
Target Identification of Cysteine-directed Covalent Inhibitors in Pathogenic Bacteria

Authors

Julia Pols, Roy Belder, Stephan M. Hacker

Abstract oral presentation

The worldwide emergence of antimicrobial resistance (AMR) has been recognized by the World Health Organization (WHO) as a top ten threat to global health.¹ Since clinically approved antibiotics target a limited set of molecular pathways, there is an urgent need to develop antibiotics with novel modes-of-action. In this context, covalent inhibitors that form a permanent bond with amino acid residues in proteins can have many advantages.² Especially the amino acid cysteine is an ideal target due to its nucleophilicity and unique role in bioprocesses.² We have screened a library of 10,000 covalent compounds of ~60 chemotypes for antibacterial activity against Gram-positive methicillin resistant *Staphylococcus aureus* (*S. aureus*) (MRSA) and Gram-negative Neisseria gonorrhoeae (*N. gonorrhoeae*) and performed additional studies to profile the hits. Isotopically labeled desthiobiotin – Activity Based Protein Profiling (isoDTB-ABPP)³ was performed to reveal more than 2000 unique cysteines found in MRSA and around 3000 cysteines in *N. gonorrhoeae*. This corresponds to 42% and 46% of the total cysteinome, respectively. In both bacteria, 72% of cysteines in essential proteins were detected via this method. The protein targets of the determined hits were assessed and a selection was made for future studies. This research provides many new points of engagement towards the development of new antibiotics.

References

- 1. Singh, J, et al., *The resurgence of covalent drugs*. Nat. Rev. Drug Discov., 2011, **10**: p. 307-317.
- 2. Giles, N. M., et al., *Multiple roles of cysteine in biocatalysis*. Biochem. Biophys. Res. Commun., 2003, **300**: p. 1-4.
- 3. Zanon, P. R. A., et al., *Isotopically Labeled Desthiobiotin Azide (isoDTB) Tags Enable Global Profiling of the Bacterial Cysteinome*. Angew. Chem. Int. Ed., 2020, **59**: p. 2829-2836.