈ U(S).
Then F and F ′ are not equivalent, so there exists a continuous map f : S →
C to a compact Hausdorff space such that f̂(F ) 6= f̂(G). Then f̂ ′(G) 6=
f̂ ′(F ′) either, with f̂ ′ : U(S)/∼→ C from Remark 5.9. But f̂ ′ is continuous,
so f̂ ′∗(F) converges to two points. This is a contradiction since C is Hausdorff.
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So the space U(S)/∼ is compact Hausdorff. By Corollary 5.11, the map
η̃S is continuous, and by Remark 5.9, each continuous map f to a compact
Hausdorff space factors uniquely through η̃S . So (U(S)/∼, η̃S) is a Stone-
Čech compactification for S.

Remark 5.13. By Urysohn’s lemma, for each pair of distinct points x, y of a
compact Hausdorff space C, there exists a continuous map f : C → [0, 1] such
that f(x) 6= f(y). As such, two ultrafilters F,G ∈ U(S) will be equivalent
precisely when f̂(F ) = f̂(G) for all continuous maps f : S → [0, 1].
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